
Online Learning of Invariant Object Recognition
in a Hierarchical Neural Network

Markus Lessmann and Rolf P. Würtz

Institut für Neuroinformatik, Ruhr-Universität, Bochum, Germany
{markus.lessmann,rolf.wuertz}@ini.rub.de

Abstract. We propose the Temporal Correlation Net (TCN) as an ob-
ject recognition system implementing three basic principles: forming tem-
poral groups of features, learning in a hierarchical structure and using
feedback for predicting future input. It is an improvement of the Tem-
poral Correlation Graph and shows improved performance on standard
datasets like ETH80 and COIL100. In contrast to its predecessor it can
be trained online on all levels at once instead of having to be trained in
batch mode level per level. Training images are presented in a tempo-
ral order showing objects undergoing specific transformations in viewing
conditions the system is supposed to become invariant to. Computa-
tion time and memory demands are low because of a sparse connectivity
structure resulting from the learning algorithm and efficient handling of
neural activities.

1 Introduction

Visual processing is one of the brain functions most mimicked in artificial sys-
tems. The aims of the different modeling approaches reach from theories about
the brain’s computational processes during analysis of the environment to prac-
tical applications like surveillance, driver assistance, or control of industrial pro-
duction processes. Whereas 20 years ago both purposes were pursued using very
different techniques in the last 10 years several systems have been developed that
on the one hand stick to important aspects known about the neural architec-
ture in the brain and how information processing could be executed within the
given constraints of this architecture and properties of biological neurons and
on the other hand, thanks to increasing calculating capacities of nowadays com-
puters, become applicable to big standard test databases and hence interesting
for practical applications listed above. Examples include HMAX [1], HTM [2],
and VisNetL [3]. Three basic ideas each underly some of these systems:

1. Learning of temporal sequences for creating invariance to transformations
contained in the training data.

2. Learning in a hierarchical structure such that invariance increases gradually
from level to level. Additionally lower level knowledge can be reused in higher
level contexts and thereby makes memory usage efficient.

3. Prediction of future signals for disambiguation of noisy input by feedback.



2

Here, we present a novel system for invariant object recognition implementing
these basic ideas. The layout is the following: In the next chapter we present our
system in detail. Chapter 3 describes how learning works in the network. Results
of experiments are presented in chapter 4. Chapter 5 closes the article with an
outlook on future work.

2 Our System

The system presented here is called Temporal Correlation Net (TCN) and is an
improvement of the Temporal Correlation Graph (TCG) from [4, 5]. It shares
with its predecessor the architecture and handling and computation of neural
activities. What has changed is that the new system learns using biologically
plausible learning rules, namely a normal associative Hebbian learning rule for
training of neurons representing spatial patterns and the trace rule for learning
of temporal groups of features. This permits to train the network online rather
than in batch mode as the older one. This should give the system the capability
to get taught new object categories after initial training has been finished.

The system is a multilayer neural network consisting of three different lev-
els each made up of two sublayers. Figure 1 shows the general structure of the
network. The lower layer contains neurons responding to spatial patterns in the
input. On the lowest level spatial neurons are representatives of so called par-
quet graphs [6], visual features built up of wavelet responses. A codebook of
those found in the training set is learned using vector quantization. Each entry
then gets associated a spatial neuron. On higher levels spatial neurons represent
certain configurations of temporal groups simultaneously active at adjacent po-
sitions in the preceding sublayer. These temporal neurons represent groupings
in which spatial input patterns at the same position of the network appear often
close in time. This is important for creating invariance to transformations in
viewing conditions. If, e.g., invariance to rotation in depth shall be learned the
system is presented different images of an object rotating around a certain axis.
At one image position the same object part might be observed from different
viewing angles (for example left profile, front view and right profile of a head).
A neuron tuned to a group of the corresponding visual patterns will respond to
any of these views and hence will represent the head at least partly invariant
to viewing angle. This scheme is repeated on the next levels of the hierarchy.
First spatial patterns of adjacent lower level temporal patterns are learned and
then the resulting patterns are temporally grouped. Thus, the partly invariant
presentation of the head may be combined with a (partly) invariant representa-
tion of other body parts. Connection weights to spatial and temporal neurons
are learned unsupervised using neural learning rules. Top level temporal neurons
are representatives of complete object categories. The associations between top
level temporal activities and object categories are learned supervised by asso-
ciating vectors of activities averaged over training images of the same category
with a category name. The recognized category can then be read out using dot
product decoding.



