
Evolutionary Optimization of Wavelet Feature Sets
for Real-Time Pedestrian Classification

Jan Salmen, Thorsten Suttorp, Johann Edelbrunner, Christian Igel
Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

{jan.salmen, thorsten.suttorp, hannes.edelbrunner, christian.igel}@neuroinformatik.rub.de

Abstract

Computer vision for object detection often relies on com-
plex classifiers and large feature sets to achieve high detec-
tion rates. But when real-time constraints have to be met,
for example in driver assistance systems, fast classifiers are
required. Here we consider the design of a computation-
ally efficient system for pedestrian detection. We propose
an evolutionary algorithm for the optimization of a small
set of wavelet features, which can be computed very effi-
ciently. These features serve as input to a linear classifier.
The classification performance of the optimized system is on
par with recently published results obtained with support
vector machines on large feature sets, while the computa-
tional time is lower by orders of magnitude.

1 Introduction

Pedestrian detection in images from car-mounted cam-
eras is a highly relevant and difficult vision-based pattern
recognition problem. The large number of traffic accidents
involving foot passengers reveals the need for driver assis-
tance systems that help to identify potentially dangerous sit-
uations that may lead to collisions with pedestrians. The
difficulties for pattern recognition arise from partial occlu-
sion, highly variable size, shape, and movement patterns of
pedestrians, cluttered backgrounds, and the strict real-time
requirements. Here, we focus on the last aspect and con-
sider the design of computationally efficient, but still accu-
rate classifiers for pedestrian detection.

Most preceding work in pedestrian detection has been
done using visual gray scale cameras. Usually a stepwise
procedure is implemented. First an initial segmentation is
done on the whole image to generate a list of regions of
interest (ROIs). These ROIs are then classified based on
more complex features. Additionally, temporal integration

and tracking can be employed to improve the classification
results.

The initial segmentation can be done based on range in-
formation [15], optical flow [12] or contour features [4], just
to name some of the approaches. For classification, often
neural networks [15] or support vector machines [11, 10]
are used. A shape-based method for classification is ap-
plied in [1]. In [2] a hybrid approach for pedestrian detec-
tion is presented, which evaluates the leg-motion and tracks
the upper part of the walker.

In this study, our goal is to speed up the classification
step. We propose evolutionary optimization of a set of
wavelet features, which serves as input to a linear classifier.
In order to draw a comparison between our algorithm and
alternative methods in a straight-forward manner, we de-
termine the performance using the pedestrian classification
database provided by [10]. In that article, the authors evalu-
ate different combinations of feature calculation techniques
and classification algorithms in a benchmark scenario.

This article is organized as follows. In the next section,
we introduce the features and the classifier used. In Sec-
tion 3, the evolutionary optimization of feature sets is pre-
sented. Our experiments are described in Section 4, and
finally the results are discussed.

2 Pedestrian Classification

2.1 Wavelet Features

Wavelet features are very popular for object recogni-
tion, for example in face detection [14] or pedestrian detec-
tion [11]. In the following, we present the type of wavelet
features, often referred to as Haar-like features, that is used
in this work.



2.1.1 Feature calculation.

Given a gray scale image of arbitrary size (usually defined
by an ROI in a camera image), we refer to its upper left
point as (0, 0) and to its lower right point as (1, 1). A single
wavelet feature is defined by either two, three or four sub-
rectangles, which are specified by their upper left and lower
right corners. As the whole feature representation does not
depend on absolute values, features can be calculated for
images with arbitrary sizes and aspect ratios.

The sub-rectangles mentioned above are grouped into
white and black ones. For a given gray scale image and
a given wavelet feature, let sB be the sum of all gray values
from pixels covered by a black region and sW be the sum
for pixels covered by a white region. The key idea of the
wavelet features is to consider the difference sB − sW . Let
AB and AW denote the total number of pixels covered by
black and white regions, respectively. Then, if AB 6= AW ,
it is reasonable to normalize sB and sW before calculat-
ing the feature response, and we define r = sB

AB
− sW

AW
.

