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Outside the laboratory, human movement typically involves redundant
effector systems. How the nervous system selects among the task-
equivalent solutions may provide insights into how movement is con-
trolled. We propose a process model of movement generation that
accounts for the kinematics of goal-directed pointing movements per-
formed with a redundant arm. The key element is a neuronal dynamics
that generates a virtual joint trajectory. This dynamics receives input
from a neuronal timer that paces end-effector motion along its path.
Within this dynamics, virtual joint velocity vectors that move the end
effector are dynamically decoupled from velocity vectors that do not.
Moreover, the sensed real joint configuration is coupled back into this
neuronal dynamics, updating the virtual trajectory so that it yields to
task-equivalent deviations from the dynamic movement plan. Experi-
mental data from participants who perform in the same task setting as
the model are compared in detail to the model predictions. We discover
that joint velocities contain a substantial amount of self-motion that does
not move the end effector. This is caused by the low impedance of mus-
cle joint systems and by coupling among muscle joint systems due to
multiarticulatory muscles. Back-coupling amplifies the induced control
errors. We establish a link between the amount of self-motion and how
curved the end-effector path is. We show that models in which an inverse
dynamics cancels interaction torques predict too little self-motion and
too straight end-effector paths.
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1 Introduction

Understanding how organisms generate voluntary, goal-directed move-
ments is one of the most difficult problems in theoretical neuroscience and
remains largely unsolved. At the core of the problem is the fact that move-
ment necessarily involves multiple levels of neural control, which are tightly
interrelated and none of which can easily be neglected. Minimally, under-
standing how the nervous system moves an effector toward a target entails
understanding how movements are prepared, timed, and controlled. That
movements are prepared, in part at least, before they are initiated is reflected
in the fact that the time to movement initiation varies with the amount of
information available about an upcoming movement (Rosenbaum, 1980;
Ghez et al., 1997). Movement trajectories reflect global properties of the
movement task from the very beginning, for instance, in that the end ef-
fector moves in the direction of the target from the start of the movement.
At the neuronal level, activity in motor, premotor, and parietal cortex pre-
cedes movement initiation and depends on movement parameters such as
the direction and extent of end-effector motion (Moran & Schwartz, 1999;
Georgopoulos, 1995; Sergio & Kalaska, 1998; Cohen & Andersen, 2002).
Movement plans may, however, be updated anytime before movement initi-
ation, as well as during the movement (Goodale, Pélisson, & Prablanc, 1986).
This occurs involuntarily with a delay of about 100 ms when movement
targets are spatially displaced. Even relatively abstract codes for movement
goals may be updated at longer delays (Pisella et al., 2000). Movements are
timed in the sense that the effector is at the right location at the right time
(Schöner, 2002; Warren, 2006). Timing is central to coordination, in which
the trajectories of different effectors are kept aligned temporally. Interlimb
coordination is important for both rhythmic (Turvey, 1990; Kelso, 1995) and
temporally discrete motor acts (Kelso, Southard, & Goodman, 1979; Kelso,
Tuller, Vatikiotis-Bateson, & Fowler, 1984; Gracco & Abbs, 1986). Finally,
physically moving an effector entails generating forces and torques, which
accelerate and decelerate effectors. Movements are controlled in the sense
that muscles and joints are harnessed to generate the desired physical trajec-
tory of the effector system. This entails dealing with constraints internal to
the biomechanical system such as inertia, interaction torques, and Coriolis
forces, but also to external factors such as gravity or external force fields
(Jordan, 1990).

A central difficulty to understanding movement generation comes from
the fact that movement preparation, timing, and control are closely and mu-
tually coupled. Changes in a movement task typically imply changes of the
values of movement parameters, changes to the timing of the movement,
and changes to the torques encountered during execution of the movement.
Exposing an effector to an external force field induces adjustments not only
at the control level, but also of movement timing and movement parame-
ters (Gribble & Ostry, 2000). No single perturbation of a movement exists
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that would only affect one of the three aspects of movement generation. A
mechanical perturbation, for instance, not only triggers control action but
may also reset the timing of the movement (phase resetting; see Yamanishi,
Kawato, & Suzuki, 1979) and lead to updated movement parameters, gen-
erating corrective actions. Theories of movement generation must therefore
address integration across these different levels of motor control.

The integrative nature of movement generation is reflected in the tight
coupling of the associated neuronal processes, which are distributed across
many neuronal structures. The timing of motor acts is, for instance, affected
by feedback loops through the motor cortex and the cerebellum, as well
by spinal pattern generators and feedback loops back to the motor cortex
(Houk & Wise, 1995; Barto, Fagg, Sitkoff, & Houk, 1999; Graziano, 2006;
Desmurget & Turner, 2008). Parietal, premotor, and motor cortex are all in-
volved in extracting movement parameter values, including their updating
when sensory information about target locations or current hand position
changes (Georgopoulos, Kettner, & Schwartz, 1988; Georgopoulos, Taira, &
Lukashin, 1993; Schwartz, 1993, 1994). Control in the face of external force
fields implicates both the cerebellum and motor cortex (Wolpert, Miall, &
Kawato, 1998).

Dynamical systems ideas seem particularly well suited to deal with such
rich internal coupling. Dynamical field theory, which is based on the dynam-
ics of neuronal populations in cortical and subcortical structures (Erlhagen,
Bastian, Jancke, Riehle, & Schöner, 1999), has provided an account of how
movements are prepared and updated (Kopecz & Schöner, 1995; Erlhagen
& Schöner, 2002). The same framework has been successfully used to un-
derstand the processes governing the initiation and termination of move-
ments (Kopecz, 1995; Trappenberg, Dorris, Munoz, & Klein, 2001; Wilimzig,
Schneider, & Schöner, 2006). The timing and coordination of movements
can be understood in terms of coupling among the neuronal dynamics con-
trolling individual degrees of freedom (Schöner & Kelso, 1988; Kelso, 1995;
Grossberg, Pribe, & Cohen, 1997; Schöner, 2002). The level of control is nat-
urally described in the language of dynamical systems. While much work
on control remains at an abstract, computational level (Todorov & Jordan,
2002), the perspective exists to link this language to neuronal structures
(Scott, 2004; Shadmehr & Krakauer, 2008). Detailed neuronal grounding
has been provided only for the simplest impedance properties of individ-
ual joint muscle systems (Feldman, 1966; Mussa-Ivaldi, Hogan, & Bizzi,
1985; Feldman, Adamovich, Ostry, & Flanagan, 1990).

Our strategy in this letter is to remove from movement systems the
artificial constraints that induce unique relationships between the different
levels of movement generation. The vast majority of experiments on human
movement have made use of nonredundant effectors, in which a unique
solution exists for the given motor goal. In most real-life movement tasks,
however, the human movement system is kinematically redundant, that is,
there are more, sometimes many more, mechanical degrees of freedom than
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task variables. For instance, reaching to a 3D position to point or position
the hand requires only three degrees of freedom (or six if the hand is to be
oriented in specific ways). But the upper arm alone contains seven degrees
of freedom. Natural movement involves the shoulder blade and portions of
the upper body, leading to 10 or more degrees of freedom (Yang & Scholz,
2005; Tseng, Scholz, & Hotchkiss, 2003). Similarly, in upright stance, only the
Cartesian position of the center of mass is critical to remaining mechanically
stable, but many joint angles contribute to setting that position (Hsu, Scholz,
Schöner, Jeka, & Kiemel, 2007).

Only recently have movement scientists begun to systematically exploit
the inherent redundancy of the movement apparatus to analyze how move-
ment is controlled (Scholz, & Schöner, 1999; Scholz, Schöner, & Latash, 2000;
Admiraal, Medendorp, & Gielen, 2002; Tseng, Scholz, Schöner, & Hotchkiss,
2003; Todorov & Jordan, 2002, 2003; Torres & Zipser, 2004). (For precursors
to this work, see, e.g., Ivaldi, Morasso, & Zaccaria, 1988; Cruse, Brüwer, &
Dean, 1993; Haggard, Hutchinson, & Stein, 1995.) Our strategy in this work
is to make use of the inherent redundancy of effector systems to give the
central nervous system some freedom for how to realize a given movement
task. The idea is to learn from the decisions of the nervous system, from its
choices to stabilize some variables and not others, and from the correlations
and trade-offs induced by such choices (Schöner, 1995).

The goal of this letter is to develop a key element of an integrative theory
of movement generation that addresses how multiple degrees of freedom
are harnessed to achieve a motor task. The theory is framed within dy-
namical systems thinking; it is process oriented and consistent with phys-
iological principles. Choosing the simplest redundant system accessible
in both experiment and theory, we report experimental data on pointing
movements in a two-dimensional end-effector plane with a four-degree-of-
freedom arm. A neuronal dynamics forms the core of our theoretical model,
from which we will derive kinematic features, including the end-effector
paths and trajectories, the joint velocities, and, in particular, self-motion (the
component of the joint velocity vector that does not move the end effector),
and compare these to the experimental data. We will selectively manipulate
our model to examine the contributions of different theoretical assumptions
to the observed movement features. Finally, we will implement a number of
alternative theoretical accounts, including models with inverse dynamics,
and will show how these alternatives fail to explain the observed kinematic
features of redundant arm movement. In a separate work, we will study
movement variability and correlation, including the uncontrolled manifold
structure of the variance of joint motion (Martin, Schöner, & Scholz, 2007).

2 Model

2.1 Survey of the Model and Its Neuronal Embedding. To model the
generation of discrete goal-directed movements, we need to specify the
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processes of movement preparation, movement initiation, timing, virtual
joint trajectory formation, and the muscle joint and biomechanical dynam-
ics. Our strategy is to use as much as possible available models for those
parts of movement generation that have been studied previously and to
thus limit innovation to the core problem of organizing the redundant de-
grees of freedom. Figure 1 provides a survey of the model, together with its
neurophysiological embedding. The neuronal substrate for the processes
governing movement generation is highly distributed, and many compo-
nents of the neural systems have overlapping function. Because the map-
ping of motor function onto neuronal structures is not one-to-one, the figure
provides only a first rough sketch, which we will elaborate on below.