3

Fig. 1. Visualization of the network architecture. Connections of nodes represent pos-
sible synaptic connections between all neurons in one node and all in the other.

The system has to handle a very large number of neurons (potentially 105

or even 106 on some levels). For keeping computations tractable only non-zero
weights are stored and weights of newly created neurons are initialized very
sparsely. Additionally, neurons are simulated dynamically by just storing an
index and a real activity value in specially designed containers (called nodes).
Neurons can be addressed via their index using hashing techniques for fast access.
In addition neurons can be sorted according to activity and those with weak
activation can be deleted. On the lowest level 9×9 nodes are placed in a regular
grid on the input image (in both sublayers). On higher levels convergence takes
place with a common factor C of 3, i.e., a higher level spatial node receives input
from 3×3 adjacent temporal nodes of the preceding layer. Between two sublayers
the mapping is one to one, each spatial node yields the input to one temporal
node of the same level. This scheme leads to 3×3 nodes in the (sublayers of the)
middle level and 1 at the top level.

3 Inference and Learning

Learning and inference are not independent since training requires inference on
the already trained network levels.

3.1 Inference

Inference is done by computing activities of all neurons for a given input image
and then reading out the activities of temporal neurons at the top level.



4

These identify the recognized object category. Calculation of activities is done
from bottom to top level for one node position after another. This can also be
done in parallel for node positions on the same level. Activities are calculated
and stored in a temporary memory. If their calculation is completed they are
transferred to a bigger container storing activities of the last T time steps, where
they are used for learning and for feedback calculation.

Computing spatial feedforward input: On level 0 graph feasts are ex-
tracted, their nearest neighbor in the codebook is looked up and the correspond-
ing neuron is activated with the similarity. During learning a graph feast is added
to the codebook if the similarity is below a threshold ϑQ and a new neuron is
created. On higher levels neurons compute their feedforward activation as neu-
rons in an ordinary MLP by multiplying the activity of input neurons with the
corresponding connection weight and adding these terms up.

Inhibiting spatial neurons: Next the amount of active neurons at each
node position is reduced by deleting all but the K most active neurons from
the hash map. During learning K is 1, during recall it is usually higher. This
step can be seen as application of inhibition between neurons at the same node
position.

Computing spatial feedback input: The next step is to add feedback
input to the remaining active neurons coming from temporal neurons which
have been active on the T previous images.

Application of the activation function: The neuron activities are pro-
cessed by a tanh nonlinearity. This activation function provides besides inhibition
the second non-linearity in the system enabling it to robust classification. Addi-
tionally it prevents activity values from growing to infinity, which could happen
because of feedback connections. For using more of its non-linear regime neuron
activities (which are between 0 and 1 because of normalization of weights) are
multiplied with π before.

Transfer into activity stack: Then activities are written into an activity
stack of the last T images. The current activities are written to position 0 and the
older ones are shifted one position, the last entry gets deleted. During learning
activity in the stack is deleted when a new object category is presented for
preventing the system from learning transitions between different categories.

Computations for temporal neurons: Now the same kind of calculations
are done for neurons representing temporal groups. At first temporal neurons
collect their feedforward input, then inhibition is applied and feedback is given
to remaining temporal neurons (this time only from higher level spatial neurons
active on the last image). At last the activation function is used again and
activities are moved to the activity stack.

3.2 Learning

After inference learning is done for each training image on all levels and sublayers
at once. It is executed globally on each level meaning that neurons, which can be
added during learning, can become active independently at each node position
of a level and their connection weights can be trained on any node position.



5

On level 0 the codebook and spatial neurons are learned using vector quan-
tization. On each other sublayer (on level l) a new neuron gets created if the
current maximum activity at a node position is below a threshold ϑlS for spatial
or ϑlT for temporal neurons. Incoming weights of new neurons are tuned to cur-
rently active input neurons thus that they would have been maximally active for
the current input. They are randomly connected to higher level neurons active
on recent time steps. All incoming weights of a temporal neuron are normalized
to a Euclidean norm of 1.0. For spatial neurons all incoming weights from the
same input node are normalized to an Euclidean norm of 1/C. Weights whose
absolute value falls below a threshold ϑL get deleted.

