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Dynamic Neural Fields as Building Blocks of a
Cortex-Inspired Architecture for Robotic Scene

Representation
Stephan K. U. Zibner, Christian Faubel, Ioannis Iossifidis, and Gregor Schöner

Abstract—Based on the concepts of Dynamic Field Theory,
we present an architecture that autonomously generates scene
representations by controlling gaze and attention, creating visual
objects in the foreground, tracking objects, reading them into
working memory, and taking into account their visibility. At the
core of this architecture are three-dimensional Dynamic Neural
Fields (DNFs) that link feature to spatial information. These
three-dimensional fields couple into lower-dimensional fields,
which provide the links to the sensory surface and to the motor
systems. We discuss how DNFs can be used as building blocks for
cognitive architectures, characterize the critical bifurcations in
DNFs, as well as the possible coupling structures among DNFs.
In a series of robotic experiments, we demonstrate how the
DNF architecture provides the core functionalities of a scene
representation.

Index Terms—autonomous robotics, embodied cognition, neu-
ral processing, dynamical systems, Dynamic Field Theory (DFT)

I. INTRODUCTION

THE CHALLENGE and the pleasure of autonomous
robotics research lies in its inherent interdisciplinarity.

Autonomy requires that a robot be capable of acting based
on its own sensory information. Any demonstration of an
autonomous robot will therefore involve perceptual, planning,
and motor control tasks, which must be interfaced and inte-
grated. These tasks are interdependent. Not only does planning
and motor control depend on perception, but also conversely
robotic actions may modify the sensory stream and action
plans may be aimed at obtaining particular perceptual infor-
mation. The extraction of meaningful information about the
robot’s environment through perceptual systems is currently
one of the major bottlenecks that holds back the development
of autonomous robots.
For mobile robots, self-localization and mapping (SLAM)

is a related problem, toward which much progress has been
made over the last decades [1]. To generate goal-directed
action that goes beyond moving to a particular location, robots
need to have extended maps, in which objects are segmented
[2, 3], and identified [4, 5]. To enable the reaching and
grasping of objects, such a representation needs to include
pose information about objects [6]. All three aspects of seg-
mentation, identification, and pose estimation are currently
underdeveloped. Even when laser scanners are used to capture
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the three-dimensional structure of the environment, extracting
three-dimensional scene information is computationally very
demanding [7] so that real-time updating of such three-
dimensional scene information does not seem possible thus
far. Another aspect of scene representation for robots is
that objects [8] or object categories [9] must be learned on
the fly from a small number of exposures. Our goal is to
make progress toward the problem of scene representation
for autonomous robotics by developing a neuronally inspired
architecture that builds representations, enables their updating
as the environment changes, and makes is possible to operate
on scene representations through cued recall.
We focus on a particular component of the problem in

an interaction scenario, in which a service robot shares a
workspace with human users. Our cooperative robotic assistant
CoRA [10] has a seven degree of freedom arm and an active
stereo camera head, both mounted on a trunk that is fixed to a
table (see Figure 1). The table is the shared workspace between
the robot and human users. A scene representation enables the
robot to respond to user commands that refer to objects, object
features, or locations on the table. For instance, in response

Figure 1. The Cooperative Robotic Assistant, CoRA, with an empty shared
workspace in front of it, ready for adding objects to the scene.

to the command “hand me the red screwdriver”, the system
should be able to localize and segment the relevant object
and estimate its pose sufficiently well to enable reaching.
This is most effectively done based on a prior perceptual
acquisition of the scene rather than by triggering a search
at the time the command is received. This requires linking
longer-term memories of objects and their features, obtained
over multiple exposures to the objects, to the current layout
of the scene. Using memory information that can also be
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updated is important because interaction with the robotic
system happens under dynamic conditions in which objects
may become occluded or get out of view because of the robot’s
cameras’ limited field of view. In addition to a mechanism
for longer-term memory, scene representation also requires a
mechanism for working memory to handle such temporary
occlusions while operating on an objects representation. Our
neuronally inspired framework for scene representation will
also support processes of selection such as when multiple red
screwdrivers are in the scene, and tracking, such as when the
screwdriver is handled by the human user.
In the spirit of the developmental approach to autonomous

robotics, we derive ideas and constraints for the problem of
scene representation from an analysis of how humans learn to
achieve the associated tasks. When humans attend to a scene
such as the workspace our robot CoRA, they process the scene
sequentially. This sequentiality is due both to computational
and physical constraints. Only a small number of objects can
be in the perceptual foreground at any time. Moreover, objects
are typically foveated for inspection. A saccade to foveate
a new object is triggered on average every 300 ms. Visual
information is not retained at a pictorial level between saccades
[11, 12]. What visual information is retained across saccades
depends on attention [13–15] as dramatically demonstrated by
change blindness [16], in which major changes in an image go
undetected if the changed locations are not attended to and the
transient change signal, which would normally attract atten-
tion, is masked. Change blindness can be overcome by fixating
on the changed item [17]. The visual representation of objects
in a scene remains linked to space. Object discrimination is
enhanced, for instance, when an object is presented in the
same position in which it was first presented [18]. Conversely,
providing scene context improves memory for object position
[19]. The same position advantage disappears if the spatial
configuration of other objects in the scene is scrambled, but
not if the objects are coherently shifted [20]. This supports
the notion that object information, both spatial and visual, is
anchored in space.
To exploit these insights into how humans represent scenes,

we build on a theoretical language, that has been used to
model human spatial cognition. Dynamic Field Theory (DFT)1
[21, 22] originated as a theory of movement preparation
[23, 24], but has recently been substantially extended towards
higher-level cognition addressing visual working memory [25]
and its development [26, 27] as well as feature binding
[28]. The language builds on earlier work on how dynamical
systems can be used to describe both human [29] and robotic
behavior [30] in such tasks as target acquisition and obstacle
avoidance. Dynamic Neural Fields enable the scaling of tasks
to a more cognitive level such as working memory for the
localization of targets [31] or the representation of obstacles
[32]. Erlhagen and colleagues [33] used DFT to implement
imitation learning and in Faubel and Schöner [34] a DFT
architecture has addressed fast object learning and recognition.
A key assumption of DFT is that all behaviors are in stable

1Dynamic Field Theory is equally referred to as Dynamic Neural Field
Theory (DNFT)

states most of the time, making them immune to fluctuating
sensory information and competing behaviors or represen-
tational states. Such stability arises not only in a control
engineering sense through feedback loops, but also through
internal loops of neuronal interaction. Behavioral flexibility
then requires that states may be destabilized to bring about
change of behavior. We will discuss the generic instabilities
of Dynamic Neural Fields and show how cognitive functions
may emerge from these instabilities. This will enable us to
use Dynamic Neural Fields and their instabilities as buildings
blocks for generating scene representations.

II. ARCHITECTURAL PRINCIPLES
In this section we briefly review core principles of Dynamic

Field Theory: the continuous metric spaces, over which neural
fields are defined, their neural dynamics and stable states,
as well as the relevant instabilities from which cognitive
function emerges. We extend these principles toward multi-
dimensional fields and DNF architectures by discussing the
different possible forms of coupling among DNFs of varied
dimensionality. Only those aspects of Dynamic Field The-
ory are reviewed that matter for the architecture supporting
scene representation. Therefore, we illustrate the concepts of
Dynamic Field Theory by referring to figures that are based
on actual robotic experiments, which will be described in
Section IV.

