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Abstract—How sequences of actions are learned, remembered,
and generated is a core problem of cognition. Despite con-
siderable theoretical work on serial order, it typically remains
unexamined how physical agents may direct sequential actions
at the environment within which they are embedded. Situated
physical agents face a key problem - the need to accommodate
variable amounts of time it takes to terminate each individual
action within the sequence. Here we examine how Dynamic
Field Theory (DFT), a neuronally grounded dynamical systems
approach to embodied cognition, may address sequence learning
and sequence generation. To demonstrate that the proposed DFT
solution works with real and potentially noisy sensory systems
as well as with real physical action systems, we implement the
approach on a simple autonomous robot. We demonstrate how
the robot acquires sequences from experiencing the associated
sensory information and how the robot generates sequences based
on visual information from its environment using low-level visual
features.

To accomplish even the simplest daily life tasks (e.g.,
brewing a cup of coffee or fixing a hole in a bicycle tire)
requires people to plan and perform a series of actions in
a particular order [1], [2]. To do so, people must keep their
overall goal in mind and must remember the individual actions
within the sequence which they need to direct at the pertinent
perceptual objects. Critically, the actions must be initiated in
the appropriate serial order. Since Lashley’s classical work
[3] there has been agreement that serial order is an important
dimension of sequential behavior that may be dissociated from
the capacity to remember the items and actions that occur in
the sequence.

An aspect of the problem of sequential action that has not
received much attention is that people are routinely able to
generate behavioral sequences under conditions in which the
duration of any individual action may vary greatly along the
sequence, possibly in ways that are unpredictable beforehand.
For instance, when making coffee, the time needed to fill the
water container may be much longer than the time needed
to close the lid of the coffee maker. In an assembly task, to
mention another example, each gesture may take up different
amounts of time depending on how precisely controlled the
movement needs to be. Across repetitions of the same as-

sembly task, some gestures may take up varying amounts of
time depending on how successfully they are performed (think
of slipping a small spring onto a hook when dealing with a
clockwork). In daily life such variability is the rule rather than
the exception. In contrast, many of the tasks through which
serial order has been scientifically studied including musical
performance, speech production, and typing are characterized
by relatively uniform and predictable durations of the sequence
elements. Accordingly, the stability of sequential action under
such variable timing of the individual elements of a sequence
has not been a major theme for most models of serial order.
A related problem is how the progress along a sequence of
actions is controlled by potentially noisy sensory information,
itself of variable duration and quality.
Among models of sequence generation, those allowing for

sensory information to intervene while the sequence is acted
out provide the best chance to solve this problem [1]. Virtually
all models of sequence generation, however, are based on
relatively abstract representations both of the action systems
that propel along the sequence as well as the sensory events
that provide feedback about what happens in the world (for
review see [2] and [4]). Stabilizing a sequence against variable
timing and variable sensory feedback is critical to real action
systems which impact on the environment which they perceive
in real-time with noisy sensors. Based on the sensory feedback,
these systems must detect when one action has been terminated
so as to autonomously transition to the next action.
This paper provides a new theoretical approach to sequence

generation that, we believe, solves this stability problem in
a principled fashion. The approach is based on Dynamic
Field Theory (DFT), a neuronally grounded framework in
which attractor dynamics and their instabilities generate motor,
perceptual and cognitive function (review [5]). The neuronal
representation of each state within the sequence is a stable
state that is coupled into an action system. Sensory feedback
about a condition-of-satisfaction [6] that signals a successful
completion of a step in the sequence, is likewise represented
by a stable neuronal state. This signal reliably brings about
the switch from the previous to the next action.



We demonstrate that this approach can be acted out using
real sensors and real effector systems by implementing the
DFT model on an autonomous robotic vehicle with a vision
sensor. As a simple demonstration, the robot learns to sequen-
tially search for an object of a given color. The robot learns
a sequence of colors by being shown colored objects in the
desired order. It is then capable of performing the sequential
search task, in which the time needed to find an object of the
color required at each step is unpredictable.
The DFT architecture builds on a spatial representation

of serial order (a “positional” encoding in the classification
of [7]). Our specific choice of representation is based on
neurophysiological evidence for a neural encoding of serial
order. For instance, when monkeys make sequences of pointing
movements in response to a stimulus sequence, neurons in the
anterior cingulate cortex fire specifically when the monkey
is engaged in the action at a particular ordinal position (the
second action, say), irrespective of which target that movement
is directed to or which stimulus is used to cue that target [8],
[9]. A similar encoding of ordinal position in a sequence is
inferred from data that compare natural action sequences to
stimulus induced goal-directed actions [10]. Neuronal pools
responsive to serial information have also been found in motor
cortex [11].