Spatial neurons need to learn which temporal neurons at adjacent input
positions are active at the same time. This is just an associative learning task
which can be executed well by a Hebbian learning rule:

∆W l,t;l+1,s
i,j (v) = α · n l,t

i (v) · n l+1,s
j (1)

α is a learning factor, n l,t
i is the activity of temporal neuron i on level l at the

currently considered input position v, n l+1,s
j that of spatial neuron j on level

l + 1 and W l,t;l+1,s
i,j the connection between both of them. Temporal neurons

have to learn temporal groupings of spatial input patterns. This can be achieved
using the trace rule, an associative Hebbian learning rule based on the trace of
a temporal neuron’s activity at time τ :

n l,t
j

τ
= (1 − η) · n l,t

j

τ
+ η · n l,t

j

τ−1
(2)

It provides a memory of the neurons past activities and is high not only if the
neuron was activated strongly on the current but also on past images. Parameter
η determines the weighting between current and past input. The trace value
enables the following learning rule to adjust connection weights thus that spatial
neurons which are activated frequently on consecutive time steps all excite the
same temporal neuron. The trace rule itself reads as:

∆W l,s;l,t
i,j = α · n l,t

j

τ
· n l,s

i

τ
(3)

Here n l,s
i

τ
is the activity of spatial neuron i on level l,n l,t

j

τ
the already intro-

duced trace value and W l,s;l,t
i,j the weight between the considered neurons.

4 Experiments

The system was tested on the ETH80 [7] (in the “cropped close perimg” version)
containing images of 8 different categories and the COIL100 [8], consisting of
images of 100 different objects, each being its own category. In both databases a
black background was used instead of additional segmentation information. All
tests used one-fold cross validation: the number of views per object was split
into two sets, the first was used for training, the rest for testing.



6

All images had a size of 128 × 128 pixels. A 3-level network was used as
shown in figure 1. Nodes on the lowest level were placed on the input images
with a spacing of 14 pixels and an offset of 7. Since the network learns temporal
groups the training images had to be in a meaningful order. Therefore, views
were sorted according to their great-circle distance on the viewing hemisphere.
For fifty-fifty-partitioning every other view of the order was taken for training
and the rest for testing, for other split-ups every third or fourth, etc.

First the most relevant parameters are listed for a better overview:

K: determines how many neurons are kept active in each node for further
computations.

η: determines how strong past activities are considered for temporal traces.
α: the learning rate of the neural learning rules.
T tr/te: determines for how many past images activities are kept in memory for

neuron creation during learning and feedback calculation during recognition.
TR: this parameter determines for how many past time steps trace values are

kept in memory for neuron creation during learning.
ϑQ: threshold used during learning of the codebook using vector quantization.
ϑlS : threshold for creation of spatial neurons.
ϑlT : threshold for creation of temporal neurons.
NE : number of training epochs before adaptation of neuron numbers.
ϑL: weights with absolute value below this threshold get deleted.

Preliminary parameter tests on ETH80 resulted in the following optimal
values: ϑQ = 0.92, T tr = 65, TR = 50, η = 0.3, α = 0.00175, ϑlS = 0.9, ϑlT = 0.0,
NE = 3 and ϑL = 10−5. These gave a recognition rate of 99.69%. For COIL100
most parameters were kept except T tr and TR which were set to 25, ϑQ to 1.00
and ϑlS to 0.95, yielding a recognition rate of 99.94%. T te and K were optimized
for each single test.

The following test shows the generalization capabilities of the system for
ETH80 and COIL100. The system was trained on different percentages of all
images in the database and recognition on the remaining images was done using
the two optimal parameter sets.

The results in table 1 demonstrate that the new system outperforms the old
on the ETH80 dataset considerably. Even for only 2.50% of training data rates of
almost 64.00% are reached which is quiet good. They also don’t decrease much
for more than 50.00% training data as they do for TCG since parameters were
optimized for this training amount. For COIL100 also some improvements could
be reached in most of the tests although they are not as remarkable as those on
ETH80.

Table 2 shows results of tests on COIL100 with further percentages. We
compare the TCN with TCG, the system of Westphal [6] (which uses the same
features as we) and Linde and Lindberg [9, 10], which have the best results that
we could find. They create a high-dimensional histogram for each image and
classify these using SVMs. It has to be noted that results of Westphal have been
obtained using 5-fold cross validation in contrast to the others.



7

Table 1. Tests for generalization over viewing angle. Given are the percentages of
images of each dataset the system was asked to use for training, the number of images
that were actually used and the recognition rates of both systems reached on the
remaining images. For TCN and TCG performance on training set was always 100%.
Results of TCG differ from [4] due to further parameter tests. On the left results for
ETH80 on basic category level (apple, car, cow and so forth) and on the right results
for COIL100 on name level.

