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Abstract— In this paper, we propose a new approach for
localization and tracking of a vehicle in a parking garage, based
on environment-embedded LIDAR sensors. In particular, we
present an integration of data from multiple sensors, allowing
to track vehicles in a common, parking garage coordinate
system. In order to perform detection and tracking in real-
time, a combination of appropriate methods, namely a grid-
based approach, a RANSAC algorithm, and a Kalman filter is
proposed and evaluated. The system achieves highly confident
and exact vehicle positioning. In the context of a larger
framework, our approach was used as a reference system to
enable autonomous driving within a parking garage. In our
experiments, we showed that the proposed algorithm allows a
precise vehicle localization and tracking. Our system’s results
were compared to human-labeled ground-truth data. Based on
this comparison we prove a high accuracy with a mean lateral
and longitudinal error of 6.3 cm and 8.5 cm, respectively.

I. INTRODUCTION

In the last decades, many different technical approaches
have been realized to increase drivers’ safety and comfort.
The combination of accurate sensors and powerful algo-
rithms led to Advanced Driver Assistance Systems (ADAS),
which are able to support the driver in critical situations (e.g.,
lane departure warning) or relieve him by autonomously
performing exhausting maneuvers (e.g., parking assistance).

As a consequence, vehicles will drive fully autonomous
in the long term. Nowadays, this kind of autonomy is
only realizable within restricted scenarios. In this study, we
present a new approach for localization and tracking of
vehicles within known environments using the example of
parking garages.

Our approach is particularly interesting, because many
people feel uncomfortable in such environments for different
reasons:

• Driving in narrow buildings with sometimes confusing
architecture is stressful.

• The elderly or disabled people encounter problems
entering their car in narrow parking spots [1].

• People feel unsafe.
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• Finding a free parking spot is time-consuming and
tedious.

In this paper, we present an environment-embedded
method for localization and tracking of vehicles in a park-
ing garage based on LIDAR (Light detection and ranging)
sensors. In the context of a parking assistance system those
results and additional vehicle sensory data is used to realize
autonomous driving. Within that major system the driver
hands over his car at the parking garage entrance. The vehicle
is then driven autonomously through the building towards a
free parking spot and can be picked up later similarly.

The proposed localization system gathers reliable data
for various indoor scenario where GPS information is not
available. It is flexible and extendible as it is able to cover
different sizes of vehicles (e.g., trucks or robots) in huge
indoor areas.

In order to achieve these goals we base our system on
multiple LIDAR sensors embedded in the parking garage
environment. LIDAR sensors measure distances with a high
accuracy and a fast sampling rate.

This paper will firstly give an overview of related work in
Sec. II. The proposed approach is presented in Sec. III. In
Sec. IV the implemented system is tested and evaluated in
a parking garage. A final conclusion and outlook is given in
Sec. V.

II. RELATED WORK

LIDAR sensors mounted on moving objects have been
widely used for detection and tracking of relevant objects [1]
[2] as well as for self-positioning [3] in different fields of ap-
plication (robotics, automotive, etc.) or to gather information
about unknown environments. Here, we focus on applications
in the context of parking scenarios.

In [1], Suppé et al. presented an approach to assisted
parking using LIDAR sensors attached to the vehicle and
odometry information. Their system allows the driver to
operate his vehicle by observing its trajectory with a remote
control from outside the car. Kümmerle et al. introduce an
approach for autonomous parking in absence of GPS data in
a parking garage [2]. Although their system is very accurate
with a position error of 0.1 m, it is not suitable for common
vehicles, as five different laser systems and five radar sensors
are mounted on the test carrier.

In contrast to that, we employ stationary environment-
embedded sensors within the infrastructure. The proposed



(a) Position of the LIDAR sensor on
the parking garage.

(b) Typical parking garage scenario.

(c) LIDAR data of the recorded setting.

Fig. 1. A typical parking garage scenario of our system: (a) shows a single
LIDAR sensor in the parking garage aligned to measure in parallel to the
ground plane. The LIDAR sensor in this picture is positioned behind the
vehicle. (b) displays the same scenario from an different point of view. (c)
presents the bird’s-eye-view of the captured LIDAR data in this scenario.
The blue box marks the sensor position. The four measurement clusters
above-right of the sensor correspond to the vehicle’s wheels.

approach is cost efficient, does not require vehicles with
specific equipment and is, therefore, easily transferable to
real-world scenarios.