A. Dynamic Neural Fields (DNFs) and Their Dimensionality
The set of possible perceptual and motor states of an

embodied autonomous system may often be characterized by
a number of continuously valued parameters. This is obvious
for motor systems, in which movement parameters such as the
Cartesian position of a tool point, joint velocity vectors, or the
orientation of a robot head span relatively low-dimensional
spaces of possible motor states. Perceptual states may be
embedded in the two-dimensional visual array sampled by
a vision system. Moreover, local feature detectors for color,
orientation, or spatial wavelength may generate perceptual
representations that may likewise be characterized by a limited
number of feature dimensions. Below we will consider percep-
tual representations in which a feature dimension is combined
with the two-dimensional coordinates of the visual array.
To represent objects in a scene as well as planned motor acts

we employ the neural concept of activation. For every possible
value along any of the relevant dimensions, an activation
variable represents the presence of information by a large level
of activation, the absence of information by a low level of
activation. Dynamic Neural Fields (DNFs) are the resulting
distributions of neural activation defined as functions over such
continuous, metric spaces. Figure 2 illustrates a perceptual
field, Figure 3 a motor field. Localized peaks of activation
are the units of representation in DNFs: When the activation
level in a peak exceeds a threshold (conventionally chosen
to be zero), the corresponding activation variables become
effective input in whatever part of the system into which they
couple. The location of such peaks along the continuous metric
dimensions represents an estimate of the corresponding feature
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Figure 2. Detection, Working Memory, and Forgetting: These figures show a portion of the full architecture, the scene space field, demonstrating three
basic instabilities. In the first step on the left, three perceived objects are visible in the current field of view. All three objects are represented in the field due
to a detection decision, whereas a small perturbation on the table is not represented. Regions that are currently not in the visual range reside in a different
regime and differ in the resting level. The figures in the middle show the field in a follow-up state, which is produced by changing the robot’s gaze. Now,
there is only a single object in the input image. Two working-memory peaks represent the other two objects. Due to different resting levels, both peaks are
self-sustained. The figures on the right show the field state after the robot’s gaze returned to its initial position. While two objects were outside the robot’s
gaze, one object was removed. After returning to the previous viewing angle, the input image only contains two objects. The working memory peaks in the
previous field activity return to the region of lower resting levels. Since working memory cannot be sustained without additional visual input, the field forgets
the missing object.

values and thus encodes metric information about perceptual
objects or motor plans.
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Figure 3. Selection Decision. The displayed motor selection field receives two
competing inputs that are equally strong. Only one of the inputs is selected.
A peak has built at its location, the other input is suppressed.

How many dimensions are needed to characterize such
objects or actions? Because of the computational cost of
using DNFs with many dimensions, limiting the number of
dimensions is an important concern. For instance, the control
of a seven degree of freedom arm may at first seem to require
a seven-dimensional space. There is no need, however, to such
a high-dimensional DNF. Reaching may be characterized by
the elevation and azimuth angles of the heading direction of
the end-effector, which span a two-dimensional space. The
tangential velocity of the end-effector may be encoded in a
separate one-dimensional DNF [35]. An analytical solution

to the inverse kinematics of the robot arm can then be used
to expand an estimate of the desired motor state from these
two low-dimensional spaces into the full seven-dimensional
kinematic state of the arm. In other cases, the effector system
itself is captured by a small number of dimensions. This is the
case for motor control of the head used in our architecture,
which comprises only the head pan and tilt angles. Similarly,
the location of visual objects in the image plane may be
captured by a two-dimensional field. A further reduction is
not possible, however. If an object must be selected among
a set of visible objects through an attentional process, then
the two spatial dimensions must be co-activated. If selection
were to occur separately in two one-dimensional field for each
spatial dimension, then different objects may be selected along
the horizontal compared to the vertical axis, leading to a mis-
matched spatial description (a so-called illusory conjunction).
On the other hand, once an object has been selected, the motor
commands for the pan and tilt angles of a camera head may
perfectly well be represented separately each within a single
one-dimensional field, as there is only one possible value
along each dimension. As a more general rule, information
can be kept separately in low-dimensional fields, as long as
there is no need for associations of concurrent activation in
multiple fields. From a practical view, lower-dimensional fields
are computationally much cheaper as their high-dimensional
counterparts and can therefore have a better sampling of the
continuous metric they represent.

To encode the combination of a single visual feature such as
color with the two-dimensional visual array requires a three-
dimensional DNF. As more feature dimensions are added,
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a combinatorial explosion threatens. This explosion may be
avoided, however, if locations in multiple lower-dimensional
space-feature fields may be bound together along a shared
dimension [28, 34], a trick we will discuss at the end of
Section II-G.

B. The Dynamics of DNFs
The temporal evolution of patterns of activation in DNFs

is generated from neuronal dynamics governed both by inputs
and by neuronal interaction within a field. This interaction
is structured such that the units of representation, localized
peaks of activation, may emerge as stable activation states (or
attractors). Local excitatory interaction stabilizes such peaks
against decay, while global inhibition stabilizes peaks against
diffusive broadening [36].
To formalize the neural dynamics, we describe the DNFs by

activation variables u(!x, t) that are defined over the continuous
metric dimensions, !x, and evolve in time t. The dynamic
equation of such higher-dimensional fields is analogous to the
one-dimensional neural field dynamics first analyzed by Amari
[36]:

τ u̇(!x, t) = −u(!x, t) + h+ s(!x, t) (1)

+

∫

· · ·
∫

w(!x− !x′)θ(u(!x′, t))d!x′.

The first three terms set up the field as a temporal low-pass
filter of input, s(!x, t). Based on these terms alone, the field
relaxes toward the instantaneous stable state, h + s(!x, t) (as
long as s is varying slowly enough).
Neuronal interaction (last term) is mediated by the non-

linear threshold function, θ(u(!x, t)), that typically has sig-
moidal shape (0 below a threshold, uθ, conventionally chosen
to be zero, 1 above the threshold, with a more or less steep
transition between these two limit cases). As a result, only
sufficiently activated field locations contribute to neuronal
interaction. The interaction kernel, w(!x − !x′), is positive
(excitatory) for small distances between field locations, !x and
!x′, and negative (inhibitory) over larger distances. For more
details see Equation 16 in Appendix A.

C. Dynamic Instabilities
Dynamic Neural Fields as cognitive buildings blocks offer a

set of operational regimes in which different stable states exist.
They determine which tasks can be fulfilled by a field. These
regimes may be characterized by studying the instabilities that
occur when inputs or parameters of DNFs change. While the
stability of peak solutions has been treated analytically for
one- [36] and two-dimensional fields [37], higher-dimensional
fields have not been similarly well characterized analytically.
We have been guided, nevertheless, by Amari’s analysis in
order to find the parameter settings at which peak solutions
become stable in three-dimensional fields. The proof of their
stability was then based on numerical simulation.
1) Detection Instability: The detection instability is the

most elementary bifurcation and is at the origin of any supra-
threshold peak. When input drives activation above thresh-
old at any particular location, local excitatory interaction is

engaged and destabilizes the sub-threshold activation pattern.
The peak “pulls itself up”. The peak solution is qualitatively
different from the sub-threshold pattern of activation. This is
obvious from the fact that the peak continues to be stable when
input is again reduced: at intermediate levels of input, supra-
threshold peaks and sub-threshold patterns of activation co-
exist bistably. This stabilizes the peak in the face of fluctuating
input. The qualitative change from sub-threshold to peak
solution may be thus used to represent a detection decision
(see Figure 2).
2) Selection Decisions and Fusion: In many situations a

robot must select among multiple competing choices, for
example, to orient its body or head toward one out of a number
of salient objects. Dynamic Neural Fields can organize such
selection decisions. This fact has previously been exploited
to account for neural and behavioral data on how humans
select visual targets toward which they direct saccadic eye
movements [38, 39] (see also Figure 3). The inhibitory inter-
action is the key to selection. If the locations of multiple inputs
are spaced adequately and inhibitory interaction is sufficiently
strong, then an existing peak may inhibit peak formation at
other stimulated locations. The sigmoidal nonlinearity creates
an asymmetry of interaction: The selected site may inhibit
competing sites, while the sub-threshold activation at those
sites does not contribute to interaction. Which location is
selected thus depends on prior activation. Whichever site
was able to generate supra-threshold activation first has the
competitive advantage. The temporal order of stimulation is
thus one important competitive factor. If multiple inputs arrive
at the same time and have the same strength, then random
fluctuations determine the outcome of the competition. The
system is then multi-stable: a peak at any of the locations
would be stable. This multi-stability persists when inputs differ
in strength. As a result, the selection decision is stabilized:
an initial selection is stable even if input fluctuations or
deterministic changes of input begin to favor another location.
This stability breaks down when the discrepancy in input
strength becomes too large: at the selection instability, a peak
at a location with weaker input becomes unstable and yields
to a peak centered on the more strongly driven location.
3) Boost-Induced Detection and Selection: When localized

input is too weak to induce a supra-threshold peak, a homo-
geneous boost to the field may drive it through the detection
instability. A peak arises then at location that receives (weak)
localized input. Selection may effectively be engaged by such
a homogeneous boost as well, when multiple field locations
are pre-activated.
4) Self-Sustained Peaks as Working Memory and the Forget-

ting Instability: Amari derived conditions under which supra-
threshold peaks of activation may persist in the absence of any
localized input [36]. These conditions depend on the integral of
the interaction kernel,