Reaching requires information about the scene, which typically comes
from the visual system and includes information about both the identity of
objects (ventral stream) and about the pose and position of objects (dorsal
stream) (Milner & Goodale, 1995). Pose information must be transformed
from visual coordinates into body-related coordinates, a task achieved by
neural populations in the parietal cortex (Andersen, Snyder, Bradley, &
Xing, 1997). The parietal cortex is also involved in using visual and pro-
prioceptive information to estimate the spatial position of the hand (Gréa
et al., 2002). The neural processes underlying these transformations remain
outside the scope of the present model (see Simmering, Schutte, & Spencer,
2008, for a dynamic field account of such spatial representations). The out-
come of these processes is modeled simply by assuming that estimates of
the spatial coordinates of movement targets as well of the initial spatial
position of the end effector are continuously available.

Preparing a goal-directed movement involves extracting from such spa-
tial information the values of the movement parameters, most prominently
direction and extent. In the presence of multiple possible movement tar-
gets, movement preparation also involves selection of one particular move-
ment and suppression of the neuronal activation representing distracter
targets. Premotor and motor cortex are involved in both of these aspects of
movement preparation (Georgopoulos, Schwartz, & Kettner, 1986; Cisek &
Kalaska, 2005), as well as in integrating prior information about upcoming
movements (Bastian, Riehle, Erlhagen, & Schöner, 1998; Bastian, Schöner,
& Riehle, 2003). The model does not address the processes of movement
preparation, which has been treated in previous work using the same the-
oretical framework (Kopecz & Schöner, 1995; Erlhagen & Schöner, 2002).
Instead, the values of movement parameters’ direction and extent, as well
as the desired movement time, are assumed given.

Movement initiation and termination involves a wide array of brain
areas, as observed, for instance, when brain activity during discrete
movement is contrasted with brain activity during rhythmic movement of
the same effector (Schaal, Sternad, Osu, & Kawato, 2004). A comparatively
precise understanding of initiation and termination has been achieved
for saccadic eye movements in terms of the interaction between neural
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Figure 1: Structure of the model (white boxes with solid borders and arrows)
with rough mapping onto involved neuronal structures (gray boxes with dashed
borders). The conceptually innovative part is the neuronal dynamics of the
virtual joint trajectory, which transforms a virtual end-effector velocity into a
virtual joint trajectory and receives back-coupling from the effector level. The
inner structure of this dynamics is characterized by decoupling between task-
relevant and task-irrelevant combinations of joint velocities.



Redundancy, Self-Motion, and Motor Control 1377

populations responsible for fixation and populations responsible for
generating visually induced saccades (Dorris, Pare, & Munoz, 1997).
Goal-directed pointing movements show some of the same signatures,
suggesting similar mechanisms (Bekkering, Pratt, & Abrams, 1996). The-
oretical accounts for this mechanism have been provided in the language
of neuronal dynamical fields in terms of inhibitory interactions among the
two relevant neuronal populations (Kopecz, 1995; Trappenberg et al., 2001;
Wilimzig et al., 2006). As the processes of initiation and termination of a
discrete movement are not the main focus of this letter, we model these
processes through a simplified version of these accounts, in which the two
populations responsible for fixation and movement are described by two
competing dynamical activation variables.

Motor and premotor cortex are involved not only in the specification of
movement parameters, but also in the generation of the time courses of goal-
directed movements (Graziano, Taylor, Moore, & Cooke, 2002; Hatsopoulos,
Xu, & Amit, 2007). The precise manner in which this happens is still largely
unknown. What is clear is that a closely coupled ensemble of neural popu-
lations in motor cortex and the cerebellum with thalamus as a way station
are involved, the basal ganglia playing a regulatory role as well (Houk
& Wise, 1995). Motor cortex also interacts with spinal pattern generators
(Drew, Kalaska, & Krouchev, 2008; Poppele & Bosco, 2003). The impor-
tance of the cerebellum for the timing of voluntary movements is clear from
neuropsychological studies (Ivry, 1997). In fact, one account for cerebellar
function conceives of the cerebellum as a neuronal mechanisms for the pre-
cise measurement of time (Braitenberg, Heck, & Sultan, 1997). Another view
is that the cerebellum is a predictor of the sensory consequences of motor
commands, a form of forward model (Wolpert et al., 1998). This conception
is not necessarily in conflict with the former view, as predicting the time
course of movements is what a forward model is essentially about. Much of
the evidence about internal models derives from studies of how movement
generation adapts to unknown force fields. Because we do not address such
adaptation, we can use a simplified model of movement timing. Our func-
tional description of these distributed but closely coupled populations of
neurons takes the form of a neuronal oscillator, which can be started and
stopped by the initiation system (Schöner, 2002). The critical assumption
is that the oscillator generates and predicts the time course of end-effector
motion along its movement path. Evidence that movement timing resides
at the task level comes, for instance, from studies in which the spatial pat-
tern of coordination between end effectors, not the pattern of joint motions,
determines the stability of relative timing (Mechsner, Kerzel, Knoblich, &
Prinz, 2001).

The specific joint configuration used to realize a goal-directed move-
ment is reflected in motor cortical activation (Scott & Kalaska, 1995). We
believe that a core function of motor cortex is to transduce the neuronal tra-
jectory that predicts task-level motion into joint-level activation patterns,
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although reciprocal coupling with downstream structures is likely to play
an important role as well (Graziano, 2006). The core of our model describes
this transduction as a neuronal dynamics of a virtual joint configuration
vector, which is driven by the virtual end-effector trajectory generated by
the timing system. Two central assumptions structure this system. First, we
postulate that within this neuronal dynamics of joint configurations, task-
relevant combinations of degrees of freedom that affect the end effector are
decoupled from task-irrelevant combinations of degrees of freedom that do
not affect the end effector. Second, estimates of the real joint configuration
are assumed to couple into this neuronal dynamics within the subspace
of task-irrelevant combinations of degrees of freedom. We refer to this in-
put as back-coupling from the effector level. It updates the trajectory of
the virtual joint configuration within the null-space of end-effector motion,
enabling the neuronal dynamics to yield to changes of joint configuration
that do not affect the real end-effector path. The neurophysiological basis
for such back-coupling may come from proprioceptive coupling into spinal
networks mediated by Ia-interneurons and Renshaw cells (see, e.g., a sim-
ilar mechanism proposed by Latash, Shim, Smilga, & Zatsiorsky, 2005) as
well from transcortical loops that remap the functional relationship between
cortical and spinal networks (Graziano, 2006).

Any theory of movement generation must take into account that the en-
semble of muscles that converge on a joint, together with local spinal as well
as transcortical feedback loops, endows joints with impedance properties
that have an impact on how effector systems respond to motor commands
(Asatryan & Feldman, 1965; Feldman, 1966; Hogan, 1985; Mussa-Ivaldi
et al., 1985; Feldman & Levin, 1995; Ostry & Feldman, 2003). We model the
active generation of torques by these distributed neural systems of joint
muscle control using a simplified version of an established model (Gribble,
Ostry, Sanguineti, & Laboissière, 1998). All muscles acting on a joint are
lumped together and controlled by the associated virtual joint position
and velocity. Multiarticular muscles are modeled by coupling among joint
torques. Finally, the kinetics and kinematics of the arm are modeled using
standard techniques.

2.2 Task Setting. Both model and experiment involve the task of mov-
ing a pointer tip (end effector) from a start location to a target location at
a comfortable speed. Start and target locations lie in a two-dimensional
horizontal plane. Configurations of the arm are also restricted to that plane,
so that effectively only four degrees of freedom are available. In princi-
ple, each associated joint angle (sternoclavicular joint, shoulder, elbow, and
wrist) can be moved individually, although these degrees of freedom are
effectively coupled both mechanically and at the level of neural control.
In this task, the effector system is redundant because only two degrees of
freedom are required to achieve a particular location of the end effector in
the plane (see Figure 2). Four different end-effector paths defined between
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Figure 2: (Left) Schematic view from above of a participant moving his or her
four-joint arm in a horizontal plane. The task consists of moving the pointer
tip from a start location (Start1, Start2, Start3) to a target location (Target1 or
Target2). Two arm configurations a and b are shown that lead to the same end-
effector position. (Right) The set of joint configurations leading to an identical
position of the pointer tip forms a two-dimensional manifold (UCM) in the
four-dimensional joint space. The figure shows a one-dimensional cut through
that manifold within the three dimensions of the original joint space. The linear
subspace that is tangent to this manifold at a given joint configuration is spanned
by a basis vector that forms one column of the matrix, E (in the full four-
dimensional space, a second basis vector forms the second column of E).

three different starting locations and two different target locations sample
the work space coarsely. In addition, two of the movements were performed
with two different initial arm configurations, leading to six different move-
ment conditions (experimental details are provided in section 3).

2.3 Movement Parameters. Based on this task setting, we assume that
estimates of the movement parameters are available. The initial position of
the end effector and the target location determine the amplitude of end-
effector motion, Ui , along the two Cartesian directions i = 1, 2. The desired
movement time, T , is also assumed given.

2.4 Movement Initiation and Termination. Two activation variables
represent the movement state (um) and the resting or fixation state (ur).
These variables evolve as described by a competitive neuronal dynamics:

τmu̇m =−um + h + Im − σ (ur)

τru̇r =−ur + h + Ir − σ (um). (2.1)

Here, h is a negative resting level of neural activation. Inputs Im and Ir bias
the system toward initiating movement or resting. These inputs depend
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on the predicted state of the end effector, and this dependence turns the
movement state off at the end of the movement (see appendix D for details).
Inhibitory coupling between these two activation variables, mediated by a
sigmoidal nonlinearity, σ (u) = 1/(1 + exp[−ar u]), makes that only one of
the two variables can be activated at the same time.