Thus, the output r of a single feature is a value in the range
[−gmax, gmax], where gmax is the maximum gray value in the
input image.

The output of each feature is transformed by a non-linear
function, which is defined by two thresholds xt and xs. For
a given feature response r, either the activation function

f1(r, xt, xs) =



−gmax r ≤ −xs,
(r + xt) · gmax

xt−xs
−xs < r ≤ −xt,

0 −xt < r < xt,
(r − xt) · gmax

xt−xs
xt ≤ r < xs,

gmax xs ≤ r

or its absolute value f2(r, xt, xs) = |f1(r, xt, xs)| is cal-
culated. One example of a resulting activation function is
shown in Fig. 1.

Figure 1. Non-linear function transforming
the feature response.

Typically, for a single input image a set of some hun-
dreds of features is calculated (e.g., see [10]). This can effi-
ciently be realized by first precomputing a so called integral
image [14]. Afterwards, the calculation of each feature re-
quires only some look-ups in the integral image. For the
basic types defined here, only six (basic types 1 and 2 from
Fig. 2) up to ten (basic types 9 and 10) look-ups are needed.

2.1.2 Initial feature representation.

We initially distinguish ten different basic feature types.
One basic feature F is characterized by its type
tF ∈ {1, 2, . . . , 10}, upper left corner cF ∈ [0, 1]2,
width wF ∈ [0, 1] and height hF ∈ [0, 1], thresholds
xFt , x

F
s ∈ [0, gmax], and an indicator parameter aF ∈ {1, 2}

specifying whether f1 or f2 is used.
The coordinates of cF are relative to the given image and

the width and height of the feature are relative to the width
and height of the image. Figure 2 shows some examples of
basic features.

Figure 2. Examples of basic features. Left to
right: types 1 to 10 with different parameter
settings.

2.2 Linear Classification Based on Linear
Discriminance Analysis

Linear discriminant analysis (LDA) is based on a max-
imum a posteriori estimate of the class membership under
the assumption that the class conditional densities are multi-
variate Gaussians having a common covariance matrix. De-
spite its simplicity, LDA gives surprisingly good results in
practice, of course crucially depending on the representa-
tion of the input patterns. For a detailed description, we
refer to the literature [6].

2.3 Ensemble Classifier

To improve classification results, one common procedure
is to combine a set of several classifiers. We combine lin-
ear classifiers, which are based on feature sets from inde-
pendent evolution trials, to an ensemble classifier. The en-
semble response is calculated as the mean of all normalized
single responses.



3 Evolutionary Optimization of the Feature
Set

Overcomplete dictionaries of Haar wavelets are popular
features for classification. In order to speed up classifica-
tion without loosing performance, a lot of different tech-
niques for feature selection are applicable [9]. Evolution-
ary algorithms have frequently been considered for feature
set generation. We only name a few of them using similar
techniques as presented in this study: A set of filter masks
and rules, how to apply them for classification, are evolved
in [5]. In [13], evolutionary optimization of features is inte-
grated into the AdaBoost framework and improves the final
classification performance.

We propose to use an evolutionary algorithm to generate
a set of wavelet features specialized for both the classifica-
tion problem at hand and the classification technique used.
Each individual represents an a priori fixed number of nfeat
wavelet features serving as inputs to a linear classifier. Gen-
erating an offspring from a given number of parents is done
by cross-over, where the same amount of features is ran-
domly chosen from each parent to form a new feature set.
This offspring is mutated as described below. Selection for
survival uses EP-Tournament selection [3].

To calculate a fitness value Φ for a given feature set, we
use n-fold cross-validation. The training data is partitioned
into n disjoint subsets. For each of the subsets, the classifier
is trained using the union of the n − 1 other sets and a test
error is computed on the left-out subset. The final cross-
validation error e is the average of the n test errors. For
convenience purposes, we maximize the fitness Φ = 1− e.

In the following we describe the mutation of individuals
in detail.