∫

dnxw(!x), over varied domains (here,
n, is the dimension of the field) as well as on the homogeneous
resting level of the field, h. The kernel integral over the entire
support of the kernel must be negative and the resting level
must be above the negative value of the (positive) maximum
of the kernel integral. We have used this same logic for the
two- and three-dimensional implementations of DNFs, and
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have evaluated the validity of these conditions in those higher-
dimensional cases.
Such a self-sustained peak can be thought of as a form of

working memory [40], in which the position of the peak within
the field encodes previously cued metric information. Working
memory for metric information is useful to store objects
that get out of the robot’s current field of view, but whose
spatial or feature parameters were previously estimated [31].
A working memory peak is volatile: it may be destabilized
by competition. Such forgetting by interference may lead a
previously stored metric value to be “forgotten”. A controlled
way of forgetting is to push the field through the forgetting
instability, in which a lowering of the resting level destabilizes
sustained peaks. This is illustrated in Figure 2, in which a
negative homogeneous boost effectively decreases the overall
resting level h.
5) Multi-Peak Working Memory: It is possible to configure

a DNF such that solutions with multiple localized peaks are
stable. This happens most easily, if the interaction kernel has
the shape of a Mexican hat, that is, if inhibition decreases again
at sufficiently large distances between locations. The number
of possible peaks within a field depends on the resting level
h and the exact shape of the kernel (see Erlhagen and Bicho
[21] for a discussion). In all cases, the number of peaks is
limited by the fact that each peak has an overall inhibitory
effect on the field. As such inhibition accumulates, the peaks
ultimately become unstable. This fact has been exploited to
account for the limited capacity of visual working memory in
humans [41, 42].
6) Tracking: The stable supra-threshold peaks in DNFs are

sensitive to changes in localized input. A moving localized
input distribution is easily tracked by an associated peak. Even
multi-item tracking is possible as has been shown in Spencer
and Perrone [43]. Figure 4 shows screenshots and field activity
of such a multi-item tracking experiment.

Figure 4. This figure shows four snapshots of the tracking experiment IV-C
with the mobile robots. The red and the blue plots are slices of activation
extracted from the scene space-color field for the corresponding robot. The
red plot shows the activation for the red robot and the blue plot shows the
activation for the blue robot.

D. Discrete Dynamic Neurons and Neural Assemblies

Under some circumstances, it is useful to think of peaks of
activation as individual dynamic entities. The activation within
a peak is then described by a single activation variable, u(t),

and its dynamics

u̇(t) = −u(t) + h+ s(t) + wexcθ(u(t)). (2)

The local excitatory interaction that stabilizes peaks is now
represented as self-excitation of this single activation variable,
wθ(u(t)). This dynamics has the analogous instabilities of
detection and forgetting, so that a bistable regime with an “on”
state (activation variable above threshold) and an “off” state
(activation variable below threshold) is typical. We employ
discrete activation variables to represent the presence of a
stable peak irrespective of the exact location of the peak
(“peak detector”). This is achieved by projecting the supra-
threshold activation integrated across a whole field onto a
single, dynamic node, which is thus driven through a detection
instability if there is at least one peak in the field.
Multiple, competing activation variables of this nature may

be used to represent activation patterns, in which the individual
entities, represented by the different variables, are not in an
obvious way embedded in an underlying continuous space (e.g.
discrete object labels). We employ such ensembles of discrete
activation variables

u̇
l
(t) = −u

l
(t) + h+ s(t) (3)

+wexcθ(ul
(t))− winh

∑

l′ "=l

θ(u
l′
(t)).

to represent different objects as a whole (through “labels” of
the objects). The connectivity of such ensembles of activation
variables with self-excitation and global inhibition leads to
a “winner takes all” behavior in which only one activation
variable may have positive activation, while all others are
inhibited below threshold.

E. Memory Traces as a Form of Long-Term Memory
A possible mechanism for long-term memory consists of

modulating the level of activation in a field based on memory
traces of prior patterns of activation. Such memory traces
are represented in a separate field defined over the same
dimension, but with its own dynamics that evolves on a much
slower timescale τpre. A dynamics of low-pass filtering any
supra-threshold activation in the original neural field generates
such a memory trace:

τpreṗ(!x, t) = αpeak[−p(!x, t) + θ(u(!x, t))] (4)
·[λbθ(u(!x, t)) + λd(1− θ(u(!x, t)))].

Here, p(!x, t), is the memory trace activation. A peak detector,
αpeak, is implemented with a discrete activation variable that
receives as input the summed and thresholded activation,
θ(u(!x, t)), of the field. Memory traces are only updated when
peaks build up in the DNF. The memory trace builds up with
the rate λb at active field sites (θ(u(!x, t)) = 1) and decays
with rate λd at inactive sites (1− θ(u(!x, t)) = 1). The global
timescale τ is the same for the field that creates the memory
trace. The timing of building and forgetting memory traces is
controlled through the terms λb and λd. See Figure 5 for an
example of deposited preshape in a DNF.
If such a memory trace is conversely coupled as additive

input into the DNF, of which it receives input, then the memory
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trace mechanism has the properties of Hebbian learning:
previously active field locations are pre-actived by the memory
trace they have laid down and are thus easier to again activate
in the future. In this form, the memory trace preshapes the
DNF, biasing it toward previously experienced patterns of
activation. Below, we show how peaks may be generated
from a preshaped field in a way that effectively reinstates
the previously experienced state (“recall”). The concept of a
memory trace and its role to preshape representations has been
used to account for the role of behavioral history in movement
preparation [23] and infant perseverative reaching [24, 44], as
well as a host of other forms of long-term memory [45].
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Figure 5. Ridge Inputs and Memory Traces. This figures shows the object-
color field in a state of receiving two lower-dimensional inputs of label and
color information. The overlap of both ridges creates a peak at the intersection.
The preshape dynamic of this field deposits memory traces for every arising
peak in this field. Two deposited traces originate from previous peaks, a third
one is generated by the currently active peak.

F. Coupling of Fields
Dynamic Neural Field architectures consist of sets of cou-

pled DNFs, some of which are directly linked to sensory
surfaces or receive some form of pre-processed input, while
others are directly linked to motor systems and specify par-
ticular stable states of motor control. Because the dynamics
of the individual DNFs have attractor states, these persist
when fields are coupled. Only when a field goes through an
instability, it is sensitive to inputs. Thus, the component fields
in DNF architectures can be analyzed individually with respect
to their stable states and instabilities, treating coupling as a
form of input (this would fail only if instabilities were to occur
simultaneously in two coupled fields, which is not a generic
case.).
Coupled fields may differ in the nature and number of field

dimensions as well as in the metrics of neuronal interaction. In
the following paragraphs different possible mappings are elab-
orated in some detail. We begin with coupling among fields
of the same dimensionality, then consider projections from
higher- to lower-dimensional fields and finally the mapping
from lower- to higher-dimensional fields.
1) Coupling of Fields with the Same Dimensionality:

The coupling of two DNFs with the same dimensionality is
straightforward: the output of one DNF, θ(v(!x, t)), provides

localized input to the target neural field u(!x, t):

τ u̇(!x, t) = −u(!x, t) + h+ s(!x, t) + wuvθ(v(!x, t)) (5)

+

∫

· · ·
∫

wuu(!x− !x′)θ(u(!x′, t))d!x′.

The mapping may be spatially modulated through a Gaussian
convolution kernel, wuv(!x), that is homogeneous along the
fields’ dimensions:

τ u̇(!x, t) = −u(!x, t) + h+ s(!x, t) (6)

+

∫

· · ·
∫

wuu(!x− !x′)θ(u(!x′, t))d!x′

+

∫

. . .

∫

wuv(!x− !x′)θ(v(!x′, t))d!x′.

In numerical implementation, the discrete resolution of cou-
pled fields may need to be adjusted by down- or up-sampling
(e.g. by linear interpolation). To avoid sampling errors, down-
sampled fields must be smoothed.
2) Coupling Higher-Dimensional to Lower-Dimensional

Fields - Integration: A higher-dimensional field, v, may be
homogeneously coupled to a lower-dimensional field, u, if
there is at least one shared dimension between the two fields.
Activation in the higher-dimensional field is integrated along
the non-matching dimension and used as weighted input along
the matching dimension. For instance, the equation for map-
ping a three-dimensional field onto a one-dimensional field
with x as the matching and y, z as non-matching dimensions
reads:

τ u̇(x, t) = −u(x, t) + h+ s(x, t) (7)

+

∫

wuu(x− x′)θ(u(x′, t))dx′

+wuv

∫

y

∫

z

θ(v(x, y, z, t))dy dz.