2.5 Timing. We model the distributed neural networks that generate the
time course of the end effector along its path by a single, lumped neuronal
oscillator. The two-dimensional timing signal, u(t) = (u1, u2), determines
the virtual end-effector velocity, v(t) = (v1, v2), through

v̇ = −βv(v − u(t)), (2.2)

so that the virtual end-effector velocity tracks the timing signal. The indices
refer to the two Cartesian components of the end effector, and βv is a positive
constant. Although it is not neuronally realistic, we use the Hopf normal
form (Perko, 1991) as the simplest mathematical representation of a stable
limit cycle oscillator that stands for a class of neuronal dynamics that exhibit
this type of solution (Schöner, 2002). For each (“excitatory”) component, u,
the Hopf equation contains a second (“inhibitory”) component, z:

(
u̇i

żi

)
= σ (um) fh(ui , zi ) + σ (ur)βr

(
−ui

−zi

)
. (2.3)

Herein, the Hopf equation,

fh(ui , zi ) =
(

αh −ωh

ωh αh

)
·
(

ui − Ui

zi

)

−αhU2
i · (

(ui − Ui )2 + z2
i

) ·
(

ui − Ui

zi

)
, (2.4)

generates a stable limit cycle solution with cycle time, T = 2π/ωh , relaxation
time, 1/2αh , and amplitude, Ui . This oscillator is active while the initiation
system is in the movement state (σ (um) = 1). When the resting state is
activated (σ (ur) = 1), the timing signal has a stable fixed point at u = 0.

2.6 Neural Dynamics of the Virtual Joint Configuration. In this core
module of our model, the timing signal, u(t), is transformed into a virtual
joint trajectory, λ(t). This requires inversion of the Jacobian equation,

v(t) = J[λ(t)] · λ̇(t), (2.5)
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where J[λ(t)] is the Jacobian matrix built from the partial derivatives of
the kinematic model (see appendix A). Because the effector is redundant,
the equation is not invertible, however. To understand the implications of
redundancy, it is useful to visualize the kinematic model of the effector
around a given virtual joint configuration, λ. Figure 2 illustrates how the
same end-effector position can be achieved by multiple joint configurations.
The ensemble of joint configurations that leads to the same end-effector
position forms a manifold, sketched in Figure 2 on the right. This is the
“uncontrolled manifold” (Schöner, 1995), shown in earlier work to struc-
ture the variance of multijoint movement (Scholz, & Schöner, 1999; Scholz
et al., 2000). Any change of joint configuration along this manifold does not
change the position of the end effector, while configuration changes away
from the manifold do change the end-effector position.

Instantaneous joint velocity vectors that are tangential to the manifold
generate so-called self-motions, that is, internal motions of the joint con-
figuration that leave the end-effector position unchanged. At a given joint
configuration, λ, the linear space spanned by vectors tangent to the mani-
fold is the null-space of the Jacobian, J(λ) (see Figure 2, right). Basis vectors
of the null-space are nontrivial solutions of J · λ̇ = 0. In the present case,
v is two-dimensional and λ̇ is four-dimensional, so that the null-space is
two-dimensional (except at singularities of the effector). Two basis vectors
that span the null-space can be determined as the columns of the matrix, E,
which solves J · E = 0. The null-space and its orthogonal complement, the
range space of the Jacobian, divide the space of virtual joint velocities into
two subspaces (see Figure 3, left). Note that these subspaces depend on the
joint configuration at which the Jacobian is computed.

Given the virtual joint velocity, λ̇, the associated self-motion is

s = ET · λ̇. (2.6)

This equation can be joined to the Jacobian equation 2.5 to form an aug-
mented Jacobian equation,

(
v

s

)
=

(
J

ET

)
· λ̇, (2.7)

in which an explicit description of self-motion, s, is added to the virtual
end-effector velocity, v. This augmented Jacobian equation is invertible:

λ̇ =
(

J

ET

)−1

·
(

v

s

)
= (

J+ E
) ·

(
v

s

)
= J+ · v + E · s, (2.8)
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Figure 3: (Left) Schematic illustration of how a joint velocity vector can be
decomposed into its components in the null-space and range-space of the Jaco-
bian. Only three dimensions are shown. (Right) How the uncontrolled manifold
(UCM) in the space of virtual joint angles, λ, structures the vector field of the
neuronal dynamics of the joint configuration is illustrated schematically: a weak
vector field within the UCM provides little stabilization of the virtual joint con-
figurations that are redundant with respect to the planned end-effector position.
In contrast, the vector field outside the UCM provides strong restoring forces
pushing the system toward the UCM.

where the matrix, J+, is the Moore-Penrose pseudoinverse (see, e.g., Murray,
Li, & Sastry, 1994). This equation decomposes the joint configuration veloc-
ity, λ̇, into two components: J+ · v is the range-space and E · s the null-space
component (see the left panel of Figure 3).

The key idea of our model is to use this inversion to derive a dynamical
system from which the virtual joint trajectory emerges as a solution. The
appropriate equation,

λ̈ = (
J+ E

) ·
(

v̇ − J̇ · λ̇

ṡ − ĖT · λ̇

)
, (2.9)

is obtained by taking the time derivative of equation 2.7. In this formulation,
the dynamics in the two subspaces of range-space and null-space motion
are decoupled! The range-space dynamics generates motion that tracks the
timing signal via equation 2.5. The vector field is assumed to be much
weaker within the uncontrolled manifold (see the right panel of Figure 3),
leading to reduced stability of joint configurations that lead to the same
end-effector state. We test different hypotheses for this component of the
dynamics. The most radical formulation of “uncontrol” is that ṡ = 0, so
that virtual self-motion is not stabilized at all. Any initial self-motion will
continue undamped. This is clearly not realistic (joint configurations could
reach joint limits, for instance) but is nevertheless a useful limit case. The
more general hypothesis may be formulated mathematically as

ṡ = −βs1ET · (λ − θd) − βs2ET · (λ̇ − θ̇d ). (2.10)
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This hypothesis says that when the estimated real joint configuration, θd ,
deviates from the virtual joint configuration, λ, this leads to an update of
the virtual joint configuration within the null-space of the Jacobian (brought
about by projecting the difference onto the basis vectors of the null-space,
ET ). The same kind of mechanism may occur at the level of joint velocities
(second term). The real joint configuration must be sensed and estimated,
leading to processing delays (index d ; see appendix D for details). This form
of back-coupling of the real into the virtual joint configuration dynamics
implies both stabilization of the joint configuration within the uncontrolled
manifold (through the terms dependent on λ and λ̇) and driving virtual self-
motion (when the terms (λ − θd ) and (λ̇ − θ̇d ) are different from zero). The
projection of the back-coupling term onto the null-space ensures that the
dynamics within the space of self-motion depends on only the components
of λ and λ̇ within that subspace, so that the range-space and null-space
remain decoupled.

That this neuronal dynamics is a closed description in the space of the
virtual joint configuration λ and velocity λ̇ is seen by replacing all references
to the end-effector velocity, v, and the self-motion velocity, s, by virtual joint
velocities using equations 2.5 and 2.6:

λ̈ = (
J+ E

) ·
(

−βvJ · λ̇ + βvu − J̇ · λ̇

−βs1ET · (λ − θd) − βs2ET · (λ̇ − θ̇d ). − ĖT · λ̇

)
. (2.11)

To implement the model, the matrices J(λ), E(λ), J̇(λ), and ĖT(λ) are com-
puted analytically.

2.7 Muscle-Joint Model. The virtual joint configuration λ and velocity
λ̇ drive the muscle joint systems. These are modeled by reducing a detailed,
nonlinear muscle model (Gribble et al., 1998) to its essentials, limiting the
number of parameters. First, we fuse all muscles acting onto a given joint
into an effective muscle joint model that covers both agonist and antagonist
activity. As a result, the descending commands are condensed into the
virtual joint angle, λ(t), and virtual joint velocity, λ̇(t). The state-dependent
generation of muscle torques at a given joint, i , can then be characterized
by a single function,

Ti (λ, λ̇, θ , θ̇ ) (2.12)

(listed in appendix C), where θ (t) and θ̇ (t) are the real joint angle and
velocity. At rest and in the absence of external forces, the muscle joint
system is at equilibrium at T = 0 and θ = λ. Depending on the time course
of the virtual joint trajectory, λ(t) and on the biomechanics of the arm, the
realized joint trajectory may deviate significantly from the virtual trajectory.
This is why taking into account the nonlinear dependence of muscle force
generation on muscle state is important (Gribble et al., 1998).
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Approximations consist of neglecting the time-delaying effect on force
generation of the muscle calcium kinetics and rewriting the velocity-
dependent function (damping), which led us to characterize the muscle
active state directly by λ and λ̇ following Lussanet, Smeets, & Brenner
(2002). Our muscle model accounts for the dependence of active torque on
the joint velocity (θ̇ ) as in Gribble et al. (1998) and Hogan (1984). Because
the damping effect of muscles is proportionally larger at low velocities than
at high velocities (Gielen, Houk, Marcus, & Miller, 1984; Houk, Fagg, &
Barto, 2002), a nonlinear velocity-dependent function is added. The main
constraint for modeling damping is its role in leading to a smooth transition
to rest at the end of the movement, which is not critical for our results.

The different muscle joint systems at every joint are not independent
of each other due to multiarticular muscles, which generate torques at
multiple joints. Multiarticular muscles enable the central nervous system to
manipulate end-effector stiffness and are thus functionally significant for
the control of the end-effector (Hogan, 1985). This biomechanical property
is reflected in the experimentally measured stiffness values that we use to
approximate realistic parameters for the model (Tsuji, Morasso, Goto, &
Ito, 1995; Gomi & Osu, 1998; see appendix E). To capture the co-change of
torques induced by multiarticular muscle activity, we introduce a coupling
matrix, Z, between the physical torques at all joints, Tm, and the vector of
muscle joint torques, (T1, . . . T4),

Tm = Z ·




T1

...

T4


 . (2.13)

The matrix, Z, is listed in appendix C.

2.8 Arm Kinematics and Kinetics. The kinematic model of the arm
links the end-effector position in a Cartesian coordinate system, x = (x, y),
to the joint configuration, θ = (θ1, θ2, θ3, θ4)T :

x = g(θ ) (2.14)

(the upper index T indicates the transpose, so that the joint configuration
is a column vector; the equations are listed in appendix A). The model is
derived assuming an articulated rigid body with four revolute joints whose
axes of rotation are perpendicular to the two-dimensional plane of motion.