I. DYNAMIC FIELD THEORY (DFT)
Originally an abstraction of the homogeneous neuroanatomy

of many cortical and subcortical neural networks [12], DFT
has become a framework within which neural process models
can be generated for behaviors that reflect motor, perceptual
and cognitive function [13]–[15]. Central to DFT is the as-
sumption that these processes are characterized by continuous
metric variables, encoded along the dimensions, x, of neural
activation fields, u(x,t). These variables span the space of
possible behavioral states, for instance, through movement
parameters, the feature dimensions of perceptual representa-
tions, or the low-dimensional encoding of potentially high-
dimensional memory representations [16]. The units of rep-
resentation are localized peaks of activation which emerge as
attractor solutions of the field dynamics, generically modelled
as

!u̇(x, t) =−u(x, t)+h+S(x,t)+
Z
f (u(x′, t))w(x−x′)dx′ (1)

where ! is a time constant, h< 0 the resting level, S(x,t) an in-
put function, w(x−x′) an interaction function with short-range
excitatory and long-range inhibitory connectivity, and f (u) a
sigmoidal nonlinearity [17]. Once sufficient positive activation
has been induced near a field site, x, the local excitatory
interaction stabilizes peak or “bump” solutions against decay
while global inhibitory interaction stabilizes these solutions
against diffusive spread. The self-stabilized peak solutions may
emerge as stable states from an instability (the detection insta-
bility, see [5]), when localized input is increased in strength
or when weak localized input is combined with a global,
homogenous boost (modelled, for example, as an increase of
h). Such peak solutions may persist in the absence of localized

input (sustained activation) when the field dynamics is above
the memory instability, at which activation levels become
sufficiently high to engage neuronal interaction. Sustained
peaks are a widely invoked model of working memory (review,
[15], [18]). Long-term storage of metric information can be
brought about by introducing inhomogeneities in the field
through memory trace dynamics of various forms, from which
localized peaks can be recreated through homogeneous boost
[5].

II. THE DYNAMIC FIELD ARCHITECTURE FOR SEQUENCE
GENERATION

To make the Dynamic Field Architecture concrete and easy
to understand we refer to an exemplary model task, explained
in more detail in the Results section, which requires a robot to
search for objects of different colors in a learned serial order.
At the core of the Dynamic Field model of sequence

generation lies a stack of neuronal activation fields (Fig. 1).
All fields span the same dimensions which encode the feature
values relevant to the performance of the actions. Each layer
in the stack represents a particular ordinal position in the
sequence. Homogeneous connections among the fields in the
stack control the sequential activation of localized peaks in one
field at a time. Activation patterns in each field are preshaped
by input from a layer of neurons that encode the learned
sequences. Outside the stack, an additional output field defined
over the same dimensions represents the currently activated
action through a peak induced by the active ordinal field.
The output field controls the action system, ultimately guiding
the behavior of the autonomous robot. The output field also
determines which pattern of sensory information in the robot’s
vision system signals the completion of the current action and
provides input to a neuronal representation of a condition-of-
satisfaction [6], which triggers the transition to the next ordinal
position. An intuitive description of how this DFT architecture
works follows below, while the mathematical equations are
listed in the Appendix.

A. Ordinal fields

The stack of neural fields on the left in Fig. 1 encodes
sequential order in that, aside from brief transitions, only one
ordinal layer at a time can have a self-stabilized peak. The peak
in an ordinal layer homogeneously inhibits the predecessor
layer. Conversely, the peak homogeneously excites the suc-
cessor layer. The excitatory coupling is shunted, however, by
the condition-of-satisfaction system. When that system sends
a signal to all ordinal fields in the stack, it activates the
excitatory coupling only of the ordinal layer that sports a peak
matching the current peak in the output layer (thus making
sure, that the sensory signal reflects the outcome of a valid
action within the sequence). The peak induced in the successor
layer then suppresses the original peak in the predecessor
layer. Where in the field the new peak is located is determined
by prior activation induced by the long-term memory of the
sequence.



