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Abstract. A Gaussian-binary restricted Boltzmann machine is a widely

used energy-based model for continuous data distributions, although many

authors reported difficulties in training on natural images. To clarify the

model’s capabilities and limitations we derive a rewritten formula of the

probability density function as a linear superposition of Gaussians. Based

on this formula we show how Gaussian-binary RBMs learn natural image

statistics. However the probability density function of the model is not a

good representation of the data distribution.

1 Introduction

In this paper we present an analysis of Gaussian-binary restricted Boltzmann
machines (GB-RBMs) from the density estimation perspective and from the
particular perspective of modeling natural image statistics. We find that the
marginal probability distribution of the visible units in GB-RBMs can be written
as a linear superposition of Gaussians, which are positioned on the vertices of
a projected parallelotope, i.e. a parallelepiped in high dimensions. In addition,
our analysis suggests that the variance of the visible units in GB-RBMs plays
an important role in modeling the input distribution.

GB-RBMs were first proposed by Welling et al. [1]. In practice, Lee et al.
proposed to impose a sparse penalty term on the GB-RBMs [2]. However,
Krizhevsky succeeded to use GB-RBMs only to extract features from tiny im-
ages [3]. Le Roux et al. quantitatively evaluated the model as a generative
model [4] and demonstrated the defects of the model from the view of the im-
age reconstruction. Cho et al. addressed the defects by some remedies for the
training procedure [5]. Theis et al. further illustrate the defects based on the
estimation of loglikelihood [6]. Our analysis and results suggest that GB-RBMs
with simple Contrastive Divergence algorithm are capable to learn the indepen-
dent components as well, even though the learned distribution is not a good
representation of the data.

2 Gaussian-Binary RBMs

A GB-RBM is a bipartite graphical model with stochastic visible and hidden
variables which are denoted as X := (X1, . . . , XM )

T
and H := (H1, . . . , HN )

T



respectively. And the joint probability distribution is defined as:

P (X,H) :=
1

Z
e−E(X,H),

where E (X,H) denotes the energy function, which defines the dependence be-
tweenX andH. The partition function Z normalizes the probability distribution
by summing over all possible states of X and H given by:

Z :=
∑

x

∑

h

e−E(x,h).

And the energy function for GB-RBMs becomes:

E (X,H) : =
||X− b||2

2σ2
− c

T
H− X

T
WH

σ2
,

where ||X||2 denotes the second norm of the vector X. W is the weight matrix
between M visible units and N hidden units, b and c are the bias vectors for
visible and hidden units respectively. In addition, the visible units are assumed
to have variance, σ2.

3 Analysis of Gaussian-Binary RBM

In general, we want the model’s probability density function (pdf) P (X) to
become as close as possible to the data distribution. The pdf of GB-RBMs is
usually formulated as a product of experts [7] and can be rewritten as follows:

P (X) =
1

Z
e−

||X−b||2

2σ2

N
∏

j=1

(

1 + ecj+
X

T
wj

σ2

)

(1)

= η0 N (X|b, σ) +
N
∑

j=1

ηjN (X|b+wj , σ)

+

N
∑

j=1

N
∑

k>j

ηjkN (X|b+wj +wk, σ) + . . . , (2)

where

η0 =

(√
2πσ2

)M

Z

ηj = η0 e
||b+wj ||

2−||b||2

2σ2 +cj , where 1 ≤ j ≤ N

ηjk = η0 e
||b+wj+wk||2−||b||2

2σ2 +cj+ck , where 1 ≤ j < k ≤ N

. . .



In (1), every expert in GB-RBMs consists of two Gaussian distributions. One
of the Gaussians is shifted by the visible bias, b, from the origin. The other one
is shifted from the first one by N times the weight vector, Nwj . Both Gaussians
share the same variance, Nσ2. Every expert presents a bimodal distribution.
Therefore, their product will form the model distribution, a multimodal distri-
bution with 2N modes. Similar conclusion was stated independently by Theis
et al. [6].

Each Gaussian distribution in (2) is called a component of the model distri-
bution and has a mixing coefficient. Although all the components have their own
means, they have an explicit regularity. The first component is shifted from the
origin by the visible bias, b, and named as anchor component. Then, there are
N components shifted from the anchor one by a single weight vector, wj . We
call them first order components. Following these are the jth order components,
which are shifted from the anchor one by combinations of j weight vectors.