The equations of motion of the arm are derived from the Lagrangian
equations within the Screw theory framework (Murray et al., 1994). The
general form of these equations is

M(θ ) · θ̈ + H(θ , θ̇ ) = Tm, (2.15)
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where M(θ ) is the inertial matrix of the rigid body, H(θ , θ̇ ) is the vector of
interaction torques (coriolis and centrifugal forces), and Tm is the vector of
active torques generated at the skeleton joints by muscle forces (all terms
are listed in appendix B).

2.9 Simulations. The model was implemented in Matlab version 13
(2002) using the numerical Euler method to solve the differential equation.
Appendixes E and C list the parameter values of the model used for all
movements anywhere in the work space.

3 Experimental Methods and Analysis

Participants in the experiments were three healthy individuals from the
University of Delaware community, 21 to 35 years of age. Participants gave
informed consent before participation. All participants were right-handed
and reached with their right arms to the targets.

3.1 Procedure. Participants sat on chair with a high backrest. Their
trunk movements were restrained by a harness about their chest that was
attached to the chair. They wore a hand splint with a stylus, the tip of
which was aligned with the position of an extended index finger. Reflective
spherical markers (1.5 cm in diameter) were placed on bony landmarks of
the participants: (1) the sternoclavicular joint, (2) just below the lateral tip
of the acromion, (3) the lateral epicondyle of the humerus, (4) the radial
styloid process of the wrist, and (5) the tip of stylus fixed to the hand brace.
Markers were also placed at the centers of the targets. All markers lay in
the same horizontal plane.

There were six conditions involving two target locations, positioned at
90% of each subject’s arm length. The right target was located at an angle of
40 degrees to the right of a line passing forward through the right acromion
process. The left target was positioned 40 degrees to the left of this line,
requiring the participants to reach across their body. Two starting pointer
locations were used in which the stylus marker was 7.8 cm anterior to either
the sternum marker or the right acromion. The third starting location was
selected to be at 20 degrees to the left and at 50% of each subject’s arm length.

The table height was set so that the right arm rested on it in the
horizontal plane when in the starting position. When the pointer was in
the right-most and left-most starting position, two different initial joint
configurations were used in separate conditions. Movement time (MT) was
kept constant by using a Lafayette Instrument time that provided feedback
after every trial. Subjects were asked to reach as quickly and accurately as
possible. The movement time was determined during test trials, and that
time was maintained for the actual experiments. Trials for which partic-
ipants deviated by more than 5% from the target MT were repeated. The
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participants were instructed to reach the target with the tip of the stylus.
Emphasis was on both spatial accuracy (“try to touch the center of the
target”) and temporal accuracy (“try to reach the target in the designated
time”). Additionally, they were instructed to perform the reaching with one
continuous movement, with no intentional pauses during the movement.

Before the actual data collection session, participants were given a prac-
tice session with verbal feedback provided by the experimenters on spatial
as well as temporal accuracies of reaching. In the actual data collection ses-
sion, kinematic data of the markers were collected by the VICON-370 mo-
tion measurement system at a sampling frequency of 120 Hz. The collected
data were then filtered in both directions using a fourth-order Butterworth
low-pass filter with a cut-off frequency of 5 Hz. Each participant performed
25 reaching movements for each experimental condition.

In order to compute the mean end-effector trajectories and self-motion
in experiments, movements must be matched in time from one trial to the
next (see also Figure 6). The beginning of the movement was defined as
the time when end-effector velocity first reached 1% of its peak value. The
end of the movement was defined as the time when end-effector velocity
fell below 3% of its peak. Trajectories are time-warped to match the mean
movement time in both experiment and simulated data.

3.2 Self-Motion Analysis. Self-motion, S, is the component of the joint
velocity vector within the null-space of the Jacobian. It was computed by
projecting velocity vectors, θ̇ , onto the basis vectors e1 and e2 (that form the
columns of E) at each time sample, t, and for each trial, n:

Sn(t) =
∑
l=1,2

eT
l · θ̇n(t) el (t). (3.1)

The associated range space component is

Rn(t) = θ̇n(t) − Sn(t). (3.2)

The amount of self-motion and range-space motion was computed by tak-
ing the mean across trials of the lengths of these vectors. No normalization
relative to the number of degrees of freedom was needed, as both subspaces
have the same dimensionality of two.

4 Results

To compare experiment and theory, we look at features of end-effector
paths, end-effector trajectories, and joint trajectories with particular
emphasis on self-motion. In each case, we present experimental data from
all participants to illustrate reproducible patterns. In addition to presenting
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Figure 4: (Top) The left-most three panels show the end-effector paths of the
three participants (S1, S2, and S3), for the four different movements. The thin
lines are the real end-effector paths in different trials recorded in experiment.
The straight lines link the starting position (filled circles, right panel) to the target
location (filled squares, right panel) as a guide to the eye. The movements are
labeled in the right-most panel, which shows the associated paths generated by
the model. (Bottom) End-effector paths from the same three participants and
the model for the four conditions are listed in Table 1. Movements 1 and 2, as
well as 4 and 5, share initial and target end-effector position but differ in initial
joint configuration. The end-effector path curvature depends only very slightly
on the starting effector configuration in both experiments and the model.

reasonable fits of these data at one constant plausible set of parameter
values of the model, we examine the role of different components of
the model by making targeted changes to demonstrate how these affect
simulated patterns of movements. These manipulations include, for
instance, introducing a component that mimics perfect inverse dynamics
or setting high-impedance value for the muscles.

4.1 End-Effector Paths. The end-effector paths observed in experiment
(left three panels in the top row of Figure 4) deviate from idealized straight
line paths (Morasso, 1981). For most of the movements, the end-effector
paths are slightly but consistently curved. This curvature depends on the
position in the work space and is qualitatively reproducible across par-
ticipants. Only movement 4 has an almost straight end-effector path. The
variability from trial to trial for each participant is considerable, but does
not wash out the consistent pattern, so that end-effector path curvature
is a robust feature of these pointing movements. The model (see the top
right panel of Figure 4) generates curved paths that qualitatively match
the observed pattern in experiment except for movement 6, for which our
parameter setting for impedance was too far off (see Figure 10 below, where
increased impedance removes the problem). Recall that the simulations use
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a single reference parameter set (see appendix E), which was determined
to be consistent with physiological values and to achieve a rough match of
the experimental data. We did not explicitly fit data for every movement
and every subject independently and thus neglected that impedance values
may vary in space and time (Tsuji et al., 1995; Gomi & Osu, 1998) or across
subjects. Note also that the model does not show constant terminal errors,
as movement planning is not addressed (but see Erlhagen & Schöner, 2002).

In the model, the virtual end-effector path can be computed from the
virtual-joint path, λi (t), on the basis of the kinematic model of the effector.
The virtual paths are straight line segments whatever the position in the
work space. This demonstrates that the work space dependence of the
curvature of the real end-effector path is not a consequence of movement
planning in the model. Conversely, the virtual end-effector paths are not
isomorphic with the real end-effector paths. In the model, the curved end-
effector paths come from the relatively sluggish control at the muscle joint
level that results when physiologically realistic parameter values for the
muscle model are chosen. This is demonstrated in Figure 10B in which
an increase of muscle impedance by a factor of 10 leads to unrealistically
straight end-effector paths. We come back to this issue below.

The curved end-effector paths are thus signatures of imperfect control,
that is, of a failure to realize the straight virtual end-effector path. Given
sluggish muscle joint systems, two factors may contribute to this deviation
from the plan: biomechanical coupling among the joints through interac-
tion torques and muscular coupling among joints through multiarticular
muscles. Manipulating these factors leads to characteristic changes also at
the level of the joint trajectories, so we return to their role later in this sec-
tion, around Figure 10. The upshot will be that perfect compensation of
interaction torques and reduction of muscular coupling leads to straight
end-effector paths invariantly within the work space and contrary to the
experimental data.

How does redundancy play into the end-effector path? A given end-
effector path can be realized by a multitude of task-equivalent joint config-
urations. The biomechanics of the arm, including the interaction torques,
as well as the contributions of biarticular muscles, depend on joint angles,
speed, and accelerations. The control problem is thus different for differ-
ent arm configurations. Given the imperfections of the muscle joint control
system, we may expect that such differences may lead to differences in the
end-effector paths as well.

This hypothesis was tested in the experiments and in the model by
imposing two different sets of initial arm configurations with identical
end-effector position. In experiment, the starting joint configurations were
chosen so that they could be reproducibly imposed and were comfortable
for the participants, which limited the range of joint angle variation. Table 1
lists the mean joint angles for the starting configurations for the two pairs
of movements considered. The model made use of these values as initial
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Table 1: Mean Initial Joint Configurations for Four Movements.

Movement Designation Joint 1 Joint 2 Joint 3 Joint 4

1 −0.473 1.562 1.942 0.380
2 −0.680 1.635 2.219 −0.324
4 −0.659 1.642 2.204 −0.317
5 −0.446 1.569 1.950 0.285

Notes: Each pair of movements had the same starting and target end-effector position
(movements 1 and 2, respectively, movements 4 and 5). The joint angles are given in
radians.

conditions for the joint angles. Note that the end-effector location was nearly
identical for the two initial postures.

The bottom row of Figure 4 depicts the mean end-effector paths for the
three subjects for the two movements with two initial configurations (1
and 2 are a pair, as are 4 and 5) as well as the associated simulations. In
both cases, the end-effector paths are not qualitatively different for the two
initial configurations, only small quantitative differences being observable
(for movements 4 and 5, differences are in some cases essentially due to a
slight shift of the end-effector starting position). This pattern of results is
reproduced by the model at the reference parameter set. Thus, the model
accounts for the observed motor equivalence of the two initial configura-
tions. Apparently, although muscular control is sluggish in the model, the
differences in biomechanical and muscular conditions that can be generated
by reasonable variations of joint configuration are not sufficient to induce
significant changes in end-effector control. Note that the model does not
include compensatory mechanisms for interaction torques and muscle in-
terjoint coupling, so in the model, motor equivalence must ultimately break
down. We have verified that end-effector paths start to deviate when the
initial joint configurations are made much more different from each other,
beyond the range reachable in humans. Thus, the observed motor equiva-
lence is not evidence for inverse dynamics or other forms of compensation
for joint coupling. At realistic physiological conditions and within the range
of realistic joint configuration variations, sluggish control does not lead to
sizable effects on the end-effector path.