3.1 Mutation Operators

Mutating an individual relies on the successive applica-
tion of m basic mutation operators. The variable m is de-
termined in each generation t ≥ 0 anew according to the
Poisson distribution with mean λ = nfeat ·10−1− t

2000 where
nfeat is the number of features per set. We provide a set of
13 mutation operators and adopt their probabilities during
the evolution (see below). For each mutation operator, one
feature in the set is chosen uniformly at random.

The basic mutation operators are:

• Shift: The x and y coordinates of all corner points
of all sub-rectangles are shifted by the same amount
∆x ∼ N (0, 0.01) and ∆y ∼ N (0, 0.01), where
N (0, 0.01) denotes a normal distribution with zero
mean and variance 0.01.

• Increase size: The size of the whole feature is scaled
by factor 1.2 while its center is fixed.

• Decrease size: The size of the whole feature is de-
creased by factor 1.2 while its center is fixed.

• Flip aF : The indicator parameter aF is switched.

• Increase xFt : The threshold xFt is increased by a factor
of 1.2.

• Decrease xFt : The threshold xFt is decreased by a fac-
tor of 1.2.

• Increase xFs : The saturation threshold xFs is increased
by a factor of 1.2.

• Decrease xFs : The saturation threshold xFs is de-
creased by a factor of 1.2.

• Mutate individual: The center, width and height of all
sub-rectangles are independently mutated by adding
normally distributed variables with mean 0. Thus, af-
ter applying this mutation operator, the feature need
not necessary belong to one of the basic types.

• New initialization ”small”: The feature is replaced
by a new randomly created basic feature as de-
scribed in Sec. 4.1.1. Its width is randomly chosen
wF ∼ N (0.25, 2.5).

• New initialization ”medium”: Same as above, but
wF ∼ N (0.5, 2.5) instead.

• New initialization ”large”: Same as above, but
wF ∼ N (0.75, 2.5).

• No operation: The feature is not changed at all.

After mutation, repair operators assure that all values
remain in their valid domains. Figure 3 illustrates the effect
of some mutation operators.

Figure 3. Mutating a feature: original, after
”Shift”, after ”Increase size” and after ”Mu-
tate individual” (left to right).

3.2 Adaption of Mutation Operator Prob-
abilities

The search strategy is mainly determined by the varia-
tion operators and the probabilities of their application, the
so called operator probabilities. Because the optimal oper-
ator probabilities depend on the problem at hand and may
change during the course of evolution, we adapt them au-
tomatically using the algorithm proposed in [7, 8]. The
adaptation mechanism implements the rule of thumb that



variation operators that led to comparatively large fitness
improvements recently will also be beneficial in following
generations.

Let Ω denote the set of variation operators and P (t)
o the

probability that o ∈ Ω is chosen at generation t. Further,
let O(t)

o contain all offspring produced in generation t by
application of operator o. The case when an offspring is
produced by applying more than one operator is treated as
if the offspring has been generated several times, once by
each of the operators involved. The operator probabilities
are updated every τ generations. The average performance
achieved by operator o in the last τ generations is measured
by

q(t,τ)
o =

τ−1∑
i=0

∑
g∈O(t−i)

o

max
{

0,Φ(g)− max
g′∈parents(g)

Φ(g′)
}

τ−1∑
i=0

∣∣O(t−i)
o

∣∣ ,

where the set parents(g) contains the parents of g. The op-
erator probabilities P (t+1)

o are adjusted every τ generations
according to

s(t+1)
o =

{
cΩq

(t,τ)
o /q

(t,τ)
all + (1− cΩ)s(t)

o if q(t,τ)
all > 0

cΩ/|Ω|+ (1− cΩ)s(t)
o otherwise

and

P (t+1)
o = Pmin + (1− |Ω|Pmin)s(t+1)

o

/∑
o′∈Ω

s
(t+1)
o′ .

The factor q(t,τ)
all =

∑
o′∈Ω q

(t,τ)
o′ is used for normalization.