Another system for autonomous driving in a parking
garage using a network of video cameras is discussed in [4].
The authors observed an aberration in their predicted vehicle
hypotheses of 1 m with a coverage of 14 m due to the cameras
extrinsic constraints.

III. PROPOSED SYSTEM

The proposed system is based on LIDAR data only
and aims at the estimation of the vehicles’ position and
orientation in coordinates of a parking garage. To achieve
applicability, the system should be failsafe, accurate, and
real-time capable. A typical parking garage scenario with
the corresponding LIDAR data measurements is illustrated
in Fig. 1.

The presented approach is structured in a feed forward
manner: Each single sensor records data points from its en-
vironment. Then, measurements are separated into static and
active (i.e., moving) points using (see Sec. III-B) temporal
filtering. Active points of each sensor are transformed into a
common world coordinate system. This representation allows
to employ detection algorithms on combined sensor data for
generating feasible vehicle hypotheses. Finally, hypotheses
for single frames are tracked to ensure stable and distinct
vehicle positioning.

The following sections are structured analog to the above
described processing chain. The sensor network employed
for our system is described in Sec. III-A. Section III-B
illustrates the separation of active points applied to each
sensor. A one-time calibration for combining sensors into a
shared world coordinate system is specified in Sec. III-C. The
methods for detecting and tracking vehicles are described in
Sec. III-D and III-E, respectively.

A. Sensor network

A LIDAR sensor measures distances between the sensor
and its environment by using a set of laser rays. The sensor
emits a laser pulse, detects the light reflected by an object and
deduces its distance from the time of flight. For the proposed
system, several LIDARs are connected in a sensor network
in order to cover the relevant plane of the parking garage.

The result of a single measurement step is a set of 2D
points (x, y) represented in a sensor centered coordinate
system. In order to cover the relevant section of the observed
scene, a comprehensive calibration of the sensor network is
necessary. It is noteworthy that measuring is performed in a
single fixed 2D plane.

We adjust all LIDAR sensors in the parking garage near
the floor and parallel to the ground plane. This setup allows
to measure points on the wheels and perform detection based
on this information (see Sec. III-D).

B. Active points

A large set of LIDAR measurements originate from static
objects, e.g., walls. In order to increase robustness and
computational efficiency of our approach, we aim at pro-
cessing only a small subset of active points. To separate
task-relevant from non-relevant points, we propose a 2D
grid-based approach in combination with an initial learning
phase.

The grid consists of quadratic cells, covering the area
in front of a LIDAR sensor with the specific parameters
(width, height, cell resolution), the angle resolution and the
maximum detection range of the sensor. A single cell is
defined by its center (x, y) and radius r, defining a search
area (πr2) for corresponding rays. It captures all passing
rays Rcell = {r0, r1, . . . , rn} and categorizes them by their
length |ri|, which is the distance of the measurement to
the sensor. To estimate the probability of a cell being idle,
rays are divided into measurements that lie behind the cell
boundaries Rfar and those ending in front the cell Rbefore .
Rays which hit the cell are not explicitly regarded, as they
imply occupancy.

Rfar =
{
ri ∈ Rcell |

√
x2 + y2 − r ≤ |ri|

}
, (1)

Rbefore =
{
ri ∈ Rcell |

√
x2 + y2 + r ≥ |ri|

}
, (2)

pcell =
|Rfar |
|R|

+ 0.5 · |Rbefore |
|R|

(3)



Fig. 2. A grid representation (20 m × 10 m) of the scenario from
Fig. 1: The grid subdivides the LIDAR sensor measurements into active
and static points. The cell probabilities are visualized with different colors.
An occupied cell is drawn with red, an uncertain cell with yellow and a
free cell is painted with green.

ptcell = pt−1
cell + α · pcell (4)

Probability pcell represents the level of the occupation
of the cell in a single time frame, where 1 means free, 0
indicates occupied and 0.5 uncertain. The overall probability
ptcell of a cell considering consecutive measurements is
exponentially smoothed with rate α in order to stabilize a
reliable grid representation. Figure 2 shows the result of the
learning phase. Given a threshold for the cell occupancy,
one is now able to assign each measurement based on the
occupancy value of its corresponding learned cell to decide
whether it is active or static.

To speed up the calculation we propose a preprocessing.
Instead of calculating each relevant cell of a LIDAR ray in
each time step, a precalculation step of the grid calculates
all regarded rays for each single cell. Thus, a cell compares
only its stored rays with the currently measured rays.