4.2 Joint and End-Effector Trajectories. In the model, kinematic invari-
ance of end-effector path under changes of effector configuration comes
from the decoupling between joint velocity combinations that move the
end-effector and joint velocity combinations that do not (see equation 2.9).
A direct illustration of this principle is shown in Figure 5. In the left panel,
the four joint trajectories are shown as time series together with the asso-
ciated virtual joint trajectories, λi (t). Only when the real and virtual joint
trajectory differ is muscular activity induced and torque generated. The real



1390 V. Martin, J. Scholz, and G. Schöner
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Figure 5: Left and middle panels show the four joint trajectories (numbered
from proximal to distal) as solid lines and the associated virtual joint trajectories
as dotted lines for movement 1. The associated end-effector trajectories are
shown in the right panel. These data are generated by simulating the model
under two conditions differing by the amount of internal joint motion. The
left-most panel is based on the reference parameter set (ṡ = 0, s(0) = 0). The
simulation shown in the middle has an additional acceleration inserted into the
null-space of the end effector (ṡ = 5, s(0) = 0, in equation 2.9).

joint trajectory therefore lags behind the virtual trajectory. The amount of
lag depends on biomechanics and muscle properties. This distance between
real and virtual joint trajectory is largest for the most proximal joint 1, which
accelerates against the largest inertial moment, while a smaller distance is
sufficient to move the distal joint 4 that encounters very little inertia. Thus,
the real joint trajectories are not simply time-shifted copies of the virtual
joint trajectories.

In the middle panel of Figure 5, an additional acceleration is inserted
into the null-space during the movement phase (ṡ = 5, s(0) = 0 in equa-
tion 2.9). This leads to different virtual joint trajectories and consequently
also to different real observed joint trajectories. Because the virtual joint tra-
jectories are decoupled across the two subspaces of null- and range-space,
the associated virtual end-effector trajectories are exactly identical in both
conditions. This is also true for the real end-effector trajectories shown in
the right panel of Figure 5. The overlaid traces from the two conditions are
nearly indistinguishable. This is true even though dynamical conditions
differ when motion in the null-space is induced. In fact, when unrealisti-
cally large amounts of self-motion are imposed, motor equivalence breaks
down. Within a realistic range of kinematic conditions, however, motor
equivalence prevails in the face of kinetic differences.

To examine the time courses of movements more closely, we must first
address differences in movement time that occur in experiment. The left
panel of Figure 6 shows the absolute value of end-effector velocity in time
for different trials from a single participant. End-effector velocity profiles are
smooth and bell shaped, invariantly across work space and participants (not
shown). Trials differ by the total duration of the movement. The associated
velocity profiles have the same shape but are rescaled in time. To compute
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respectively. These event times are used to time-warp trajectories and compute
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from the model are shown in the right panel.
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Figure 7: The component of the end-effector velocity along the straight line
from the starting position to the target is shown as a function of time (solid line)
together with the component orthogonal to that direction (dotted line). The
left-most three panels show results from three participants, and the right-most
shows model simulations. The top row refers to movement 1, the bottom row
to movement 4 (compare to Figure 4).

mean trajectories, such differences in movement duration must be corrected
by aligning and warping individual trajectories (see section 3). The right
panel illustrates typical end-effector velocity profiles obtained from the
model, which are also bell shaped and invariant across work space and
match experimental velocity profiles.

The two-dimensional end-effector velocity trajectory reflects the curved
end-effector paths. One way to look at that is to decompose the end-effector
velocity into a component along the straight line from the initial to the target
position and a component perpendicular to that direction. Figure 7 shows
these two components of end-effector velocity for the three participants in
the experiments and for the model at the reference parameter set for move-
ments 1 and 4. The curved movement 1 has a sizable velocity component
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perpendicular to the straight path, while the relatively straight movement
4 does not. Both are captured by the model.

4.3 Self-Motion. How do joint motions generate the end-effector tra-
jectory? In a redundant system, joint velocity vectors can be decomposed
into two components. Combinations of joint velocities that lie in the range
space of the Jacobian move the end effector. Combinations of joint velocities
that lie in the null-space of the Jacobian do not move the end effector. Arm
motion that involves only such combinations of joint velocities that lie en-
tirely within the null space of the Jacobian does not move the end effector at
all. This amounts to a purely internal motion of the redundant effector, also
called self-motion. The observation of self-motion provides evidence that the
redundant degrees of freedom are in fact used during movement tasks that
involve the end effector.

To quantitatively assess self-motion, we decompose the observed real
joint trajectories into these two components (see section 3) and determine
at every moment in time the lengths of these two joint velocity vectors rep-
resenting the amounts of range-space motion and of self-motion. Because
both subspaces are two-dimensional in the system studied here, there is no
need to normalize these values to the dimensionalities of the two subspaces.
Each row in Figure 8 shows time series of these two components of motion.

The first thing to notice is that there is a considerable amount of self-
motion in all cases and for all subjects. The relationship between the amount
of self-motion and the amount of range-space motion reaches beyond 50%
in some cases and is typically above 30%. This discovery certainly excludes
any notion that the total amount of joint velocity would be minimized such
as in the pseudo-inverse solution (which is the minimum norm solution
and thus generates zero self-motion; see, e.g., Cruse et al., 1993).

The model accounts for the pattern of self-motion observed. The small
glitch in the last third of the trajectory comes from the deactivation of the
oscillatory drive of the movement and could be smoothed out if a more
gradual switching process was used.

One may be tempted to distinguish two fundamental causes of self-
motion: self-motion may either be planned or may arise out of the imper-
fections of the muscle joint control system. The top two panels of Figure 9
contrast the amount of self-motion and range-space motion observed in the
model at the level of the real joint trajectory (left) and virtual joint trajec-
tory (right). Clearly, under these conditions, there is “planned” self-motion,
although the total amount of real self-motion is larger and the temporal
evolution is different.

The distinction between “planned” self-motion and self-motion arising
from imperfect control is misleading, however, because planning may be
part of the overall feedback loop (Todorov & Jordan, 2002). In our model, the
back-coupling from the real joint trajectory into the dynamics of the virtual
joint trajectory induces self-motion. This is illustrated by the second row
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Figure 8: The total amount of self-motion is shown as a function of time during
the movement (solid line). This is the length of the joint velocity vector in
the null-space of the Jacobian. The dashed line is the length of the orthogonal
component of joint velocity lying in range-space. The left three panels of each
row are mean results for the three participants (S1, S2, and S3). The right panel
of each row shows results generated from the model at the reference parameter
set.

of Figure 9, which comes from a simulation in which this back-coupling
term was set to zero (all other parameters as in the reference parameter
set). In this case, there is no self-motion at the level of the virtual trajectory
at all (right panel), while significant self-motion remains at the level of
the real joint trajectory (left panel). Thus, back-coupling contributes to self-
motion, but back-coupling is not necessary for self-motion to arise. At model
parameter settings that are physiologically plausible and fit a wide range of
kinematic characteristics, there is a component of self-motion that is caused
by neuromuscular control problems.

In the model, it is easy to explore those contributions by selectively vary-
ing model parameters that change the properties of the control system. We
vary muscle impedance to establish the role of sluggish muscle joint sys-
tems, coupling among muscle joint systems by biarticular muscles and the
presence of an inverse dynamics model to establish the role of interaction
torques. At the reference parameter setting, the coupling among joints in-
duced by multiarticular muscles is not a major contribution. Setting that
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Figure 9: Causes of self-motion in the model are analyzed. The amounts of
self-motion (solid line) and range-space motion (dashed line) are plotted as
time series for movement 3, computed on the left from the real joint velocities
and on the right from the virtual joint velocities. The top row is generated at
the reference parameter set. In the simulations shown in the middle row, back-
coupling from the real to the virtual joint trajectory dynamics was set to zero
(ṡ = 0 with initial condition s(0) = 0). In the bottom row, the back-coupling is
reinstated, but the muscle impedance is increased by a factor of 10. Results are
very similar for the other movements.

coupling to zero barely changed the amount and time course of self-motion
(not shown). Increasing the impedance of the muscle joint system by a
factor of 10 (see the bottom panels of Figure 9) essentially eliminates all
self-motion. Because the real trajectory then closely tracks the virtual tra-
jectory, this also means that the virtual trajectory is self-motion free. In
fact, the back-coupling term has no function in this limit case, because the
very small deviation of the real from the virtual trajectory sends a very
weak signal back to the virtual trajectory dynamics. Self-motion is thus
caused in large part by the sluggish control exercised by the muscle-joint
system.

4.4 Link Between Self-Motion and Curved End-Effector Paths. We
emphasized earlier that sluggish control leads to curved end-effector paths.
The relationship between self-motion and curved end-effector paths is
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Figure 10: Virtual (thin) and real (thick) end-effector paths are shown from sim-
ulations in which back-coupling was set to zero (A) and in which the impedance
of all muscles was increased tenfold (B). In the first case, self-motion persists
(see Figures 9C and 9D), and the end-effector paths are curved (compare to
Figure 4), while in the second case, self-motion is cancelled (see Figures 9E
and 9F) and the end-effector paths are straight. (C) Results of a simulation are
shown, in which an inverse dynamics was emulated by compensating for the
interaction torques. This reduces self-motion (see Figure 11B) and makes end-
effector paths too straight compared to experiment (see Figure 4). (D) Results of
a simulation are shown in which this form of inverse dynamics was combined
with eliminating all multi-articular muscles. This strongly reduces self-motion
(see Figure 11D) and makes end-effector paths perfectly straight.

explored in Figure 10, which shows the end-effector paths associated with
the two manipulations discussed above. Eliminating virtual self-motion
by suppressing back-coupling does not affect end-effector paths much (see
Figure 10A). Back-coupling is thus not necessary to obtain curved
end-effector paths. Making muscle joint systems much less sluggish by
increasing their impedance (see Figure 10B), in contrast, does straighten
end-effector paths so much that they no longer match the experimentally
observed pattern.