Kernels defining the more complex weight mapping from one
field to another may also be defined.
3) Coupling Lower-Dimensional to Higher-Dimensional

Fields - Ridges, Slices and Tubes: To homogeneously couple a
lower-dimensional field to a higher-dimensional field, the two
also need to share at least one dimension, which is expanded
along the non-matching dimension(s). For instance, mapping
a one-dimensional field to a two-dimensional field

τ u̇(x, y, t) = −u(x, y, t) + h+ s(x, y, t)

+

∫∫

wuu(x− x′, y − y′)θ(u(x′, y′, t))dx′dy′

+ wuvθ(v(x, t)) (8)

creates input ridges into the two-dimensional field (see Figure
5). When a one-dimensional field is mapped onto a three-
dimensional field

τ u̇(x, y, z, t) = −u(x, y, z, t) + h+ s(x, y, z, t)

+

∫∫∫

wuuθ(u(x
′, y′, z′, t))dx′dy′dz′

+ wuvθ(v(x, t)) (9)

with wuu
∼= wuu(x − x′, y − y′, z − z′), the resulting inputs

have the form of slices of the three-dimensional field within
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which input is constant. A two-dimensional field mapped onto
a three-dimensional field

τ u̇(x, y, z, t) = −u(x, y, z, t) + h+ s(x, y, z, t)

+

∫∫∫

wuuθ(u(x
′, y′, z′, t))dx′dy′dz′

+ wuvθ(v(x, y, t)) (10)

with wuu
∼= wuu(x − x′, y − y′, z − z′), creates input tubes

into the three-dimensional field, along which input is constant
(see Figure 6 for slices and tubes).
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Figure 6. Slices and tubes. The top plot shows spatial tube and color slice
input to the three-dimensional scene space-color field for the green deodorant.
In the field plotted below the overlap of the tube and slice input lead to a
self-sustained working memory peak, that represents the green color of the
deodorant and its spatial location on the table.

4) Coupling of Dynamic Neural Fields with Single Discrete
Neurons: A special case is the coupling of higher-dimensional
fields onto single activation variables. In this case the field
must be integrated over all dimensions to produce a scalar
value that can then be weighted and used as input to the
dynamics of the single activation variable. An example is the
dynamics of the peak detector

τ u̇peak = −u(t) + h+

∫

v(!x, t)d!x+ θ(u(t)). (11)

In the reverse direction, a single discrete activation variable
may be coupled to a Dynamic Neural Field by providing
homogeneous input to the field. This may be employed, for
instance, to induce boost-induced detection instabilities as
explained in Section II-C3.

5) Coupling Dynamic Neural Fields with no matching
metrics: To couple two Dynamic Neural Fields that do not
share any common metrical dimension, supra-threshold field
activation may be passed from one field to another with an
arbitrary mapping. Such a mapping may be either hand-wired
or be learned using learning rules such as Hebbian learning.
For a more detailed explanation of arbitrary mappings and
a DNF architecture in which such maps play a key role see
Sandamirskaya and Schöner [46].

G. Functions Achievable by Coupling
By coupling DNFs we can effectively close the loop be-

tween the sensory surfaces and motor control and enable a
robot to generate robust behavior. But coupling can do more
than projecting a stabilized percept onto motor decisions.
Coupling makes it possible to link DNFs that represent higher-
level percepts such as object labels to related lower-level
representations of a feature dimension. Coupling may create
hierarchies of DNFs (see Section III). The higher a field is
positioned in such a hierarchy, the further it is removed from
the sensory or motor surface. Such higher fields are invariant
under more transformations of sensory input. This makes such
fields well suited to erecting working or long-term memory.
Higher fields are thus the suitable substrate for cognition.
1) Higher-Dimensional Representations: Multiple lower-

dimensional feature representations can be combined into
higher-dimensional representations by linking separate DNFs
along one or multiple shared dimensions. Visual or motor
space is a natural choice for such shared dimensions, because
it reflects the physical reality that different feature dimensions
are bound through the spatially localized objects, from which
they emanate. This mechanism has been used in a DNF model
of binding in visual working memory [47]. A dynamic field
representing spatial working memory with high precision pro-
vides ridge input into space-feature fields (space-color, space-
orientation) that are broadly tuned to space. Such coupling
along visual space selects appropriate feature conjunctions.
Similarly, the same basic mechanism was exploited in an
object recognition system, in which multiple label-feature
fields were coupled along the label dimension [8].
2) Association: In the previous example, the association

of space with a feature dimension reflected immediately the
stimulus. In principle, however, DNFs of suitable dimension-
ality may represented arbitrary associations [48]. This happens
in our architecture in a three-dimensional field during the
build-up of working memory for scene items, because at
the scene level feature information is not available for all
spatial locations but only for currently attended ones. The
extracted feature is represented in a one-dimensional field that
sends slice input into a three-dimensional field representing the
feature dimension combined with the two-dimensional spatial
layout of the workspace. The spatial selection provides tube
input at the currently selected spatial position. At the location
where the tube input overlaps with the slice input a peak builds
up in the three-dimensional space-feature field. This peak is
a working memory peak that in this way retains the cued
association across occlusions and multiple saccades (see also
Figure 6).
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Similarly, when an arbitrary label is learned, the association
mechanism is again at work. A one-dimensional feature field
sends ridge input into a two-dimensional label-feature field.
The user activates a label to be associated, which provides
ridge input along the label dimension. At the location where
both ridges overlap a peak builds which leads to the creation
of a memory trace, providing the system with a long-term
memory for the label-feature association (see Figure 5).
3) Preshape Mechanisms: Input that does not by itself

induce a detection instability and an associated peak preshapes
the field. Such preshape raises the propensity for peaks to
arise at sites that are pre-activated by preshape. Models of
movement preparation have proposed that memory traces of
supra-threshold patterns of activation may in effect bring
about preshape in a given field [23, 24, 44]. Preshape need
not necessarily, however, arise from a long-term memory
mechanism. Preshape may also be used to implement top-
down mechanisms of biased competition by providing a com-
petitive advantage to a spatial location or feature value based
on a decision at a higher level of scene representation. In
our architecture this happens when a selection peak builds
up in the scene representation field providing a competitive
advantage in the attention selection module. As the scene
representation is a three-dimensional space-feature field and
the attention selection is only defined over the two-dimensional
space there is also a generalization in this mechanism. This
generalization is a feature of coupling from higher- to lower-
dimensional fields.
The preshape mechanism can also be used to generate

categorical responses. In combination with the boost-induced
detection mechanism a field with preshape and relatively weak
input will build a peak at the position of the preshape and not
at the position of the sensory input.
4) Triggering Transitions Between Operational Regimes

and Sequencing: Peak detectors may be used to raise or
lower the homogeneous resting level of fields and thus to
switch them into different operational regimes. We make use
of this mechanism to switch off the selection peak within the
attention selection field. When a peak is detected within the
label-feature field, this signals that an association has either
been learned or recognized. The peak detector then triggers a
negative boost to the selection field so that the selection peak
is destabilized. This signal from the peak detector relates to
what was termed the condition-of-satisfaction neuron in the
Dynamic Neural Field based implementation of serial order
[49].
In our architecture sequencing emerges from the signal

provided by the peak detector that switches off the selection
peak and a negative preshape into the attention selection field
coming from active working memory in the scene representa-
tion.
5) Coupling to Motor Behavior: Within the Dynamical

System approach, movement is controlled by defining dynam-
ical systems with attractor states at the desired configuration,
ψ, of the motor system,

τ φ̇ = −α(φ− ψ). (12)

How may the activation of a DNF be mapped onto such an
attractor dynamics?
If one thinks of the field activation as a probability distribu-

tion, the desired configuration is determined by the theoretical
mean of the distribution

φ̄ =

∫

φ× θ(u(φ))dφ
∫

θ(u(φ))dφ
. (13)

A direct approach would be to set ψ = φ̄ in Equation 12.
This leads to a division by zero, however, if the field does not
have supra-threshold activation. In contrast to a real probability
distribution, a DNF is not necessarily normalizable. Scaling
the strength, α, of the attractor, with the total activation, α =
∫

θ(u(φ))dφ, gives rise to an elegant solution of this problem:

τ φ̇ =

(

−
∫

θ(u(φ, t))dφ

)(

φ−
∫

φ× θ(u(φ))dφ
∫

θ(u(φ))dφ

)

(14)

can then be simplified to

τ φ̇ =

(

−
∫

θ(u(φ, t))dφ

)

φ+

∫

φ× θ(u(φ, t))dφ (15)

without any division (see Figure 7 for an illustration of this
mapping).

uu

φ φ

φ φ

φ̄φ̇ φ̇

Figure 7. Mapping the field activity to attractors of a dynamical system for
a motor variable. The upper row shows two one-dimensional fields defined
over a motor metric like movement direction. The field on the left has a
single supra-threshold peak, the field on the right has no such peak. Below
each field is plotted the resulting dynamical system for the motor variable
that implements the motor metric. In the left column, the presence of a
peak induces a fixed point attractor, marked by the zero-crossing of the rate
of change with a negative slope. The stability of the attractor, determined
by the negative slope, decreases with decreasing amount of supra-threshold
activation. In the right column, the absence of a peak leads to a flat dynamics
without attractors. All values of the motor variable are then marginally stable
fixed points.