After this phase a second learning phase is launched. This
phase enables continuous learning of a grid to adapt slower
environment changes (e.g., changes of the occupation of a
parking lot).

Due to real-time constraints we cannot update every single
cell in a time frame, because a sufficient grid contains up to
10,000 cells. For continuous learning a randomized subset
of grid cells is updated. Therefore, every cell holds a ring
buffer for each of the categories mentioned above. The ring
buffer stores the last n rays according to its category and
calculates a weighted sum for each category to determine the
occupancy probability. The size of the ring buffer n affects
the speed of learning. The background subtraction reduces
the amount of data points to be processed by a factor of 10.

C. Sensor Stitching

After identifying active points in the LIDAR sensor sepa-
rately, one has to avoid multiple detections of the same object
and handle occlusions or intersections of moving objects
across different sensors. This could lead to false negative
detections, e.g., two detected wheels in two different sensors
of one vehicle is not enough for a plausible detection (see
Sec, III-D). The aggregation of different vehicle hypotheses

(a) CAD representation (b) LIDAR Data

Fig. 3. CAD representation of a parking garage and a set of LIDAR
measurements produced by three sensors.

of a single sensor detection could also lead to false positive
detections, caused eventually by contradicting information.
Thus, we do not perform vehicle detection for all sensors
separately, but propose a more generic approach: Active
measurements are aggregated in one common representation,
which is based on world coordinates of the given parking
garage.

To establish a shared coordinate system, a CAD map of
the garage is used (see Fig. 3). Measured data of each sensor
is transformed into this coordinate system using projective
linear transformations (homography). Therefore, the direct
linear transformation (DLT) algorithm [5] is employed, lead-
ing to a warp matrix on the basis of labeled correspondences
(point to point or line to line).

(a) Frontal view. (b) Opposite view.

(c) Stitched Result.

Fig. 4. A LIDAR stitching result of two LIDAR sensors: (a) shows a
single LIDAR sensor measurement. The vehicle is positioned frontal to the
first sensor. (b) shows the data from the second LIDAR positioned on the
opponent side. Finally in (c) both LIDAR sensors are combined in a world
representation after the stitching process.

Two different kind of transformations are possible: A
coordinate system of a LIDAR sensor transformed into
another LIDAR coordinate system or to a specified repre-



sentation of the environment. The DLT requires at least four
correspondences between sensor and map coordinates. To
determine the correspondences, an operator calibrates the
setup once. The operator marks the particular set of points or
lines in both coordinate systems. For a good estimate of the
warp matrix, these correspondences should to be widespread
inside the environment and must not be collinear. A stitching
result for a vehicle captured by two LIDAR sensors is shown
in Fig. 4.

An alternative calibration manipulates an identity matrix
by executing several manual turning and translating opera-
tions until the LIDAR data adjusts to the representation.

D. Detection

After the active points are filtered (see Sec. III-B) and
transformed by the sensor stitching (see Sec. III-C) the
detection operates on a sparse subset of measurements.
Because the sensors are deployed right above the ground
plane (see Sec. III-A) these active points contain different
moving objects: peoples’ feet can cross the sensor plane,
miss-measurements due to noise, and the targeted vehicles.

The detection should only find plausible and precise
hypotheses and provide the vehicle’s center and orientation.
Because vehicles have various appearances, e.g., form or
height of the car body, the best traceable feature of a vehicle
is the well-known shape of a wheel.

The recognition of at least three wheels yields strong
cues regarding the orientation of the car. To apply this
knowledge to the LIDAR data we constructed an abstract
and parameterized vehicle model. This model is based on
a rectangular composition of four wheels with a certain
tolerance (cf. Fig. 5).

Two alternative and efficient approaches operating with
this model have been realized: The Hough transformation
(see [6]) observes two different measurements from active
points, calculates their distance, builds up an appropriate
vehicle hypothesis and performs a vote in the hough pa-
rameter space. An accumulation of hypotheses reasons to a
plausible vehicle hypothesis. We also applied a RANSAC

Fig. 5. A detected hypothesis (red rectangle) by the RANSAC algorithm
and corresponding LIDAR measurements (blue dots).

(random sample consensus) algorithm [7] operating with
this model. The RANSAC algorithm is a randomized method
to eliminate outliers and consists of two phases, proof and
evaluation.