Given that we account for self-motion by postulating sluggish control at
the muscle joint level, what are the mechanical problems this control system
must solve, and how may they contribute to self-motion? To address this,
we vary a number of factors of the biomechanical dynamics in Figure 11.
The top left shows self- and range-space motions when both the Coriolis
and centrifugal components of the interaction torques are eliminated. This
is done simply by deleting the corresponding terms from the equation
(something that is, of course, physically impossible to do in reality). The
amount of self-motion is almost unchanged, which implies that self-motion
is not caused primarily by these coupling terms.

To go further, we eliminate all interaction torques, including the nondiag-
onal elements of the inertial matrix (see equation D.2). This can be thought
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Figure 11: Self-motion (solid) and range-space motion (dashed) for a number
of different simulations varying aspects of the control level. (A) Coriolis and
centrifugal interaction torques set to zero. (B) Inverse dynamics emulated by
adding torques to the right side of the biomechanical dynamics that exactly
cancel all interaction torques. (C) Multiarticular muscles eliminated by setting
off-diagonal elements of muscle joint model to zero and the diagonal elements
to 10. (D) Conditions B and C combined.

of as an emulation of a mode of control in which a neuronally computed
inverse dynamics solution is used to generate the active torques that cancel
the interaction torques. The top-right panel of Figure 11 shows that self-
motion is strongly reduced, proving that interactions torques contribute
substantially to the control problems that cause self-motion. The remaining
level of self-motion is too low in comparison to experiment.

With all interaction torques removed, what is causing the remaining
self-motion? The simulation shown in the bottom-left panel of Figure 11 il-
lustrates that coupling among joints through multiarticular muscles plays a
role. Such coupling leads to systematic deviations of the real from the virtual
joint trajectory, some of which lead to self-motion. On the basis of the refer-
ence parameter set, setting all off-diagonal elements of the coupling matrix,
Z, to zero eliminates the contributions of multiarticular muscles, which re-
duces self-motion notably but not entirely. Muscular coupling among joints
thus also contributes to self-motion. Eliminating both multiarticular mus-
cles and canceling interaction torques finally suppresses self-motion almost
completely (see the bottom-right panel of Figure 11). The small residual
self-motion comes from nonlinearities of the muscle model.

These manipulations of the mechanical properties of the control system
confirm the link we uncovered above between self-motion and curved end-
effector paths. The bottom panels of Figure 10 display end-effector paths
that are obtained for two of these manipulations. When an inverse dynamics
is emulated (bottom left), paths become much straighter, to the point of no
longer being realistic. The postulate of an inverse dynamics solution for
multidegree of freedom control is thus incompatible with both the observed
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patterns of self-motion and the observed curvature of end-effector paths.
Interestingly the curvature for movement 6 fits experiment better than that
produced from the reference parameter set (see Figure 4). The opposite is
true for movements 1 and 3.

The small amount of curvature that remains is due to the coupling among
joints by multiarticular muscles. When that coupling is eliminated while at
the same time providing an inverse dynamics cancellation of interaction
torques (bottom right panel of Figure 10), end-effector paths become per-
fectly straight. This is the condition that also eliminates self-motion com-
pletely (see the bottom right panel of Figure 11). Overall, the rule seems to
be that the less self-motion, the straighter the end-effector paths are. Note
that this link between straightness of end-effector paths and the absence
of self-motion is a property of the model, not a logical necessity: the very
concept of self-motion means that it is does not itself affect the end-effector
trajectory and thus also does not affect the end-effector path.

5 Discussion

We have analyzed a process model of the control of redundant multidegree-
of-freedom arm movement that consists of five components: (1) a neural
dynamics to initiate and terminate discrete goal-directed movements, (2) a
neural oscillator that generates a timing signal that paces the progress of the
end-effector along its path, (3) a neuronal dynamics of equilibrium points
of all muscle joint systems of the redundant effector; (4) a muscle model,
and (5) the mechanical dynamics of the redundant arm. Only the third
component and its reciprocal coupling to the muscle joint system contained
new assumptions. These were twofold. First, when locally decomposing the
space of virtual joint velocities into the two subspaces in which the virtual
end effector either moves (range-space) or does not move (null-space), we
assumed that the dynamics within these subspaces are uncoupled. In other
words, forces changing virtual joint velocities in the range-space do not
influence virtual joint velocities in the null-space, and vice versa. Second,
within the null-space, we assumed that the system receives input from the
estimated real joint configuration in the form of a back-coupling, which is
zero when virtual and real joint configurations and velocities are identical.
We postulated that this core module of the model is largely housed in mo-
tor cortex but has strong links through mutual coupling into the structures
involved in generating the time course of movement, including the cere-
bellum and the basal ganglia (Houk & Wise, 1995). Neural support for the
back-coupling of the sensed effector state exists through that network as
well as through reciprocal coupling to the spinal cord (Graziano, 2006).

We examined how this model accounts for the kinematic features of
multidegree-of-freedom movement by comparing simulations of the model
to results from a behavioral experiment in the modeled two-dimensional
task setting with four degrees of freedom. Our strategy was to use parameter
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values for the muscle joint system that lie within typical physiological
estimates of joint impedance and hence are relatively “sluggish.” In the
light of criticism that pure servo-control systems without an internal model
that anticipates joint torques are unable to generate the torques required to
make movements at normal or fast rates (Gomi & Kawato, 1996; Ostry &
Feldman, 2003; Kistemaker, Van Soest, & Bobbert, 2006), our assumptions
put the theoretical framework of virtual joint trajectories (Feldman, 1966;
Feldman & Levin, 1995; Won & Hogan, 1995) to a serious test.

We find that end-effector paths of the redundant experimental system
are consistently curved, although the curvature varies with the location of
the movement in work space. Our model accounts for curved end-effector
paths through the combined effect of the dynamical properties of muscles
and the dynamics of the virtual trajectory. Specifically, we find that unrealis-
tically straight trajectories result from assuming higher muscle impedance
than physiologically realistic and from assuming that the biomechanical
interaction torques are exactly cancelled. Even if we ensure that the vir-
tual end-effector path is straight, the sluggish muscle joint systems and the
interaction torques lead to curved end-effector paths.

Our report of curved end-effector paths is in contrast to the classical
approximation of nearly straight end-effector paths in nonredundant sys-
tems in a similar geometry (Morasso, 1981). The curvature of end-effector
paths has been an intense topic of discussion over the years. It has been in-
vestigated relative to the question of whether movements are planned and
controlled in terms of joint variables or in terms of end-effector variables (see
the review in Barreca & Guenther, 2001). Most of these studies employed,
however, nonredundant effector systems that, compared to redundant sys-
tems, face lesser control problems and thus have lesser potential for control
errors to affect the end-effector path. Osu, Uno, Koike, & Kawato (1997), for
instance, showed that participants making two-dimensional movements
using two joints could produce straighter end-effector paths if their move-
ments were guided by a template path to do so. Monitoring the EMG of
a number of involved muscles, Osu and colleagues excluded increased co-
contraction as the control strategy that achieved straighter paths. They con-
clude that participants planned curved paths. Barreca and Guenther (2001)
postulated such curved end-effector paths on other grounds as a way to
minimize control effort and avoid joint limits. Note that in our formulation,
the virtual joint trajectory is not a fixed plan but can be dynamically up-
dated during the movement. Because back-coupling affects only the part of
the virtual joint trajectory that does not affect the end effector, the virtual
end-effector path that emerges from this dynamics is straight. Imperfect de-
coupling of the two subspaces of the virtual joint configuration space may
conceivably induce curved virtual end-effector paths as a consequence of
control errors.

Wolpert, Ghahramani, and Jordan (1994) proposed perceptual distor-
tions as another potential source of end-effector path curvature by showing
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that perceptual estimates of straightness showed similar deviations from
straightness as end-effector paths. Osu et al. (1997) showed, however, that
participants spontaneously generate curved paths even where their per-
ceptual distortions are minimal, such as in the fronto-parallel plane, and
that participants can minimize curvature when instructed to do so. This
rules out that perceptual distortion is the primary factor producing curved
end-effector paths.

Our model predicts motor equivalence in the sense that differences in ini-
tial arm configuration do not necessarily lead to differences in end-effector
paths. In principle, the active torques needed to produce the same end-
effector trajectory differ when initial configuration varies. So one could
have expected that a model like ours without inverse dynamics would not
lead to equivalent end-effector trajectories. It simply turns out that quanti-
tatively, such dependencies remain insignificant for the joint configurations
probed in our experiments.

Finally, we have found consistently across participants and locations in
work space that the joint velocity vectors contain a considerable amount of
self-motion. Typically at least 30% of the joint velocities do not move the
end effector! One might think of self-motion as a potential solution that
the nervous system uses to avoid the well-known integrability problem of
inverse kinematics in redundant systems (for review, see Mussa-Ivaldi &
Hogan, 1991). When a closed path movement of the end-effector is repeat-
edly performed by a redundant arm using the Moore-Penrose pseudoin-
verse (which generates no self-motion), then the joint-configuration contin-
ues to drift from cycle to cycle, typically without bound. Self-motion makes
it possible to compensate for this drift, leading to reproducible configu-
rations at similar end-effector configurations. Relatedly, constraints within
the space of degrees of freedom such as Donder’s or Listings’ law may also
give rise to self-motion (Medendorp, Crawford, Henriques, Gisbergen, &
Gielen, 2000). Although self-motion was not directly addressed in the latter
study, it is plausible that self-motion would be needed in order to fulfill the
observed constraints on multidegree-of-freedom movement trajectories.