III. A CORTEX-INSPIRED ARCHITECTURE FOR SCENE
REPRESENTATION

In order to make the concepts developed in Section II
do some real work we propose a cortex-inspired architecture
for scene representation that will be implemented for our
autonomous robot CoRA. From the robotic scenario we may
derive some constraints that simplify this task. Only the shared
workspace, the table in front of CoRA, needs to be represented
because the robot will operate only on objects positioned on
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that table. Relevant objects are restricted in size because only
objects that fit into the robot’s gripper shall be represented.
The transformation from retinal coordinates into a table-based
allocentric representation is known at all times and given by
the head configuration of the robot. With these constraints
we can evaluate our architectural approach in a real scenario,
which can nevertheless be simplified enough so that technical
issues do not distract from our focus on the interaction between
the different DNFs. In this same spirit, the single feature
dimension, color, used for object representation as well as
the associated processes of feature extraction and selection are
place holders for more complex DNF based object recognition
systems such as the label-feature field approach [34] or the
combined pose estimation and recognition system [50]. Simi-
larly the transformation between different frames of reference
is done algorithmically here, although such transformation
can, in principle, be performed with the same class of neural
dynamic mechanism [51].
The architecture for scene representation consists of ten

DNFs that are coupled in a structured way. We order these
fields into four levels based on the functionality and the degree
of invariance of each field (see Figure 8). These levels may
be loosely associated with areas of the human cortex. The
retinal level is the level closest to the sensory surface with the
highest degree of variance. This level could be viewed as a
functional description of visual cortex. The next level we refer
to as the scene level, where spatial information is represented
in a table-based allocentric reference frame and object feature
information is linked to spatial location. The scene level may
be associated with the lateral intraparietal area (LIP) [52].
The infero-temporal cortex is associated with visual object
representation [53], which in our architecture corresponds to
the object level. Finally at the motor level head motion is
represented, thus closing the action perception loop. This level
may be neuronally associated with the frontal eye fields [54],
the superior colliculus [55], and the brain stem [56].
Although organized into levels, the fields are mutually

coupled and it is from this interaction that cognitive function
emerges. The architecture will not function properly if the
connections between levels are blocked. If, for example, the
scene representation level were decoupled from the retinal
level it would not receive any feed-forward input and would
not do much work at all. Similarly the retinal level would
not function properly, if both stabilizing input from the scene
representation as well as the inhibitory input that supports
selection were missing. We pre-configure each field in order to
put it into the desired dynamic regime such as, for example, the
regime in which multiple working memory peaks are possible
or in which a single location is selected. The stability of these
states makes it possible to establish and test the dynamics
of each field individually. This makes it possible to tune and
debug the architecture in a systematic way.

A. Retinal Level
The basic processes of segmentation, attentional selection

and low-level feature extraction take place at the retinal level.
At this level, sensory input is highly variant: Every head

movement modifies the incoming sensory stream in addition to
any changes that may occur in the scene itself. Three Dynamic
Neural Fields are at work at the retinal level. One multi-peak
field, the retinal space field, receives input from a simple
saliency computation and feeds its output into a second field
that is set up for selection, the retinal space selection field. A
third feature field, the retinal color field, receives as input a
hue histogram computed from a hue color map of the input
image.
1) Visual preprocessing: The first stage of visual input

computes a simple saliency image by calculating on- and off-
center responses on the intensity and on two opponent color
channels. Because the size of objects in our scenario is limited
to fit into the robot’s gripper, we can tune the size of the
difference of Gaussians filters to approximately fit the size
of the objects. All the responses are summed up with equal
weights into a single saliency image. This simplified version
of Itti and colleagues’ saliency computation [57] is sufficient
in our scenario, but could of course be extended to include
more features like orientation maps and multiple scales as in
their original proposal. In addition to this saliency map we
compute a hue color map that serves as input to the retinal
color field.
2) Retinal Space Field: The result of the saliency compu-

tation is mapped onto a two-dimensional DNF that allows for
multiple peaks. These peaks represent the locations of objects.
The kernels of this field approximately match the Difference-
of-Gaussians filters used for computing the saliency image.
The output of this field is a normalized and stabilized version
of the saliency image. Objects smaller than what the robot is
able to grasp will not produce peaks and thus go undetected.
The output of this DNF is fed into the retinal space

selection field. Furthermore, it is spatially transformed into
the allocentric table representation and used as input to the
scene space field on the scene level.
The representation of input in retinal coordinates is affected

by head movements. The retinal position of a static object
constantly changes as long as the head moves. During move-
ment the two-dimensional field has to be capable of tracking
multiple objects. This task becomes easier if a stabilized
representation of object positions in the allocentric reference
frame is used to generate predictions where objects are in
retinal coordinates when the head moves in a certain direction.
This information is projected back from the scene space field
on the scene level.
Objects outside the table region should not produce peaks

in the retinal space representation. We use knowledge about
the table geometry to transform what is represented in the
scene space field into retinal coordinates and thus project the
scene space field into the retinal representation as a source of
preshape. As a result, the resting level within in the retinal
representation is substantially different in those regions of the
image into which the table surface falls. Outside of this region,
no peaks will build due to the low resting level there.
3) Retinal Space Selection Field: In order to extract a

feature representation of the spatial locations these must
be brought into foreground. A retinal space selection field
receives input from the retinal space field. The selection peak
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Figure 8. This figure shows an overview of the cortex-inspired architecture. Space is illustrated as one-dimensional. All components are arranged in affiliation
to the four levels. The current gaze is represented in the retinal and scene level, as well as in the scene by a gray oval. Information transfer between components
is illustrated by two kinds of arrows: the solid ones represent information transfer without transformations, whereas their dotted counterpart implies an included
reference frame transformation. In all field sketches, the solid red line represents the field activity. Blue dotted lines are standard excitatory input and green
dashed and dotted lines are inhibitory input. The system is shown in a state, in which one of four possible objects is already scanned and stored in the
associative scene space-color field E. The three leftmost objects are contained in the current retinal space field A as well as in the scene space field D. Both
are mutually coupled and receive additional input from visual preprocessing. The scanned object is inhibited in the retinal space selection field B, which
receives input from A. The still-active selection leads to a color extraction, which is represented in the retinal color field C. B is also coupled to a motor
selection field G, which in turn is linked to the motor system. Finally, B, C, and D are all coupled to E. The recall of memorized object locations and features
is done in an associative scene space-color selection field F similar to E, but which is, unlike E, configured to allow only a single peak at a time. The
label-color field H contains space-independent long-term memory associations between object labels and color hue. Features are provided by retinal color
field C, whereas labels are defined by the user. Learning an object triggers the next execution of an object scan. The right-most object in the scene was never
seen by the system. There is no evidence of this object throughout the system.

represents a single selected spatial location, which is then
used for computing a local feature histogram. The output of
the retinal space selection field is also projected to the scene
space-color field. Furthermore it projects to the motor selection
field so that selected items are centered on the camera.
4) Retinal Color Field : Extracting features of a possible

object at the correct retinal position is achieved with the help
of the retinal space selection field. Once a selection is active,
the selection field’s output can be used to mask all irrelevant
retinal regions. Regions that pass the mask are used to extract
a color hue histogram for a specific object. This histogram is
used as input into a feature field (see Figure 8, C), that uses
the detection instability to represent dominant object colors
within the selected spatial region. The field output is fed as
ridge input into the label-feature field at the object level and
fed as slice input into the space-feature field at the scene level.