Fig. 1. The DFT architecture for generating action sequences. The ordinal and
output neural fields on the top left are preshaped by a higher-level neuron that
encodes the sequence as a whole. A peak in the ordinal stack guides the action
system (the Khepera robot on the bottom). This peak preshapes the perceptual
field (bottom middle) at the specified color (here, “blue”). For each heading
direction, the perceptual field receives input at the color values prevalent at
the associated portion of the visual array. A peak in the perceptual field
forms where the input from the visual array matches the preshaped activation
and sets an attractor for the dynamics of the robot heading at the associated
direction (bottom right). When the robot has approached the colored object,
its increasing size induces the acitvation of a condition-of-satisfaction neuron
(top right), which triggers the transition to the next step in the sequence.

B. Output field

The peak in the stack of ordinal fields is transmitted to the
output layer, where it remains as a stable state until the switch
to the next steps has been achieved. The output layer thus
stably represents the current action throughout the variable
time interval that the physical realization of this action takes.
The output field also determines which sensory signal is sent
to the condition-of-satisfaction system. This ensures, that the
transition to the next state is caused by a sensory signal that
is consistent with the current action.

C. Action system, perception field and heading direction dy-
namics

The action system may differ in different implementations
of the DFT sequence generation architecture. In our robotic
demonstration, the action system comprises the physical hard-
ware, a perception field, an attractor dynamics of heading
direction, and an associated robotic controller (bottom row of
Fig. 1). We used a Khepera mobile robot equipped with an
on-board color video camera. The perception field is a two-
dimensional neuronal field that associates the color of visual
targets with the heading direction, in which the targets are
seen. It receives two-dimensional input extracted from the
camera image: A histogram of hue values obtained within
each column of the camera image defines the input function
along the color dimension at the heading direction, into which
this image column is pointing. A peak of activation in the
output layer of the sequencing system provides a ridge of
input across all heading directions, which effectively boosts
all those parts of the visual array, where objects are seen

with a color matching the current state of the output field.
This leads to a self-stabilized peak in the two-dimensional
field when there is such matching input. If there are several
candidate objects in the visual array, the two-dimensional
perception field selects one (typically the largest object) and
then stabilizes that decision due to the dynamics (1).
The robot is controlled by a dynamics of heading direction

which integrates two kinds of contributions [19]. The position
of an activation peak in the perceptual field along the axis
of heading direction controls an attractive force-let. Distance
signals obtained from on-board active infra-red sensors mod-
ulate the strength of repellors, leading to obstacle avoidance.
The rate of change of heading direction is input to servo-
controllers on the robot vehicle, specifying the difference in
velocity of the left and right active wheel so that the desired
turning rate is generated. The forward velocity of the vehicle is
also controlled so that it is slow when the robot is searching,
is near an obstacle, or is close to a target. The velocity is
faster when a target has been detected toward which the robot
is moving. The forward velocity sets the mean of the signals
sent to left and right wheel servo.
The combined effect of these dynamics is that the vehicle

moves forward while avoiding obstacles, so that the system
effectively searches its environment. As soon as the robot has
detected an object with the currently requested color, it moves
toward that object. The visual image of the object ultimately
becomes sufficiently large within the camera plane to trigger
a condition-of-satisfaction signal.

D. Condition-of-satisfaction system
A fundamental conflict of sequence generation is between

the need to stabilize the behavioral state at a given step in
the sequence and the need to destabilize that state in order
to switch to the next step of the sequence. In the DFT
architecture, this transition is mediated by a condition-of-
satisfaction system (middle top panel of Fig. 1). This is a
neuronal dynamics with the same bistability between “on”
and “off” states as the neuronal field. In fact, the single
neuron we are using could be viewed as the activation in
a peak of a neuronal field, which could accommodate a
range of conditions-of-satisfaction neurons needed in more
complex scenarios. The condition-of-satisfaction neuron re-
ceives sensory input from the robot’s vision system. The count
of pixels whose current color matches the color specified
by the output field cues when the planned action has been
achieved. When this input reaches a critical level, the “off”
state of the condition-of-satisfaction neuron becomes unstable
and the neuron switches to “on”. Because the sensory signal
is automatically generated from real sensory input, its strength
and duration fluctuates (bottom right of Fig. 4). To stabilize
the condition-of-satisfaction system, the neuronal dynamics is
bistable, so that the neuron remains “on” even if the sensory
signal drops below the initial threshold. Only when the neuron
is actively inhibited by negative input does it return to the
“off” state. Such negative input comes from the stack of
ordinal fields when it is in transition between two states:



Fig. 2. Four stages of the sequence generation dynamics illustrated by
showing the patterns of activation in three layers of the ordinal stack (1,
2, 3) and in the output layer (m). (a) Before sequence generation starts, the
neural fields are preshaped through input from a neuron, which represents the
sequence as a whole. (b) A homogeneous boost to the first ordinal field starts
sequence generation, inducing a localized peak of activation at the preshaped
location. A matching peak is induced in the output field which drives and
provides input to the action system. (c) Sensory feedback about the termination
of the ongoing action shunts the homogeneous interaction among the sequence
coding fields. This enables the first ordinal layer to induce a peak in the second
ordinal layer at the preshaped location. (d) The newly established peak in the
second ordinal layer inhibits the original peak in the first ordinal layer and
resets the output field so that it carries a peak at a matching location.

the input function detects correlation between suprathreshold
activation in an ordinal field and in the output field, observed
simultaneously for two consecutive ordinal layers.
The condition-of-satisfaction neuron shunts excitatory cou-

pling from any ordinal field to its successor. Thus, the
condition-of-satisfaction system does not need to “know” at
which ordinal position in the sequence it currently is.

E. Sequence memory and preshape of the ordinal fields
Laying down a memory trace of self-stabilized peaks of

activation is a simple form of learning in DFT [13]. The
memory trace preshapes the activation field, so that, con-
versely, a localized peak can be induced from the low level of
preactivation by a homogeneous boost. (A possible neuronal
realization of this learning mechanism is a Hebbian strength-
ening of local excitatory connections, which will likewise
support peak induction from homogeneous input.). Based on
this mechanism, sequence learning is realized by accumulating
a memory trace during a training session (see below). A long-
term memory of the memory trace is stored in the synaptic
connections from a higher-level pool of neurons to the ordinal
stack (top left of Fig. 1). Different members of the pool
encode different sequences. To enact a particular sequence,
the corresponding neuron in the sequence memory pool is
activated, so that fields in the ordinal stack are preshaped at
the memorized locations.
Figure 2 illustrates the stable states and their instabilities

that are realized when a sequence is initiated, the first action
is realized and the transition to the second action occurs.

III. RESULTS
A. Learning
To simplify the perceptual processes, we used a partially

autonomous learning procedure in which five colored bricks
were presented to the robot in succession (Fig. 3). Each pixel
generated input into the perception field at its hue value and
angular position, leading to a peak at hue values and visual

locations to which sufficiently many contributions were made.
The projection of this peak onto the hue dimension was input
to the ordinal stack. Due to the coupling among ordinal fields
and the switching mechanism, this led to the building of a
peak at the ordinal field that reflected where in the sequence
the current learning item was positioned. A memory trace
accumulated at the position of that peak created the long-
term memory for that item in the sequence. We simplified
the learning procedure by using two simple rules to trigger
a switch of an ordinal field: (1) enough preshape had been
accumulated and (2) the colored brick had been removed
from the camera view. The second condition stood for more
sophisticated action segmentation mechanisms (for instance,
[20]), which would have enabled the system to autonomously
parse observed sequences into the relevant chunks.
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Fig. 3. The top row illustrates a time line of visual stimulation from left to
right. Below are shown the time-courses for dynamic preshapes of five neural
fields in the ordinal stack, which end up sequentially encoding the five colors
in the order in which they were presented.

B. Sequence generation
To execute the sequential search task, the robot is set into

an arena in which colored bricks have been distributed (top
right of Fig. 1). The “go” signal is given, leading to activation
of a peak in the first layer of the ordinal stack at the location
representing the first color in the sequence and to activation
of an associated peak in the output field (Fig. 4). This peak
provides a ridge input at the corresponding hue value to
the two-dimensional color-heading direction perceptual field
(bottom of Fig. 1). The vehicle moves around the arena,
avoiding obstacles. The vehicle keeps track of the heading
direction by integrating its rate of change. The camera image
is continuously transformed into the coordinate frame of the
heading direction and input into the perceptual field. When
visual input is encountered that overlaps sufficiently with the
preshaped ridge at the requested hue value, a peak forms in
the perceptual field. This peak defines a movement target and



the vehicle moves in the required direction, while continuing
to avoid obstacles. Typically, the vehicle is able to approach
the object, so that the object’s projection onto the visual array
grows in size, until it looms sufficiently large in the camera
image to send a sensory signal to the condition-of-satisfaction
system (bottom right of Fig. 4).
At this point, a transition in the ordinal stack is triggered.