The model accounts for the observed pattern of self-motion. Within our
model, we were able to understand where self-motion comes from. One
cause of self-motion is imperfect control of the low-impedance muscle joint
system. Control errors are, a priori, as likely to induce self-motion as they are
to induce end-effector relevant joint velocities. When we reduced control
errors by increasing impedance, self-motion was strongly reduced. The
back-coupling of estimated joint configurations and joint velocities into the
neuronal dynamics of the virtual joint trajectory means that self-motion
induced by control errors affects the virtual joint velocity. This is why in
the model we find self-motion even at the level of the virtual joint velocity
(although clamping such “planned” self-motion to zero does not eliminate
self-motion of the real effector). We showed that an inverse dynamics model
that cancels all interaction torques and reduces the amount of control error
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leads to too little self-motion compared to experiment as well as to end-
effector paths that are unrealistically straight. Another contribution to self-
motion are multiarticular muscles that couple torque generation at different
joints. Eliminating such muscular coupling from the model also reduces
self-motion and makes end-effector paths straighter.

The problem of redundant motor control has been addressed in other
theoretical and modeling efforts. We share the framework of neuronal
dynamics with a series of models (Bullock & Grossberg, 1988; Bullock,
Grossberg, & Guenther, 1993, 1996; Guenther, 1994; Guenther & Barreca,
1997). These models learn a one-to-one mapping from task-level variables
to the associated joint velocities, in effect selecting a specific solution to the
inverse kinematics problem. Feedback at the level of the task variables en-
ables replanning and accounts for how movement goals are reached even if
degrees of freedom are blocked. Although a variant of these models solves
the nonintegrability problem mentioned above and thus must be producing
self-motion (see section 5 in Guenther & Barreca, 1997), no systematic
account for self-motion is provided. These models do not address the
biomechanical dynamics of redundant effectors and thus do not account for
the role played by interaction torques and biarticular muscles in generating
the control errors that lead to self-motion and to nonstraight end-effector
paths. More recent generalizations (Bullock, Cisek, & Grossberg, 1998;
Cisek, Grossberg, & Bullock, 1998) of the VITE class of models (Bullock &
Grossberg, 1988) address the neuromuscular level in considerable detail
but have not yet been applied to redundant effector systems.

Principles of stochastic optimal control have been used to provide a
very different kind of account for redundancy in which control signals are
computed by optimizing an effort functional at each point in time during
the movement (Todorov & Jordan, 2002, 2003; Todorov, 2004). While the
temporal and spatial continuity of the computation is neurophysiologically
plausible, the processes through which neuronal networks perform the
complex optimality computations in real time remain to be explored (but
see Scott, 2004; Shadmehr & Krakauer, 2008). These models have not taken
into account real arm kinematics, probably due to the difficulty of solving
the optimality conditions for nonlinear geometries, nor have they linked to
muscle joint models and biomechanical dynamics (but see Guigon, Baraduc,
& Desmurget, 2007, for a first effort in this direction) .

One of the limitations of our model is the restriction to two-dimensional
end-effector motion and only four joint angles. This is primarily a practical
limitation dictated by the desire to make detailed comparisons between the-
ory and experiment, more difficult to achieve when the number of degrees
of freedom and of task dimensions increases. The empirical question may
arise, however, if there is anything specific about motion constrained to a
plane that promotes the signatures of redundancy on which we focused:
self-motion and curved end-effector paths. To demonstrate that this is not
the case, we provide sample data from a separate experimental study in
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Figure 12: (Top) End-effector paths in three dimensions obtained from three
participants in a pointing task performed with 10 degrees of freedom (thin lines
reflect different trials). (Bottom) Range-space and self-motion as a function of
time observed while these participants performed the pointing movements
(mean across trials). Both components are normalized to the number of dimen-
sions of the respective subspaces.

which participants reached in three spatial dimensions to point to targets
using the full set of 10 degrees of freedom from scapular motion to the
wrist. Figure 12 shows the end-effector paths in three dimensions for three
participants as well as the associated joint velocities in the range-space
and the null-space. In this system, the range-space defined in reference to
the three-dimensional Cartesian end-effector position is three-dimensional,
while the null-space has seven dimensions. Thus, the amount of joint motion
in these two subspaces is normalized by dividing the sum of the squared
joint velocities by the number of dimensions of each subspace. This down-
weights the amount of self-motion. Even so, there is substantial self-motion
of typically about a third of the range-space motion, quite similar to the
two-dimensional data discussed earlier. The end-effector paths are curved,
also quite similar to what we reported in two dimensions. Thus, empiri-
cally, motion in three dimensions involving many more degrees of freedom
reveals the same signature of redundancy as analyzed and modeled in this
letter. We have generalized our model to this problem and found the model
compatible with these results. Because this modeling must address a num-
ber of new issues, including the effect of gravitational torques, a report on
this generalization exceeds the scope of this letter.

At the level of the muscle joint system, compared to much more elaborate
muscle models (Chang, Brown, & Loeb, 2000), we have made strongly
simplifying assumptions motivated by the practical goal of keeping the
model simple and limiting the number of model parameters. The strongest
simplifying assumption was neglecting the modulation of stiffness through
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a modulation of co-contraction during movement. This is a limitation that
must be overcome when generalizing to mechanically more challenging
conditions such as lifting loads or moving rapidly. We have not included
mechanisms that would impose joint limits. This did not become relevant in
the comparison to data, as the real movements stayed far from joint limits.
The redundancy problem at the muscular level is interesting in its own
right, and it seems possible to use ideas similar to the ones discussed here
at that level (see Laboissière, Ostry, & Feldman, 1996, for a discussion that
has conceptual similarity with the uncontrolled manifold). Addressing this
level is, however, beyond the scope of our contribution.

A final major limitation of the model reported here is the absence of an
account for variability (see Goodman & Latash, 2006, for a first effort in
this direction). We have analyzed the impact of various sources of noise on
the movement generated by our model (Martin, 2005). Given the amount
of detailed analysis and comparison to experiment this requires, we have
decided to discuss the stochastic properties of our theoretical account in a
forthcoming article.

At this point, what general conclusions can we draw from our analysis?
One insight is certainly that the redundant degrees-of-freedom in a given
task are used. The considerable amount of self-motion we observed shows
that it is not a priority of the nervous system to select solutions to the
degrees-of-freedom problem that are unique to a given task. In the model,
this self-motion is not planned but emerges from control problems such as
relatively low impedance, interaction torques, and multi-articular muscles.
More generally, however, the degrees of freedom that are redundant with
respect to one task may very well be used to accommodate another task
at the same time. The flexibility offered by allowing self-motion may be
the general principle of how the central nervous system accommodates the
complex demands on human movement that arise in the real world. This
flexibility may be the most important feature of human movement, more
important than good control. We have found consistently that a picture
with relatively sluggish muscle joint systems and no specific mechanisms
to compensate for interaction torques or for muscular interjoint coupling
provides an adequate description of multidegree-of-freedom movement.

Appendix A: Kinematic Model

x = l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

+ l4 cos(θ1 + θ2 + θ3 + θ4) (A.1)

y = l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

+ l4 sin(θ1 + θ2 + θ3 + θ4) (A.2)

with li the length of arm segment i (i = 1 . . . 4) numbered from proximal
to distal segments, and θi are the joint angles (i = 1 . . . 4 from the proximal
(sterno-clavicular joint) to the distal joints (wrist)), computed in each case
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relative to the next proximal segment (see Figure 2). The coordinates of the
end-effector position, (x, y), are in a Cartesian coordinate system centered
at the sterno-clavicular.

Appendix B: Kinetic Model

M(θ )1,1 = I1 + I2 + I3 + I4 + m1 · r2
1 + (m2 + m3 + m4) · l2

1

+ (m3 + m4) · l2
2 + m2 · r2

2 + m4 · l2
3 + m3 · r2

3 + m4 · r2
4

+ m3 · (2 · l1 · l2 · cos(θ2) + 2 · l1 · r3 · cos(θ2 + θ3)

+ 2 · l2 · r3 · cos(θ3)) + 2 · m2 · l1 · r2 cos(θ2)

+ m4 · (2 · l1 · l2 · cos(θ2) + 2 · l1 · l3 · cos(θ2 + θ3)

+ 2 · l1 · r4 · cos(θ2 + θ3 + θ4) + 2 · l2 · l3 · cos(θ3)

+ 2 · l2 · r4 · cos(θ3 + θ4) + 2 · l3 · r4 · cos(θ4))

M(θ )1,2 = I2 + I3 + I4 + m2 · r2
2 + m3 · r2

3 + m4 · r2
4 +m2 · l1 · r2 · cos(θ2)

+ (m3 + m4) · l2
2 + m4 · l2

3 + m3 · (l1 · l2 · cos(θ2)

+ l1 · r3 · cos(θ2 + θ3) + 2 · l2 · r3 · cos(θ3))

+ m4 · (l1 · l2 · cos(θ2) + l1 · l3 · cos(θ2 + θ3)

+ l1 · r4 · cos(θ2 + θ3 + θ4)

+ 2 · l2 · l3 · cos(θ3) + 2 · l2 · r4 · cos(θ3 + θ4)

+ 2 · l3 · r4 · cos(θ4))

M(θ )1,3 = I3 + I4 + m3 · r2
3 + m4 · r2

4 + m4 · l2
3 + m3 · (l1 · r3

· cos(θ2 + θ3) + l2 · r3 · cos(θ3)) + m4 · (l1 · l3 · cos(θ2 + θ3)

+ l1 · r4 · cos(θ2 + θ3 + θ4) + l2 · l3 · cos(θ3)

+ l2 · r4 · cos(θ3 + θ4) + 2 · l3 · r4 · cos(θ4))

M(θ )1,4 = I4 + m4 · r2
4 + m4 · (l1 · r4 · cos(θ2 + θ3 + θ4)

+ l2 · r4 · cos(θ3 + θ4) + l3 · r4 · cos(θ4))

M(θ )2,1 = M(θ )1,2

M(θ )2,2 = I2 + I3 + I4 + m2 · r2
2 + m3 · l2

2 + m3 · r2
3 + 2 · m3 · l2 · r3

· cos(θ3) + m4 · (
l2
2 + l2

3 + r2
4 + 2 · l2 · l3 · cos(θ3) + 2 · l2 · r4

· cos(θ3 + θ4) + 2 · l3 · r4 · cos(θ4)
)