% requ. # obt. TCN TCG # obt. TCN TCG

ETH80 COIL100

2.50 160 63.65 27.44 200 61.06 58.00

5.00 240 68.32 25.95 400 76.57 74.91

10.00 400 85.69 31.70 800 93.95 88.89

20.00 720 98.16 87.89 1500 97.56 97.46

30.00 1040 99.06 90.98 2200 99.58 99.18

40.00 1360 99.11 98.12 2900 99.81 99.63

50.00 1680 99.69 99.06 3600 99.94 100.00

60.00 2000 99.53 99.30 4300 100.00 99.93

70.00 2320 99.79 99.17 5100 99.95 99.86

80.00 2640 99.53 95.47 5800 100.00 99.93

90.00 2960 100.00 96.25 6500 100.00 99.71

The first column shows the distance in viewing angle of two consecutive
images in the training set. The other columns show the obtained recognition
rates on test set, on training set was always 100.00% for TCN and TCG.

The results show that the TCN performs for most training sets better than
TCG. In total both systems outperform the approach of Westphal but can-
not compete with the system of Linde/Lindeberg for very sparse training sets.
Whereas they reach recognition rates of over 97% for 90◦ distance between train-
ing images the TCN drops to 78.15%. However, it needs to be considered that
they include color information, which is not used in our systems.

Further tests were conducted on the ALOI1000 [11] to show the capability
to handle large databases. All images were rescaled to 128 × 128 pixel, and a
fifty-fifty-partitioning test was performed on both the viewing angle subset and
the subset with varying illumination directions. Recognition rates (test/train)
were 99.59%/99.88% and 99.91%/99.97%, respectively, which is very good and
shows that the TCN can handle such a large number of object categories.

5 Conclusion

We have presented a powerful object recognition system that improves in several
ways on an older predecessor. It generalizes very well over different views of the
same object on standard datasets and is capable of online learning. In the future
we want to test if it can be trained with different categories incrementally.



8

Table 2. Tests for generalization over viewpoints on COIL100 on name level.

viewpoint diff. TCN TCG Westphal Linde/Lindeberg

10◦ 99.94 100.00 99.68 100.00

20◦ 99.02 98.91 97.97 99.96

30◦ 97.08 95.87 92.93 100.00

40◦ 96.63 93.05 88.45 —

45◦ 91.39 88.61 — 99.37

50◦ 93.95 88.89 83.20 —

60◦ 80.98 79.02 76.61 99.00

70◦ 83.33 81.44 75.79 —

80◦ 81.10 77.28 72.39 —

90◦ 72.16 70.38 65.63 97.13

Acknowledgments: The authors gratefully acknowledge funding from the DFG
in the priority program “Organic Computing” (WU 314/5-3) and from the land
of Northrhine-Westphalia in the project MoGES, which is co-financed by the
EFRE program from the European Commission.

References

1. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex.
Nature Neuroscience 2(11) (1999) 1019–1025

2. George, D.: How the brain might work: a hierarchical and temporal model for
learning and recognition. PhD thesis, Stanford University (2008)

3. Rolls, E.T.: Invariant visual object and face recognition: Neural and computational
bases, and a model, VisNet. Frontiers in Computational Neuroscience (2012)

4. Lessmann, M., Würtz, R.P.: Learning of invariant object recognition in a hierarchi-
cal network. In Hammer, B., Villmann, T., eds.: Proceedings of New Challenges in
Neural Computation, Graz. Number 03/2012 in Machine Learning Reports (2012)
104–112

5. Lessmann, M., Würtz, R.P.: Learning of invariant object recognition in a hierar-
chical network. Neural Networks (2014) In press.

6. Westphal, G., Würtz, R.P.: Combining feature- and correspondence-based methods
for visual object recognition. Neural Computation 21(7) (2009) 1952–1989

7. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object
categorization. In: Proc. CVPR. Volume 2. (2003) 409–415

8. Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library (COIL-100).
Technical Report CUCS-006-96, Columbia University (1996)

9. Linde, O., Lindeberg, T.: Object recognition using composed receptive field his-
tograms of higher dimensionality. In: Proc. ICPR. (2004) 1–6

10. Linde, O., Lindeberg, T.: Composed complex-cue histograms: An investigation
of the information content in receptive field based image descriptors for object
recognition. CVIU 116(4) (2012) 538–560

11. Geusebroek, J., Burghouts, G., Smeulders, A.: The Amsterdam Library of Object
Images. International Journal of Computer Vision 61 (2005) 103–112