The second ordinal layer builds a peak at the second learned
color value, which is replicated in the output layer. As this hap-
pens, the condition-of-satisfaction neuron switches back to the
“off” state and the peak in the first ordinal layer is suppressed
by inhibition from the second ordinal layer. The change of
location of the peak in the output layer shifts the hue value
at which a ridge is input into the perceptual field. The current
peak in this field therefore decays. This removes the attractor
of heading direction in the direction of the previous target and
effectively puts the system back into search mode. The robot
again moves around, avoiding obstacles, until it encounters in
its visual array enough color information that overlaps with the
new preshaped ridge, leading to the generation of a new peak
in the perceptual system. This reinstates a movement target,
toward which the robot navigates. As that target is approached,
another sensory signal is sent to the condition-of-satisfaction
system, leading to the second transition.
Figure 4 shows four such transitions as recorded from the

life robot. In each case, the peak in the output layer lasts
as long as it takes to reach a target of the specified color.
Naturally, the time needed to find a target varies depending
on the configuration of the robot and the environment. The
core feature of the DFT approach to sequence generation
is illustrated here: The system operates stably in the face
of such variable and unpredictable timing of each individual
action. Moreover, the sensory signal sent to the condition-of-
satisfaction system is obtained from the life camera image
on the robot. The movement of the robot as well as intrinsic
properties of the video system make this a noisy signal, but the
bistable condition-of-satisfaction system stabilizes the decision
that the action goal has been reached, leading to orderly
transitions. Note also, how the duration of the transition itself
varies, as reflected in the time interval during which the
condition-of-satisfaction neuron is “on”. This reflects the speed
of the transition in the ordinal stack, which depends on the
metric distance between the successive peaks, the strengths
of the learned patterns, and on fluctuations in the neuronal
dynamics.

IV. DISCUSSION
We have introduced a neuronally grounded architecture for

the learning and generation of behavioral sequences based
on the framework of Dynamic Field Theory. To demonstrate
the system’s capability to tolerate variable durations of each
action within a sequence, we implemented the architecture on
an autonomous robot that searches for colored objects in a
learned order of colors. The ordinal position of an action is
encoded along a stack of neuronal activation fields, each of
which expands a feature dimension needed to specify actions.

This feature dimension thus represents the “contents” at each
step, a form of positional encoding in the classification of
[21]. While we have implemented a single feature dimension,
color, in our robotic example, these fields may link to rich
representations that bind multiple different feature maps into
perceptual objects [16]. By steering the perceptual system, this
representation makes it possible to generate actions directed at
objects in the world as illustrated in our robotic demonstration.
Like ours, the model of [22] is based on evidence for

neurons encoding ordinal position. These authors show how
short-term memory for sequences can be implemented in
an auto-associative neural network with attractor dynamics.
Although the model is couched in terms of putative neuronal
mechanisms, its functional dynamics can be described as a
sequence of semi-stable states. The transitions are triggered
internally through a global inhibitory input and a synaptic
adaptation mechanisms, not by sensory input from the world.
The system does not, therefore, tolerate variable durations of
each action step. The system has not been implemented on
an autonomous robot. It is not clear, if it can generate actions
oriented at perceptual objects.
Botvinick and Plaut present a recurrent neuronal network

which has a similar mission as ours, generating behavioral
sequences [1]. Their network model is essentially a neuronal
dynamics, although time is treated in discrete steps. Like ours,
this model is in principle linked to sensory input from the
environment, so that it may direct actions at objects in the
world. The model is far from a real-world implementation,
however, and does not address the question of how actions of
variable durations may be accommodated.
A number of similar neuronal network models in the

positional encoding framework are directed at generating
sequences at the level of abstract representations and do not
pose the question of how such systems may deal with the real-
time control of effectors or with online perceptual information
[2], [4], [23]. Unlike these more abstract models, we have not
yet addressed serial order errors.
The architecture presented here has a few other obvious

Fig. 4. The temporal dynamics of the output field during execution of
the sequence “green-red-blue-yellow-green“. Left: Self-stabilized peaks in
the output field represent the sequential color values that control the search
behavior of the robot. Right: A color-coded two-dimensional view of the
temporal evolution of the output field is aligned with the time series of the
activation level of the condition-of-satisfaction neuron. Events at which the
signal is positive indicate the points in time when the system transitions to
the next stable state within the sequence.



limitations. Extension is easy in some cases, such as increasing
the number of sequences learned, considering multiple feature
dimensions [16], adressing hierarchical action sequences, and
improving memory representations across multiple trials. Al-
though the autonomous formation of action sequences needed
to achieve a given goal lies outside the scope of this model, the
model does provide key elements for autonomous exploration
and learning of behavioral sequences through its inclusion of
perceptual and memory context into the control of sequential
action.