In the proof phase, randomized sets of three active points
are drawn. These sets are tested against the rectangle of
our vehicle model. In the evaluation phase, all hypotheses
from the first phase are sorted by a confidence, considering
the number of measurements that are reasonably close to
each of the four points (wheels) and a minimum number
of supported wheels. In the end, a set of hypotheses with
sufficient confidence is chosen for the following tracking
module.

To improve tracking (see Sec. III-E), we also generate
hypotheses based on only two active points. These hypothe-
ses are ambiguous, because the two active points could
either lie on a short / long edge or on the opposite site.
Nevertheless, treated separately, those are helpful to update
occluded tracks.

E. Tracking

The tracking module receives the hypotheses from the
detection module and has to ensure a consistent and complete
temporal integration by providing the filtered vehicle’s center
and orientation. A comprehensive tracking assumes a gap-
less classification of vehicles, either based on a detected
hypothesis, or a plausible prediction. This prediction closes
gaps where no hypotheses are generated by the detection
module. We suggest to employ an extended Kalman filter
(e.g., see [8]) with a physical motion model and reasonable
observation noise, because it is arguably the best-known
temporal filter.

We propose to manage the assignment of hypotheses to
tracks as follows: The first time, an unobserved hypothesis
appears, it initializes a new track. In the following steps,
the most similar hypothesis concerning vehicle center and
orientation updates the filter. A track is regarded stable after
a certain number of these updates. If a track does not receive
an hypothesis, the Kalman filter only predicts its new state.
After a certain amount of predictions (without updates), the
track is eliminated.

Here, the alternative updates based on the two-point hy-
potheses of the RANSAC algorithm (see Sec. III-D) are
conducted. Those are only considered for tracks which were
not updated by three-point hypotheses. This procedure is
useful to avoid the loss of a track where more than one
wheel is occluded. Nevertheless, these hypotheses are not
very reliable and, thus, are not used to initialize a new track.

IV. EXPERIMENTS

A. Setup

We established an installation of six 2D SICK LIDAR
LMS 500 distributed in a parking garage. These sensors
allow to record up to 100 measurements per second at a
minimal angular resolution of 1/6◦ in a field of view of
up to 190◦ and a maximum operating distance of 65 m. All
LIDAR sensors are part of a Local Area Network.



Our parking garage consists of three different areas: An
entrance area (30 m length × 15 m width), a ramp (35 m
length × 6 m width) with a 8◦ fall and the parking area (30 m
length × 15 m width). Each area is covered by two LIDAR
sensors. Our experiments covered the main operations of a
vehicle in a parking garage scenario: The analyzed sequence
started with the acceleration of the vehicle on a ramp to the
first parking floor. It drove within 30 seconds approx. 40 m
straight ahead, slowed down, performed a left 90◦ turn and
accelerated again in the parking area.

To evaluate our system, we compared results with human
labeled data. A human user assigned ground-truth (GT) posi-
tion within unfiltered and raw recorded LIDAR data in every
single time frame. In our sequence, approx. 600 hand-labeled
GT positions containing the center and orientation of the
vehicle were gathered. Because a tracker requires a certain
number of consecutive initial detections, the evaluation was
stated after this initial phase. Additionally the GT speed was
calculated from sequenced positions, which is temporally
smoothed to receive a stable estimate.

The deployed system is a desktop PC with an Intel Core
i7 CPU at 2.80 GHz and 4 GB RAM memory.

B. Results

As a baseline for comparison, we developed two in-
terchangeable detection algorithms (see Sec. III-D): The
runtime interval of the Hough transformation varies between
25 ms and 50 ms. The RANSAC algorithm has a constant
runtime of approx. 5 ms. There is only a minimally variation
in runtime for sorting the initial hypotheses. Because of its
real-time capability we only considered the results by our
RANSAC algorithm. The quadratic runtime of the Hough
transformation is caused by highly varying quantity of active
points. The result of the runtime comparison is shown in
Fig. 6.
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Fig. 6. Runtime analysis of the RANSAC algorithm (red) and Hough
transformation (blue).

The trajectories of the GT data and the estimated data
in coordinates of the parking garage are illustrated as a
bird’s eye view in Fig. 7. The mentioned sequence starts
near position (41, 33) and ends in the final position close
to (8, 24). The driving direction within this plot is from
right to left. The difference in speed (in km/h) between the
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Fig. 7. Trajectories of the vehicle’s center: GT data (blue) and estimated
position (red).
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Fig. 8. Difference in speed (top) and orientation (bottom).