The learning rate cΩ ∈ (0, 1] is set to cΩ = 0.3. The
operator probabilities P (t+1)

o are bounded from below by
Pmin < 1/|Ω|. Initially, we set s(0)

o = P
(0)
o = 1/|Ω| for all

o ∈ Ω.

4 Experiments

4.1 Experimental Setup

We considered the pedestrian classification benchmark
dataset introduced in [10], where 29, 400 (14, 400 pedes-
trian and 15, 000 non-pedestrian) examples are available for
training. The test part of the database consists of 19, 600
examples (9, 600 positive and 10, 000 negative examples).
The training examples are split in three setsDTrain, 1,DTrain, 2
and DTrain, 3, the test examples in two sets DTest, 1 and
DTest, 2. Figure 4 shows some samples from the database.

For optimization, only the three training sets were used
for 3-fold cross-validation, whereas the test examples were

Figure 4. Samples from the pedestrian classi-
fication benchmark dataset [10].

exploited for generating the ROC curve of the final classi-
fiers.

As a baseline for comparison, one linear classifier was
also trained based on the Haar feature set proposed in [10].

4.1.1 Creating random features.

In the first generation of the EA and during evolution, new
features have to be created randomly.

To create one feature with given width wF , the param-
eters tF and cF were drawn uniformly distributed at ran-
dom. The height was randomly chosen: hF = wF · 1/2 · z
with z ∼ N (1, 0.01). As the height/width ratio of the
images in the considered dataset is 2, the features tended
to be quadratic. The thresholds xFt and xFs were chosen
normally distributed with mean 5 and 150, respectively (as
gmax = 255), and aF = 2 with probability 0.6. These values
had been found empirically to provide good results.

4.1.2 Feature set optimization.

Experiments with an EA for different feature set sizes
were performed. The population size was set to 25, and
the same amount of offspring was generated, where al-
ways two parents were randomly chosen to create one off-
spring by cross-over. Nine trials were conducted for each
nfeat ∈ {50, 100, 150, 200}, the individual with the highest
fitness from each run was stored and used for performance
evaluation.

4.1.3 Evaluation of results.

For generating a ROC curve, the same procedure as in [10]
was used: Three classifiers were trained, each on two out of
the three training sets DTrain, 1, DTrain, 2 and DTrain, 3. Then,
for each of the three classifiers, two ROC statistics were
calculated, one on DTest, 1 and another one on DTest, 2. The
six resulting ROC statistics were combined to give the final
ROC curve.



4.2 Results

4.2.1 Feature set optimization.

Figure 5 shows the mean fitness of the best individuals in
each generation from the nine trials with nfeat = 50.

Figure 5. Fitness during evolution.

Table 1 shows the fitness of the best individual obtained
for different feature set sizes.

Number of features Fitness of best individual
50 89.23%

100 90.75%
150 91.68%
200 92.69%

Table 1. Best individuals from trials with dif-
ferent feature set sizes.

Figure 6 illustrates the best feature set with 100 features.
Many of the evolved features look different from our basic
types and typical manually designed features.

Figure 7(a) compares the ROC curves of the best opti-
mized classifiers for different feature set sizes and the ROC
curve of the linear classifier based on the feature dictio-
nary from [10]. In accordance with Munder er al. [10], this
shows the advantage of adapted features compared to non-
adapted ones.

For each feature set size, we selected the very best so-
lution of each trial to form an ensemble. Figure 7(b) com-
pares the ROC curves of the different ensemble classifiers
to the results of a quadratic support vector machine (SVM)
from [10]. This SVM was the best classifier based on Haar
features found by Munder et al. without increasing training
sample size (the best classifiers in that study are based on
local receptive fields).

Additionally to the good detection rates of the evolved
classifiers, execution times are faster by orders of mag-
nitude compared to the SVM: Linear classification corre-
sponds to the calculation of one scalar product, whereas the
classification with the quadratic SVM requires to calculate
one scalar product per support vector (several thousands in
this case).