V. APPENDIX: MATHEMATICAL DESCRIPTION OF THE
MODEL

The dynamics of each field, ui(x,t) in the ordinal stack
(ordinal index i= 1, . . . ,NSc) is

!Scu̇i(x, t) = −ui(x, t)+h+
Z
f (ui(x′,t))wSc(x− x′)dx′

+ c+ f ("cs)
Z
f (v(x′,t)) f (ui−1(x′,t))dx′

− c−
Z
f (ui+1(x′,t))dx′ +PiY (x, t)

(2)

with similar parameters as the generic field equation Eq. 1.
The constants c+ and c− control the boosting and deboosting
coupling, the preshaping input, PiY (x,t) comes from the higher
level neuron Y . Sensory feedback about action completion
comes through the condition-of-satisfaction neuron, " cs.
The dynamics of the motor field v(x, t) is:

!Mv̇(x, t) = −v(x, t)+h+
Z
f (v(x′, t))wMM(x− x′)dx′

+#NSci=0(
Z
f (ui(x′,t))wMSc(x− x′)dx′ +C+)

(3)

with analogous notation.
The perceptual field, up(x,$) is a 2D variant of the Amari

system, Eq. 1. The dynamics of heading direction, $ is

!$$̇(t) = %oFo($(t))−%t
Z
f (up(x,&,t))(&−$)dxd& (4)

The obstacle forcelet Fo($) is a sum over the contributions
of the 6 infrared sensors of the Khepera robot. Each sensor
contributes with strength depending on the sensed distance to
an obstacle, and angular range depending on the opening angle
of the sensors, on the robot size, and on the sensed distance
(see [24] for details).
The condition-of-satisfaction neuronal dynamics is

!""̇cs(t) = −%"cs(t)+hcs+µ f ("cs(t))+ I(t)+F(t) (5)

where % and µ are constants, hcs is the resting level, and f (·)
is the sigmoidal non-linearity, which provides self-excitation
to the neuron. The sensory signal, I(t) is obtained from the
vision system, the negative reset signal, F(t) is obtained from
the ordinal stack, both described in the main text.
The memory trace dynamics is implemented as:

!p ṗi(x,y, t) = %build(−pi(x,y,t)+ f (ui(x, t))∗ f (U(y,t))) (6)

where pi(x,y, t) is a synaptic connection from the site x of
a sequence coding field ui(x,t) to a site y in a higher level

pool of neurons, U(y,t), ! p is the time constant, %build is the
rate of strengthening of connections driven by simultaneous
activation of ui(x,t) and U(y,t).
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[5] G. Schöner, “Dynamical systems approaches to cognition,” in Cam-
bridge Handbook of Computational Cognitive Modeling, R. Sun, Ed.
Cambridge, UK: Cambridge University Press, 2008.

[6] J. R. Searle, Intentionality — An essay in the philosophy of mind.
Cambridge University Press, 1983.

[7] R. N. A. Henson and N. Burgess, “Representations of serial order,” in
Connectionist Representations, J. A. Bullinaria, D. W. Glasspool, and
G. Houghton, Eds. Springer Verlag, 1997, pp. 283–300.

[8] E. Procyk, Y. Tanaka, and J. Joseph, “Anterior cingulate activity during
routine and non-routine sequential behaviors in macaques,” Nature
Neuroscience, vol. 3(5), pp. 502–508, 2000.

[9] E. Procyk and J. Joseph, “Characterization of serial order encoding in the
monkey anterior cingulate sulcul,” European Journal of Neuroscience,
vol. 14, pp. 1041–1046, 2001.

[10] J. W. Aldridge and K. C. Berridge, “Coding of serial order by neostriatal
neurons : A ”natural action” approach to movement sequence,” The
Journal of Neuroscience, vol. 18(7), pp. 2777–2787, 1998.

[11] A. F. Carpenter, A. P. Georogopoulos, and G. Pellizzer, “Motor cortical
encoding of serial order in a context-recall task,” Science (Reports), vol.
283, pp. 1752–1757, 1999.

[12] H. Wilson and J. Cowan, “A mathematical theory of the functional dy-
namics of cortical and thalamic nervous tissue,” Biological Cybernetics,
vol. 13, pp. 55–80, 1973.
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