B. Scene Level
At the scene level, spatial position is represented with

respect to an allocentric reference frame attached to the table.

As the robot is attached to the table, this allocentric frame
is at the same time an ego-centric reference frame for the
robot. Three different fields are at work, the scene space
field that represents only the spatial configuration of the
scene, and two fields representing the object feature color
over a two-dimensional spatial map. One of these three-
dimensional space-feature fields, the scene space-color field,
acts as working memory field for attended spatial locations
and their associated feature, the other, the scene space-color
selection field, is used for selecting one of those working
memory peaks based on other additional input that preshapes
this selection field. This preshape comes from other cognitive
modules. All three fields are defined in a reference frame
related to the table. This representation is thus invariant to
head movements, but because it receives input from the retinal
level is still able to track moving objects. These fields may
be loosely associated with the “where” path of processing in
area MT and with links to more object related properties in
hippocampal areas.
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1) Scene Space Field: The scene space field is a multi-
peak spatial representation of object locations with invariance
relative to the robot’s own motion. The field receives spatially
transformed input from the pre-processed visual information
and from the retinal space field. This field has two important
functional roles. On the one hand, by being invariant to the
robot’s own head movement, it provides the system with
a mechanism for spatial working memory in which self-
sustained peaks represent the locations of objects that are out
of sight. On the other hand, self-stabilized peaks in this field
keep track of objects that are in the current field of view. The
field operates at two different resting levels: The area outside
the current view is at a resting level that allows for multiple
self-sustained peaks while the area within the field of view is
at a lower resting level that enables only self-stabilized, but
not self-sustained peaks, which therefore vanish when they
lose support from input (see Figure 2). Objects that disappear
because of the robot’s head movement are thus represented by
working memory peaks, whereas objects that disappear from
the sensory surface, because, for instance, someone takes them
out of the field of view, are no longer represented.
The output of this spatially invariant representation is used

to track the peaks in the retinal space field by predicting their
future position given a planned head movement. That output
is also used as tube input into the scene space-color field. The
latter allows the scene space-color field to continuously track
spatial changes while maintaining working memory for the
space-color associations.
This is implemented through continuous coupling to the

scene space field that provides the tube input that represents
the spatial locations of the objects. Note that objects outside
of the viewing angle cannot be updated, if an object is moved
while it is outside this angle, it appears like a new object, once
the viewing angle returns to this object. The old association is
removed because the tube input, that sustains this association,
moved.
2) Scene Space-Color Field: To create an associative work-

ing memory peak of object position and color in this field,
three fields contribute their outputs. On top of the spatial tube
input from the scene space field, the retinal space selection
field provides a single item tube input giving only one spatial
location within the scene space-color field an extra boost. Only
at that location with the extra boost the slice input along the
color dimension from the retinal color field leads to the build-
up of a working memory peak. Once the selection in the retinal
space selection field is released, the slice input of the retinal
color field disappears as well and the working memory peak
is solely supported from the tube input form the scene space
field.
The output of the scene representation field is generalized

to a purely spatial representation and transformed back to the
retinal reference frame and used as inhibitory input to the
retinal space selection field. The output is also fed directly
into the scene space-color selection field.
3) Scene Space-Color Selection Field: Similar to the retinal

space selection field we need a mechanism to bring items to the
foreground that are internally represented. The scene space-
color field provides no functionality to isolate a single stored

association. A selection decision must therefore be made
in a second three-dimensional field, the scene space-color
field, which receives as input the space-color association, but
operates in a selection regime. This field receives a copy of the
sigmoidal working memory peaks in the scene representation
as input. Additional inputs may be either lower-dimensional
spatial or feature cues, which may be gathered through user
interaction. These inputs have the familiar form of tubes and
slices and preshape the selection field. The overlap of scene
memory and broad cue input increases the probability of
selection for all those stored objects that correspond to the
spatial or feature cue. The selection decision of the scene recall
field selects the most appropriate object. If two or more objects
are identical or share the correspondence to a cue, one of these
is randomly selected.
Bringing an item into foreground ultimately means to make

a spatial decision, because space is the only representation on
which motor commands and thus meaningful action can be
exerted. The three-dimensional data is generalized to a spatial
output. This output is then used as input to a two-dimensional
motor selection field.

C. Object Level
At the object level, the feature representation varies neither

with spatial transformation in the scene nor with head move-
ment. The representation at this level is the one with highest
invariance. Feature input from the scene is only provided
when an object has been actively selected in the retinal space
selection field. As a result, this representation is only updated
when an object has been actively selected.
1) Object Label-Color Field: The object label-color field is

a two-dimensional association (see Figure 5) field representing
the hue color along one dimension and discrete labels along
the other dimension. The feature input comes from the retinal
color field, which only produces peaks when an item has
been selected by the retinal space selection field. When users
provide a label information, the ridge input along the labels
overlaps with the ridge input from the feature dimension and
a peak builds up in the label-color field. This peak leads to
the build up of a long-term memory trace of this association.
Once this memory trace is created it preshapes the association
field so that provided matching feature input builds a peak in
the label-color field without having to specify the label. This
recognition mechanism is basically a single feature version of
the label-feature field approach [34] and can be easily extended
to multiple features.

D. Motor Level
At the motor level, head movements are planned in angular

coordinates and motor signals are generated. Both the retinal
space selection field as well as the scene space-color selection
field can specify head movement. In principle they both may
provide active peaks at the same time. This happens, for
example, if a user provides input for a cued recall during the
scanning of the scene. A selection decision mechanism is thus
also needed at the motor level. Because of the high accuracy
of the low-level servo controllers of the real hardware there
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is no explicit proprioceptive representation of the joint angles.
Such a representation could be easily added, it would require
the definition of another field representing the read out from
the encoder values of the joints.
1) Motor Fields: The motor selection field (see also Figure

3) receives input that is mapped from the retinal space
selection field and from the scene space-color selection field.
These mappings are only approximations and are explained in
the Appendix D. The output from the two-dimensional motor
selection field is projected onto two separate one-dimensional
fields with sharper kernels that represent the pan and tilt
values of the camera. These are the motor pan field and the
motor tilt field. Peaks in those two fields set attractors in the
corresponding attractor dynamics of the pan and tilt angles as
explained in Section II-G5. The rates of change are send to
the hardware interface of the head joints.

E. Sequence Generation
Once an item has been brought into foreground and its

features have been extracted and stored both as working
memory in the scene space-color field at the scene level and
as long-term memory in the label-color field, the selection
may be released and a new item should be selected. During
learning this transition to a new item is triggered by the user
providing label information for the current object. When an
object is recognized, the transition happens autonomously.
The sequentiality in processing comes from two sources.

First a peak detector mechanism at the level of the label-color
field sends a negative boost to the selection field, so that it goes
from the selection instability mode into the no-peak solution.
A peak in the label-color field represents that an association
has been learned and is taken as the condition-of-satisfaction
for bringing an object into feature space and into the long-term
representation. Second, negative preshape is sent back from
the space-color representation at the scene level, effectively
reducing the propensity for a peak to build at a spatial location
which had already been examined earlier on and for which an
active working memory is maintained at the scene level.

IV. RESULTS
To evaluate our architecture we conduct several experiments

that probe different cognitive functionalities: the build-up of
the scene representation; tracking spatial changes in the scene;
updating the representation when objects are removed; keeping
working memory representations of objects when they get out
of view; and updating their representations when they become
visible again; object recognition; recall of spatial information
in response to a cue about the label of a long-term memory
item and head movement toward the cued item.