Classification of 1000 test samples took 0.76 ms (nfeat =
100) on an Intel Pentium M processor with 1.8 GHz.

5 Conclusion

Object detection for real-world applications is a chal-
lenging task, and in many cases good classification perfor-
mance comes along with slow execution times.

We considered the design of highly optimized classifiers
and presented an architecture that uses evolutionary opti-
mization for automatically generating a small feature set
specialized for the given task. The feature set is adapted
to both the classification problem at hand and to the classi-
fication technique used.

The proposed architecture was applied to the problem of
pedestrian classification for driver assistance systems. Lin-
ear discriminant analysis was used for the decision whether
or not a given example is a pedestrian. We obtained a set
of specialized wavelet features and showed that its perfor-
mance is comparable to results obtained with support vec-
tor machines on similar features while the execution time is
lower by orders of magnitude.

Designing a system for real-time object detection re-
quires finding an appropriate trade-off between classifica-
tion accuracy and computational complexity. The hybrid
approach of evolutionary optimization of specialized fea-
ture sets for rather simple learning machines addresses this
challenge. The performance of the resulting classifier may
not be better than the performance of complex classifiers,
but the computational complexity is reduced drastically.

References

[1] M. Bertozzi, A. Broggi, A. Fascioli, and M. Sechi. Shape-
based pedestrian detection. In Proceedings of the IEEE In-
telligent Vehicles Symposium 2000, pages 215–220, 2000.

[2] C. Curio, J. Edelbrunner, T. Kalinke, C. Tzomakas,
and W. von Seelen. Walking pedestrian recognition.
IEEE Transactions on Intelligent Transportation Systems,
1(3):155–163, 2000.

[3] D. B. Fogel. Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence. IEEE Press, 1995.

[4] D. M. Gavrila, J. Giebel, and S. Munder. Vision-based
pedestrian detection: the PROTECTOR system. In Proceed-
ings of the IEEE Intelligent Vehicles Symposium, pages 13–
18, 2004.



Figure 6. Optimized feature set (100 features).

(a) (b)

Figure 7. In subfigure (a), ROC curves of the best classifiers with 50, 100, 150 and 200 features are
compared to the ROC curve from [10]. In subfigure (b), the ROC curves of ensemble classifiers are
compared to ROC curves from [10].

[5] A. Guarda, C. L. Gal, and A. Lux. Evolving visual features
and detectors. In Proceedings of the International Sympo-
sium on Computer Graphics, Image Processing, and Vision,
pages 246–253, 1998.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer-Verlag, 2001.

[7] C. Igel and M. Kreutz. Operator adaptation in evolutionary
computation and its application to structure optimization of
neural networks. Neurocomputing, 55(1–2):347–361, 2003.

[8] C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary op-
timization of neural systems: The use of strategy adapta-
tion. In M. G. de Bruin, D. H. Mache, and J. Szabados,
editors, Trends and Applications in Constructive Approxi-
mation, volume 151 of International Series of Numerical
Mathematics, pages 103–123. Birkhäuser Verlag, 2005.

[9] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern
recognition: A review. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 22(1):4–37, 2000.

[10] S. Munder and D. M. Gavrila. An experimental study
on pedestrian classification. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 28(11):1863–1868,
2006.

[11] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable
pedestrian detection system. In Proceedings of the IEEE
Intelligent Vehicles Symposium 1998, pages 241–246, 1998.

[12] R. Polana and R. Nelson. Low level recognition of human
motion. In Proceedings of the IEEE Workshop on Motion of
Non-Rigid and Articulated Objects, pages 77–82, 1994.

[13] A. Treptow and A. Zell. Combining AdaBoost learning and
evolutionary search to select features for real-time object de-
tection. In Proceedings of the IEEE Congress on Evolution-
ary Computation, pages 2107–2113, 2004.

[14] P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137–154,
2004.

[15] L. Zhao and C. Thorpe. Stereo- and neural network-
based pedestrian detection. IEEE Transactions on Intelligent
Transportation Systems, 1(3):148–154, 2000.