GT data and the prediction is shown in Fig. 8 (top) with
a mean aberration of 0.82 km/h and a standard deviation of
±0.6 km/h.

Figure 8 (bottom) displays the difference in orientation
(in degree) between GT data and the orientation predicted
by the Kalman filter. The mean absolute error was 1.07◦

with a standard deviation of ±1.16◦.
Figure 9 illustrates the lateral and the longitudinal error of

the estimated position. The quality of the Kalman filter can
be evaluated as follows: The predicted position inaccuracy
of the orientation is extracted from the longitudinal and
lateral error. The longitudinal error represents the aberration
in driving direction (positive ahead) and the lateral error
illustrates the sidewise aberration.

The mean absolute lateral error amounts to 6.3 cm with a
standard deviation of ±4.4 cm, and the mean absolute longi-
tudinal error to 8.5 cm with a standard deviation of ±5.6 cm.
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Fig. 9. Lateral error (upper) and longitudinal error (lower) of the Kalman
filter estimated position.

The mean euclidean distance between the vehicle center
(GT and prediction) is 11.5 cm with a standard deviation
of ±5.4 cm.

To combine both, orientation and position, we proposed
an index value by comparing the wheel positions of the GT
data with the final predicted hypotheses on the basis of the
orientation and the center of all four wheels. To ensure a
reliable comparison we only match equivalent wheels with
each other:

w̄ =

∑4
i=1 d(wGT (i), west(i))

4
, (5)

with the euclidean distance d(x, y) between two points x
and y, wGT (m) representing the center of a wheel m of the
hand labeled data, west(n) the analog wheel center of the
calculated hypothesis with the index n.

The result is shown in Fig. 10. The mean distance is
12.1 cm with a standard deviation of ± 5.1 cm. The men-
tioned errors are caused by the Kalman estimation by as-
signing initial detections to the present filter and are also
smoothed in relation to past measurements.

The gathering of GT data by a human user also induces
some inaccuracy for the evaluation. Alternatively one could
gain more accurate GT from differential GPS which was not
available for our experiments.

V. CONCLUSION AND OUTLOOK

In this paper we present a system for localization and
tracking of vehicles in a parking garage scenario using a
network of LIDAR sensors. Being part of a framework which
enables autonomous driving, our system collects reliable
positional data.
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Fig. 10. Mean error of wheelIndex w̄, the predicted position regarding the
wheels with respect to GT data.

In the proposed processing chain we firstly subdivide a
single measurement into active and static points to reduce
complexity for further steps. This is realized by a pre-
calculated grid coding free and occupied space.

To obtain a world coordinate system, we described a
semi-automatic sensor stitching with manual determination
of correspondences in each coordinate system. To detect ve-
hicles on these active and transformed points, we employed a
RANSAC algorithm. The tracking module ensures temporal
integration and handles the incoming vehicle hypotheses.

In our experiments we showed, that our approach is a
suitable localization reference system for a superordinate
framework realizing autonomous driving inside a parking
garage. The mean absolute lateral and longitudinal error of
a tracked vehicle, compared to ground-truth, was evaluated
as 6.3 cm and 8.5 cm, respectively. This LIDAR network
system was integrated into a major system and was extended
by vehicle mounted ultrasound sensors, cameras or vehicle
odometry data. An advantage of our system in this parking
garage scenario was the accuracy on wide lanes, while other
sensors fail due to their limited range.
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[2] R. Kümmerle, D. Hahnel, D. Dolgov, S. Thrun, and W. Burgard,
“Autonomous driving in a multi-level parking structure,” pp. 3395–
3400, 2009.

[3] C. Gao and J. Spletzer, “On-line calibration of multiple lidars on a
mobile vehicle platform,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2010, pp. 279–284.

[4] J. Einsiedler, O. Sawade, B. Schaufele, M. Witzke, and I. Radusch,
“Indoor micro navigation utilizing local infrastructure-base positioning,”
in Proceedings of the IEEE Intelligent Vehicles Symposium, 2012, pp.
993–998.

[5] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[6] R. Gonzalez and R. Woods, Digital Image Processing. Prentice Hall,
2008.

[7] M. Fischler and R.Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[8] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and
Practice. Prentice-Hall, 1993.