A. Build-up of the Scene Representation
The first experiment is a demonstration of the autonomous

build-up for multi-item scenes. Three objects are placed on the
workspace in front of the robot: a red toy car, a blue pack of
tissues, and a green can of deodorant spray. See Figure 9 for a
basic setup. The task is to build up the scene representation by

Figure 9. Object setup. This is a saved camera image from the robot’s left
camera showing a basic setup of three objects: a blue pack of tissues on the
left, a green can of deodorant spray placed on the right, and a red toy car
in the middle. The whole setup is roughly placed around the center of the
workspace.

selecting each of the objects, one at a time. Once an item has
been selected, its color represented in the retinal color field
must be associated with the spatial location represented in the
scene space field. This association will be stored in the scene
space-color field and a long-term memory will be created as
soon as the user provides a label signal. Once this label signal
has been given, the next item is selected. When the robot
brings an object into foreground, it orients its head toward this
object so that the object is centered in the field of view of the
camera. Peaks in the retinal space field and in the retinal space
selection field must track the changes induced by the head
movement. In total this experiment tests the following basic
instabilities and field couplings: multi-item working memory
both in the two-dimensional scene space field and in the three-
dimensional scene space-color field, detection and selection
decisions at the retinal level, the association mechanism at
the scene and object level, setting attractors from peaks at the
motor level and tracking of spatial changes in the retinal level
when the head moves.
1) Results: The system was able to generate the scene

representation as well as the long-term memory for object
labels. See Figure 10 for the resulting state of the scene
representation, containing three working memory peaks, one
for each object space-color association. The experiment was
successfully repeated for different numbers of objects, differ-
ent objects, and configurations. Small object distances were
no issue due to separation along the feature dimension in the
three-dimensional field. Head movements were compensated
by the described predictions sent from the stabilized allocentric
representation of object positions.

B. Head Movement and Working Memory and Updating
The second experiment is a test of working memory for

space-color associations and also tests the updating when
objects are removed from the scene. Objects are removed
in two different configurations of the robot, once when the
robot is attending the scene object and once when the item is
out of view and maintained as working memory. Additionally
we tested short occlusions by covering an object for a short
moment. This experiment tests the multi-item working mem-
ory mechanism on the scene level, the forgetting instability
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and the continuous update of the scene. The setup for this
experiment consists of three objects: a red toy car, a green can
of deodorant, and a blue tube of sunscreen. See Figure 2 for the
setup. The task is once again to store scene information in the
scene representation. The robot’s head is then moved upwards
until two out of three objects disappear from the current
camera image. The deodorant spray is then removed from the
workspace and the head returns to its original orientation. Then
the blue tube of suncream is removed while it is visible.

5 15 25 35 45

60

5

15

25

35

 

 

z

y
x

−3

−2

−1

0

0

0
0

1

2

3

10

10

20

20

20

30

30

40

40

40 50

field activity

Figure 10. Slice plot of the scene representation field from experiment 1.
This figure shows a set of crossed slices from the three-dimensional volume
of field activity in the scene space-color field. Dimensions x and y represent
spatial information whereas dimension z spans the feature space for color
hue. The displayed activity is the result of a scanning sequence. The scene
space-color field contains three regions of supra-threshold activity referring
to the three scanned objects. The regions correspond to the position in space
and the extracted color hue of each object. The red toy car resides in the
upper range of the color hue due to its cyclic nature, whereas the blue pack
of tissues and green deodorant spray occupy regions further down the color
hue. The tube inputs that sustain all three associations can be seen throughout
the volume.

1) Results: The two objects that get out of sight because of
the head movement were both represented as working memory
peaks (see the plot in the middle of Figure 2). When the head
returned to the initial view, now without the deodorant, the
peak representation for this object vanished (see the plot on
the right in Figure 2). Removing the second object from the
scene also led to a removal of the peak in the scene space-color
field. In contrast covering the third remaining object shortly
with a sheet of paper did not affect the representations in the
scene space-color field.

C. Multi-Object Tracking
In order to test the tracking capability of scene representa-

tion in a systematic and reproducible way, we use two small
robotic platforms (E-Puck2). Each of them is marked with a
different color. They are put into the scene and the scene build-
up is started. Once the scene representation for this static
scene has been created, they are switched on in the default
Braitenberg obstacle avoidance behavior of Vehicle 2a [58]
that comes already implemented on the E-Puck platforms.
The robots start to move around randomly and because of the
relative short line of sight of their infrared sensors (around 40

2http://www.e-puck.org/

mm) they come relatively close (10 mm) during the course
of the experiment. Note that while tracking the scene there is
no active selection of a single object and therefore no head
movement occurs while tracking the scene.
1) Results: The system was capable of tracking spatial

positions of the robots and it maintained the correct color
associations for the robots. See Figure 4 for recordings from
the tracking experiment.

D. Object Recognition
The fourth experiment demonstrates the recognition mode

of the label-color field, the categorical response of a field pre-
shaped by memory traces and how this recognition smoothly
integrates into the build-up of scene representation. Again
three objects are placed on the table and a first object is
learned. Once its long-term memory label-color association
is learned it is removed from the scene so that its working
memory representations in the scene space-color field van-
ishes. Then the object is placed into the scene again.
1) Results: As there was no more spatial inhibition coming

from the scene space-color field for this formerly learned
object it was again selected at some random moment during
the ongoing build-up of the scene representation. When the
object, for which long-term memory had been deposited, was
selected, a peak in the label-color field arose due to the overlap
of the feature input with the preshape from the long-term
memory trace (see Figure 11). Once this peak was established
the standard switching mechanism came into play and the next
object was attended. The user did not have to specify the label
again.
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Figure 11. Recognition of an object by overlapping preshape and a ridge
color input.

E. Cued Recall
In the cued recall experiment the cue is given by providing

label information, thus providing input along the label in the
label-color field. This creates a peak in the label-color field
at the learned color and the color-dimension then preshapes
the scene space-color selection field. This field selects the
working memory item from the scene space-color field that has
most overlap with this color representation. Once a peak has
formed in the scene space-color selection field as it projects to



14

the motor selection field a head movement to center the cued
location is activated.
1) Results: We tested cued recall with different objects and

varied locations on the table. The robot successfully attended
all objects when they were cued. They were not always
perfectly re-centered due to the approximation of the mapping
from table to head joint coordinates (for more detail on this
approximation please refer to the Appendix D). Essentially the
robot always brought the items back into the camera view, the
centering could then be driven by visual servoing as it happens
during the build-up of the scene.

V. DISCUSSION
A. Summary
We have presented an approach to scene representation

that is inspired by what is known about how humans vi-
sually scan scenes, retaining spatial and feature information
across fixations. The neuronally based theoretical language of
Dynamic Field Theory is at the core of this approach. We
have shown how Dynamic Neural Fields (DNFs) of varying
dimensionality and functionality can be coupled to achieve
the target cognitive functions of detection, selection, working
memory, and tracking. With an architecture of ten coupled
DNFs we have demonstrated how a robot may autonomously
build a scene representation grounded in real-world vision
data obtained from its cameras. The center piece of the
architecture is a three-dimensional DNF that provides the
system with working memory for associations between feature
values and two-dimensional visual space. These associations
can be established sequentially, one by one. Spatial change of
the visual configuration is tracked and updated in real-time. In
a set of experiments we have demonstrated the core functions
of scene representation including the autonomous creation and
continuous updating of elements of the scene representations
as well as cued recall from an object long-term memory in
response to a user command.
The concepts and models have been used in a separate

line of research to account for human behavioral and neu-
ral data on looking, visual and spatial working memory,
discrimination, and change detection [25, 28, 39, 45]. The
robotic scene representation architecture that we built here
within this framework may help address a number of technical
issues by inheriting the autonomy, stability, and integrated
nature of human visual cognition. The system is pervasively
autonomous in the sense that a continuous process evaluates
the neural dynamics, which react to sensory input as needed,
including sensory input generated by the robot itself. Discrete
events at which objects are detected, decisions are made,
and memories are created emerge autonomously from that
dynamics. Without a need for specific interrupt mechanisms,
our system is naturally linkable to online changes of sensory
information. Such autonomy requires that all functional states
in the system are stable states. That fact, in turn, enables
the system to work with relatively raw and low-level sensory
information, which is noisy, fluctuates and drifts in time.
Our system thus lowers the demands made by the scene
representation on the perceptual channels. Finally, the uniform

theoretical language of attractor neural dynamics provides
the theoretical foundation and practical method for system
integration. There is no additional level of algorithmic system
integration. Once the DNF architecture has been designed, all
integration has been achieved. In contrast, typical solutions
using more conventional approaches draw on different method-
ologies such as visual preprocessing, probabilistic methods,
or finite state machines. Their integration requires a specific
effort at the level of the overall programming of the agent.
Given the exemplary nature of our robotic demonstrations,
only limited empirical evidence for the integrative power of
DFT was provided in this project, however.
Our implementation of the architecture on a robotic platform

achieved approximate real-time behavior. This is a direct
demonstration that the use of even three-dimensional fields in
a mid-size model is not yet in any practical sense constrained
by computational power. In the long run, optimization of
the computational substrate for convolutions, the main time-
limiting operations within the architecture, may further expand
the range that can be reached within this approach (see, e.g.,
Dudek and Hicks [59]).