M(θ )2,3 = I4 + I3 + m3 · r2
3 + m3 · l2 · r3 · cos(θ3) + m4 · (

l2
3 + r2

4

+ l2 · l3 · cos(θ3) + l2 · r4 · cos(θ3 + θ4) + 2 · l3 · r4 · cos(θ4)
)

M(θ )2,4 = I4 + m4 · r2
4 + m4 · l2 · r4 · cos(θ3 + θ4) + m4 · l3 · r4 · cos(θ4)
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M(θ )3,1 = M(θ )1,3

M(θ )3,2 = M(θ )2,3

M(θ )3,3 = I3 + I4 + m3 · r2
3 + m4 · (

l2
3 + r2

4 + 2 · l3 · r4 · cos(θ4)
)

M(θ )3,4 = I4 + m4 · r2
4 + m4 · l3 · r4 · cos(θ4)

M(θ )4,1 = M(θ )1,4

M(θ )4,2 = M(θ )2,4

M(θ )4,3 = M(θ )3,4

M(θ )4,4 = m4 · r2
4 + I4

H(θ, θ̇ )1 = (
2 · θ̇1 · θ̇3 + 2 · θ̇2 · θ̇3 + θ̇2

3

) · (−m3 · l1 · r3 · sin(θ2 + θ3)

− m3 · l2 · r3 sin(θ3)) + (
θ̇2

2 + 2 · θ̇1 · θ̇2
) · (sin(θ2) · (−m2 · l1

· r2 − m3 · l1 · l2) − m3 · l1 · r3 · sin(θ2 + θ3)) − m4 · (
(2 · θ̇1

· θ̇4 + 2 · θ̇2 · θ̇4 + 2 · θ̇3 · θ̇4 + θ̇2
4

) · (l3 · r4 · sin(θ4) + l2 · r4

· sin(θ3 + θ4) + l1 · r4 · sin(θ2 + θ3 + θ4)) + (
2 · θ̇1 · θ̇3

+ 2 · θ̇2 · θ̇3 · +θ̇2
3

) · (l2 · r4 · sin(θ3 + θ4) + l1 · l3 · sin(θ2 + θ3)

+ l2 · l3 · sin(θ3) + l1 · r4 · sin(θ2 + θ3 + θ4))

+ · (
2 · θ̇1 · θ̇2 + θ̇2

2

)
(l1 · r4 · sin(θ2 + θ3 + θ4)

+ l1 · l3 · sin(θ2 + θ3) + l1 · l2 · sin(θ2))

H(θ, θ̇ )2 = θ̇2
1 · sin(θ2) · (m2 · l1 · r2 + m3 · l1 · l2) + m3 · r3 · l1

· sin(θ2 + θ3) · θ̇2
1 − m3 · l2 · r3 · sin(θ3) · (2 · θ̇3 · θ̇1 + 2 · θ̇3 · θ̇2

+ θ̇2
3 ) + θ̇2

1 · (m4 · l1 · l2 · sin(θ2) + m4 · l1 · l3 · sin(θ2 + θ3)

+ m4 · l1 · r4 · sin(θ2 + θ3 + θ4)) − m4 · ((l2 · l3 · sin(θ3)

+ l2 · r4 · sin(θ3 + θ4)) · (
2 · θ̇3 · θ̇1 + 2 · θ̇3 · θ̇2 + θ̇2

3

)
+ (l2 · r4 · sin(θ3 + θ4) + l3 · r4 · sin(θ4)) · (

2 · θ̇1 · θ̇4

+ 2 · θ̇2 · θ̇4 + 2 · θ̇3 · θ̇4 + θ̇2
4

)
H(θ, θ̇ )3 = (

θ̇2
1 + θ̇2

2 + 2 · θ̇1 · θ̇2
) · (m3 · l2 · r3 · sin(θ3) + m4 · l2 · l3

· sin(θ3) + m4 · l2 · r4 · sin(θ3 + θ4)) + θ̇2
1 · (m3 · l1 · r3

· sin(θ2 + θ3) + m4 · l1 · l3 · sin(θ2 + θ3) + m4 · l1 · r4

· sin(θ2 + θ3 + θ4)) − m4 · l3 · r4 · sin(θ4) · (2 · θ̇4 · θ̇1

+ 2 · θ̇4 · θ̇2 + 2 · θ̇4 · θ̇3 + θ̇2
4 )
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Table 2: Biometric Parameters.

Parameter Name Symbol Value Units

Body mass M 55 kg
First segment length l1 0.2024 m
Second segment length l2 0.3035 m
Third segment length l3 0.2586 m
Fourth segment length l4 0.1658 m

H(θ, θ̇ )4 = θ̇2
1 · m4 · l1 · r4 · sin(θ2 + θ3 + θ4) + (θ̇1 + θ̇2)2 · m4 · l2 · r4

· sin(θ3 + θ4) + m4 · l3 · r4 · sin(θ4) · (
(θ̇1 + θ̇2)2 + 2 · θ̇1 · θ̇3

+ 2 · θ̇2 · θ̇3 + θ̇2
3

)

The biometric parameters entering the kinematics and kinetics were set
based on measurements from one participant and are listed in Table 2. The
center of mass and the inertia of the various arm segments are computed
following Hanavan (1964). Data for the scapular joint are not available and
are estimated to be a quarter of the upper torso biometrics data.

Appendix C: Muscle Model

This joint muscle system contains two components, which represent, respec-
tively, the groups of all agonist and all antagonist muscles. Each component
is characterized by a nonlinear function, the + sign indicating half-wave rec-
tification, so that each component generates torques in only one direction,
negative for the agonist component and positive for the antagonist com-
ponent. The associated torques reach zero at the equilibrium lengths, θi =
λ

p
i = λi − Co and θi = λm

i = λi + Co, which are offset from a joint equilib-
rium length, λi , by a constant amount of co-contraction, Co. The combined
torque, Ti , generated at joint i by the agonist and antagonist components,

Ti = Kl ·
((

e [Knl ·(θi −λ
p
i )]+ − 1

) − (
e−[Knl ·(θi −λm

i )]− − 1
))

+µbl · asinh(θ̇i − λ̇i ) + µrl · θ̇i , (C.1)

is at equilibrium when θi = λi (in the absence of external torques). Here,
Kl is a linear and Knl is a nonlinear stiffness factor. Two types of viscosity
are taken into account: a linear contribution to viscosity (coefficient µl) cap-
tures the physical properties of muscle tissue, and a nonlinear contribution
(coefficient, µnl) to viscosity summarizes more complex velocity dependent
contributions to peripheral control.

The parameter values listed in Table 3 were estimated to be consistent
with the results of Gribble et al. (1998).
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Table 3: Muscle Parameter Values for the Reference Parameter Set.

Parameter Name Symbol Value Units

Co-contraction Co π/90 rad

Impedance matrix Z




16 6 1 0

6 16 3 0

1 3 8 3

0 0 3 6




Linear stiffness Kl .4 kg m2s−2

Nonlinear stiffness gain Knl 1
Linear active viscosity µbl .3 kg m2s−1

Linear passive viscosity µrl 0.03 kg m2s−1

Appendix D: Other Model Details

D.1 Termination Phase of the Movement. The end of the movement is
signaled to the neuronal dynamics, equation 2.1, by a function that probes
how close the timing variable is to its resting state: Ir = aσ (2 exp[−100u2] −
0.9). This function is clamped to zero when the movement is initiated. The
beginning of the movement is brought about by setting Im to a large positive
value for a brief moment, which helps switch the neuronal dynamics in the
movement state.

During the resting phase of the system, the virtual joint motion is ac-
tively damped (by adding −βsσ (ur )λ̇ to equation 2.11). Any remaining dis-
crepancies between the desired end-effector location, rd and the estimated
end-effector location, re are servo-controlled to zero.

D.2 State Estimation. For the back-coupling, an estimate, θd , of the
effector state, θ , is computed from

τ 2 · θ̈d + 2 · τ · θ̇d + θd = θ , (D.1)

where τ is a time constant and the index d stands for delays.

D.3 Emulation of Inverse Dynamics. To emulate motor control with an
inverse dynamic model that predicts interaction torques as well as inertial
moments, we assume that the muscle generates an additional amount of
torque that exactly cancels the interaction torques and sets the inertial tensor
to one. The biomechanical equation of motion 15 then becomes

M(θ ) · θ̈ + H(θ , θ̇ ) = Tm + H(θ , θ̇ ) + (M(θ ) − I ) · Tm, (D.2)

which is simply θ̈ = (1 + α)Tm.

Appendix E: Parameter Values

There are four classes of parameters for which values must be determined.
(1) Biometric parameters are directly estimated from measurements on one
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Table 4: Model Parameters Controlling Movement Initiation, Termination, and
Timing.

Parameter Name Symbol Value Units

Oscillator limit cycle time ωh 16 Hz
Oscillator stability αh 0.05 s−1

Oscillator relaxation constant βo 15 s−1

Switching dynamic constant βr , βm 400 s−1

Switching dynamic resting state h 1
Switching dynamic constant δ 2
Stopping activity gain (Ir ) a 15
Gain of sigmoid for initiation dynamics ar 100
Fine positioning constant β f 250 s−1

Virtual velocity damping constant βs 30 s−1

Table 5: Model Parameters Controlling the Neuronal Dynamics of Virtual Joint
Trajectory Formation.

Parameter Name Symbol Value Units

Virtual relaxation constant βv 30 s−1

Back-coupling constant position βs1 100 s−2

Back-coupling constant velocity βs2 35 s−1

Delay constant τ 0.01 s

participant and listed in Table 2. (2) Parameters of the muscle joint model
were determined based on estimates from the empirical literature as dis-
cussed above. These parameters are listed in Table 3. (3) A set of model pa-
rameters describe the mechanism for initiating and terminating the move-
ment as well as determining the temporal shape of the movement. The
values of these parameters have very little impact on the results and are
listed in Table 4. (4) A small set of model parameters describes the core
neuronal dynamics of virtual joint trajectory formation and are relevant for
the model. These four parameters are listed in Table 5.
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