Notice that only the anchor and the first order components are independent,
i.e. they can be placed freely in the data space. The positions of other com-
ponents are just combinations of the N + 1 independent ones. Thus the 2N

components are constructed to lie on the vertices of a projected parallelotope.
The contour for a GB-RBM with two hidden units are shown in Figure 1.
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Fig. 1: Illustration of a GB-RBM with 2 hidden units in a two-dimensional space.
(a) Contours of constant density for each of the components and coefficients of
each components. (b) Contours of the marginal probability density P (X) of the
model. The centers of the components are marked with crosses.

The low order components play more important roles in the reconstruction
of the data distribution, because they usually have large mixing coefficients.
In order to fit to the data, a GB-RBM will firstly try to place its low order
components correctly and further damp its high order components by scaling
their coefficients down, if they are placed in the non-data area.

The variance, σ2, in GB-RBMs is usually set to be the same as the variance
of the data [2]. However, our analysis above indicates that the variance indeed
plays an important role. Take the two dimensional case as an example, the
components turn out to be bumps on the surface. With a small variance, the
bumps will shrink and can be placed more freely. Conversely, a large variance
will result in large bumps. Therefore the model will not have much space to move
them within high-density regions. As a result, the model distribution would be



more like a monomodal distribution.

4 Experiment 1 - Artificial 2-Dimensional data

In this section, we consider the classic experiment of Independent Component
Analysis (ICA). We sampled data from two independent Laplacian distributions.
The data was mixed by a mixing matrix, which was generated stochastically.
The mixture was whitened by Zero-Phase-Component Analysis (ZCA) so that
the joint density had zero mean and unit variance, shown in Figure 2.

We trained a GB-RBM by maximizing the loglikelihood (LL) using Con-
trastive Divergence-k (CD-k) algorithm [7] with two visible units and two hidden
ones. This simple setup allowed us to visualize the distribution of the model.

It is insteresting to see how the GB-RBMs ultilize the Gaussians to model
the desired distribution. For different variances, the contours of the learned
distributions are plotted in Figure 2. We noted that the distribution of the model
depends on the setup of the variance. With small variances, the model places the
four components equally scaled at the four corners, the independent components
(ICs) of the data distribution. By increasing the variance, the anchor component
is placed in the data’s mean while two first order components are still located
at the ICs but scaled down. The second order component is placed between
these two and scaled down even more. While the variance becomes bigger the
components will be scaled down further and move to the mean. Finally with
variances bigger than one, all components are located at the mean and the pdf
is simply the anchor component, all higher order components have been scaled
to zero.

(b)

(a)

σ2= 0.3 ll = −3.14 σ2= 0.5 ll = −2.89

σ2= 0.95 ll = −2.78 σ2= 1.4 ll = −2.87

Fig. 2: (left) Plot of the whitened data in (a) and the corresponding pdf in (b).
(right) Illustration of GB-RBMs with different variances, σ2.



Likewise, the variance of the model will also affects the LL of the model. In
other words, an improper choice of the variance will impair the performance of
the model, as shown in Figure 3 (left).
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Fig. 3: Plot of LL with different variances in the 2D artificial data (left) and the
natural images (right).

5 Experiment 2 - Natural images

To verify the theoretical result of the previous section we trained GB-RBMs
with CD-k algorithm on natural image patches sampled from the van Hateren
natural image Database [8]. The 70000 gray scale image patches of size of 14x14
pixel were whitened by ZCA. We used 16 hidden units to be able to calculate
the partition function in (1) exactly.

Fig. 4: Filters and corresponding LL of GB-RBMs with 16 hidden units and
different variances σ2 trained on natural image patches. 〈ηj〉 indicate the average
relative mixing coefficients for the first order components compared to the anchor
component. All four images are normalized to emphasize the filter structure.

Figure 4 shows the learned filters, which are the reshaped columns wi of
the weight matrix W and the corresponding LL for different variances. For
variances less than one we get independent component (IC) filters comparable
to the results shown in [8]. For a variance of one or slightly higher we still
get IC filters but some of the units have converged to zero. Variances bigger
than one will result in all filters close to zero and therefore noisy shape. The
average relative mixing coefficients 〈ηj〉 for the different variances indicates that



the components with larger variances are damped more. We get the maximum
likelihood at the variance of 0.95, as shown in Figure 3 (right). So the results
are consistent with the 2D artificial data and the theoretical analysis.

6 Conclusion and future work

We have shown that a GB-RBM is capable of learning independent components
and that the model’s performance is highly dependent on the choice of σ2. We
also show that the model’s restriction of the single components placed on the
vertices of a projected parallelotope prevents the model of learning a good ap-
proximation of the true probability distribution. Our future work will be focused
on modification of energy function to improve the flexibility of the model.
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