B. Relation to Saliency-Based Models of Attention and the
Psychophysics of Scene Representation
Salience-based models of visual attention share a number

of features with our approach. The sequential sampling of
the visual array in our system, for instance, is somewhat
similar to the inhibition of return mechanism in saliency-
based models of attention [57]. In these models, activation
is generated over a spatial map that reflects stimulus salience.
The level of activation controls where the focus of attention is
positioned. Locations that have been selected for attention are
inhibited lowering the likelihood that they will be selected
again. Most implementations of saliency maps for guiding
attention do not address how eye movements affect such a
map by shifting the camera plane relative to the environment
(for an exception see Fix and colleagues [60]). The selection
for attention happens, instead, in a fixed reference frame. Even
in robotic implementations that have the potential for eye or
head movements, saliency maps are typically based on keeping
gaze fixed [61]. In a robotic attention model that addresses the
effect of head and eye movement [62], previously attended
regions are represented in an egocentric frame. In this map,
attended regions are transiently activated and that activation
decays over time. The system presented here goes beyond
these approaches in several ways. First, we build a stable
neuronal representation of space, which keeps track of shifts of
the reference frame when head movements occur. This makes
it possible to achieve the stability required to sustain periods
of working memory and to stabilize selection decisions over
variable delays, while at the same time enabling updating
through a coupling to the sensory stream. The representation
also encodes feature information, so that it is richer than a pure
salience representation. It is therefore capable of providing
an interface through the feature dimension with long-term
memories of object features. This capability is highlighted by
the cognitive task of cued recall.
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A limitation of our current implementation is that we do
not include visual transients as significant signals that control
looking. This may be mended in the future by adding transient
detectors into the input stream. Curiously, this makes that
our approach reflects the phenomenon known as “change
blindness” in the literature on human scene understanding [63].
When visual transients are masked, human observers routinely
fail to detect major changes in a visual scene (such as an
entire sizable object appearing or disappearing from the scene).
Change blindness illustrates how human scene understanding
is based on cognitive rather than purely perceptual processes:
the scene is largely constructed in the mind, not derived online
from current sensory input. As in human observers, our system
will update the representation of a changed item only when
that item is currently activated and in the foreground, not when
the item is merely in working memory.

C. Outlook
We have presented only the core principles and a very

simple implementation of the proposed principles and architec-
ture that employed limited and simplistic feature dimensions.
The framework of Dynamic Field Theory provides, however,
a natural interface between scene representation and other
systems implemented with the same framework. This will
be exploited in the future to augment the functionality of
our architecture. We have, for instance, been able to achieve
competitive performance in single-shot object learning with a
system based on DNFs for only three feature dimensions [8].
Using intrinsically more complex features, we achieved object
recognition that was invariant under translation and rotation
of objects [50]. This led to competitive performance both
within the COIL benchmark as well as in scenes that required
non-trivial segmentation due to partial occlusion. Linking to
a model of change detection in visual working memory [25]
may enable the system to autonomously decide when to update
elements of its representation. Similarly, linking to a Dynamic
Neural Field model of how spatial language is grounded in
vision [64, 65] may provide the system a user interface capable
of interpreting and generating spatial cues such as in the phrase
“hand the object to the left of the red screwdriver”.
The present architecture already contains elements of be-

havioral organization [66], that is, of the rule-based sequential
activation of appropriate states. Such behavioral organization
is required as objects are scanned one after another, the
boost in the label-feature field leads to free recall, and the
emerging feature representation is associated with a label.
Dynamical systems principles are available to make that form
of behavioral organization completely autonomous [66].

APPENDIX A
KERNELS

Because the field is homogeneous, the interaction kernel is
the same at all sites of the field and the kernel is symmetric.
Mathematically the effect of the interaction kernel can be
computed by convolving the non-linear output function with
the interaction kernel. Typically the kernel w(!x) is of the
form of a Gaussian excitatory profile with constant global

inhibition (wexc %= 0;wg %= 0;winh = 0), or with broader
local inhibition, also modeled with a Gaussian profile (wexc %=
0;wg = 0;winh %= 0), or with a combination of both global
and local inhibition (wexc %= 0;wg %= 0;winh %= 0).

w(!x) = wexc
1

σexc

√
2π

exp

(

−
(!x− !x′)2

2σ2
exc

)

(16)

+ winh
1

σinh

√
2π

exp

(

−
(!x− !x′)2

2σ2
inh

)

+ wg

APPENDIX B
VISUAL PROCESSING PARAMETERS

Before applying center-surround filters, the input image was
downsampled from size 320x240 to 80x60.
On-center kernel: σ = (2, 2)
Off-center kernel: σ = (6, 6)

APPENDIX C
FIELD PARAMETER VALUES

Retinal Space Field (size 80x60):

h = −1.0, τ = 3, wexc = 3, σexc = (2, 2),

winh = −6, σexc = (4, 4), wg = −0.009

Retinal Space Selection Field (size 80x60):

h = −2.0, τ = 3, wexc = 5, σexc = (2, 2),

wg = −0.3

Retinal Color Field (size 36):

h = −7.0, τ = 5, wexc = 3, σexc = 1,

wg = −0.5

Scene Space Field (size 100x100):

h = 2.0, τ = 4, wexc = 8.4, σexc = (2, 2),

winh = −8.9, σexc = (5, 5), wg = −0.01

Scene Space-Color Field (size 50x50x36):

h = −2.2, τ = 3, wexc = 5.1, σexc = (1, 1, 0.5),

winh = −4, σexc = (3, 3, 3), wg = −0.002

Scene Space-Color Selection Field (size 50x50x36):

h = −2.2, τ = 10, wexc = 1, σexc = (1, 1, 1),

wg = −0.01

Object Label-Color Field (size 10x36):

h = −5, τ = 10, wexc = 2, σexc = (discrete, 1),
wg = −0.2

Motor Selection Field (size 80x180):

h = −3, τ = 10, wexc = 5, σexc = (2, 2),

wg = −0.04

Motor Tilt Field (size 80):

h = −7.0, τ = 10, wexc = 1.3, σexc = 1,

wg = −0.4
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Motor Pan Field (size 180):

h = −7.0, τ = 10, wexc = 1.3, σexc = 1,

wg = −0.4

APPENDIX D
SCENE-MOTOR TRANSFORMATION

Consider !p = (x, y) as two-dimensional position of an
object and !c = (cx, cy, cz) the shift of a camera system with
two joints pan and tilt. Let xs = x + cx and ys = y + cy be
be the object position in a camera-centric coordinate system.
Transforming xs and ys to polar coordinates yields

r =
√

x2
s + y2s , (17)

α
ys>0
= − arcsin

xs

r
. (18)

Here r is the planar distance to the camera and α resembles
the pan angle of the camera. Note that α = 0 is aligned with
the y-axis. To calculate the tilt angle, consider

β = arctan
cz
r

(19)

for the right-angled triangle formed by cz , r, and the distance
between object and camera. To assemble a remap instruction
for object coordinates to joint configuration, we resolve for xs

and ys and obtain

xs = r sin(−α), (20)
ys =

√

c2z − x2
s. (21)

With Equation 19, we get

xs =
cz

tan(β)
sin(−α), (22)

y2s =
r2

tan2(β)
−

c2z
tan2(β)

sin2(−α) (23)

= (1− sin2(−α))
c2z

tan2(β)
.

Using sin2 +cos2 = 1, ys is then

ys =
cz

tan(β)
cos(−α). (24)

For two joints with inverted angles pan = −α and tilt = −β,
the final form is

xs = −
cz

tan(tilt)
sin(pan), (25)

ys = −
cz

tan(tilt)
cos(pan). (26)
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[34] C. Faubel and G. Schöner, “Learning to recognize objects
on the fly: a neurally based dynamic field approach,”
Neural Networks Special Issue on Neuroscience and
Robotics, vol. 21, no. 4, pp. Pages 562–576, May 2008.

[35] I. Iossifidis and G. Schöner, “Autonomous reaching and
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[38] K. Kopecz and G. Schöner, “Saccadic motor planning
by integrating visual information and pre-information on
neural, dynamic fields,” Biological Cybernetics, vol. 73,
pp. 49–60, 1995.

[39] C. Wilimzig, S. Schneider, and G. Schöner, “The time
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