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Abstract 

Bundle Adjustment is a common technique to improve results 
of any multiple view reconstruction algorithm to obtain 3D 
structure for computer vision and computer graphics. If the 
error of a reconstruction can be expressed by an error 
function, this function can be minimized by numerical 
methods such as the Levenberg-Marquardt algorithm. By this 
means, the reconstruction can often be significantly 
improved. Unfortunately, there is no guarantee for the 
detected minimum of being a global minimum, since 
numerical optimization algorithms converge at local minima. 
The idea presented in this paper is to support the optimization 
process by evolutionary algorithms. While the existence of 
fast Levenberg-Marquardt algorithms allow for an obviously 
faster solution than evolutionary algorithms, the latter can 
mitigate their disadvantage of getting trapped in local 
minima. We demonstrate the combination of Bundle 
Adjustment with an evolutionary algorithm by means of 3D 
reconstruction of objects from visual information only. 
 

1 Introduction 

In this paper, we start by  presenting a system that acquires an 
image sequence of an object and reconstructs a 3D-model of 
this object using exclusively camera images. The model 
consists of a cloud of unlinked space points. By projecting 
these space points back into the images a reprojection error 
can be measured. It can be expressed by an error function and 
by applying Bundle Adjustment we try to minimize it with a 
Levenberg-Marquardt algorithm. As the initial reconstruction 
provided by the system is rather deficient in most cases the 
algorithm generally converges at an unsatisfactory local 
minimum. In order to overcome this situation the system uses 
a second optimization strategy by applying a simple 
evolutionary algorithm. We will illuminate this strategy in the 
third section.  By regarding an exemplary result in the fourth 
section, we will show that evolutionary algorithms provide 
the opportunity to elude or overcome local minima. 
Afterwards the universality and expendability of the 
presented ideas are briefly discussed. 

2 A System Acquiring Object Models using 
Visual Information only 

In this section, we describe the object acquisition system, 
which is the framework that allows for the application of the 
ideas presented in this paper. An extensive description can be 
found in [3]. 

2.1 Acquisition of an image sequence 

The first step in the work flow of the system is the acquisition 
of an image sequence. The setup of this procedure is shown in 
figure 1. An object is placed in the middle of a turntable. A 
camera is fixed to a robot arm and by moving turntable and 
robot arm the camera can capture an arbitrary image sequence 
of the object. Between two pictures of a sequence, the 
turntable moves about 2 degrees. 
 
The background of all images in the sequence is eliminated 
by background subtraction. The background images are 
acquired by generating an additional image sequence after 
removing the object. 

2.2 Generation of Image Point Correspondences 

In the next step, point correspondences are generated between 
all images of the sequence. For this purpose, interesting 
points are chosen in the images. In the described system, this 

Figure 1: Setup of the image acquisition 



task is done by calculating difference images between 
successive images of the sequence and denoting points where 
changes occur. These points are tracked to the next images. 
The applied tracking method is based on the Gabor responses 
at the image points. For details see [5]. In this way, features 
of the object can be tracked along several images. While 
processing the sequence tracked points are constantly dropped 
(e.g. when they are not visible anymore) and replaced by new 
points.  

2.3 Reconstruction of a Projective 3D-Model 

On the basis of point correspondences the epipolar geometry 
between several image pairs can be calculated. Afterwards, 
for each correspondence a space point can be calculated per 
triangulation. Because no calibration of the cameras or any 
other knowledge is assumed we derive a projective model 
only (i.e., a projective cloud of space points). To cover the 
whole image sequence we need to consider several image 
pairs and receive several partial reconstructions that need to 
be merged. Since the reconstructions are projective they differ 
by projective transformations that have to be calculated. This 
can be done if a sufficient number of point correspondences 
in one image pair is also visible in other image pairs. With the 
parameters chosen for acquisition it is guaranteed that the 
images overlap sufficiently, such that each image that is part 
of one pair is also part of another image pair. 

2.4 Measuring and Minimizing the Reprojection Error 

The reconstructed space points can be reprojected in each 
image and the calculated reprojection is then compared to the 
measured image points that were basis for the calculation of 
the space point. The aberrations add up to the overall 
reprojection error. It is expressed by an error function 
depending on the calculated 3D-points and camera matrices. 
The system tries to minimize this function by applying a fast 
Levenberg-Marquardt algorithm (presented in [2]) and, in 
addition, a simple evolutionary algorithm.  

3 Optimizing 3D-Models by Bundle Adjustment 
and Evolutionary Algorithms 

3.1 Setting up the Reprojection Error 

The reprojection error of a reconstructed space point in one 
image can be expressed as 
 
  ex' = d(P'X', x)    (1) 
  
where x is the measured image point, X' is the reconstructed 
space point, P' is the reconstructed camera matrix of the 
image and thus, P'X' is the reprojected image point. Hence, ex'  
expresses the aberration between the original, measured 
image point and the corresponding backprojected 3D-point of 
the model. 

To express the reprojection error of the whole reconstruction 
Γ we sum the squared errors of all points in all images, 
attaining the overall reprojection error  
 
 
  eΓ =  ∑i,j  d( P'jX'i, xij)

2  
(2) 

 
We assume a Gaussian distributed measurement error and by 
squaring the single errors we achieve a maximum likelihood 
estimation.  

3.2 Minimizing eΓ by Bundle Adjustment 

A fast Levenberg-Marquardt algorithm minimizing eΓ is 
presented in [2]. In equation (2) we expressed eΓ as an error 
function depending on a number of parameters, precisely the 
coordinates of the reconstructed space points and entries of 
the reconstructed camera matrices. This allows us to apply 
numerical techniques to find a local minimum in the 
parameter space. By partitioning the set of parameters and 
utilizing the sparse structure of the used matrices the 
minimization can be performed in reasonable time. 

3.3 Minimizing eΓ by an Evolutionary Algorithm 

Evolutionary algorithms are mostly applied to "black-box"-
problems. A fitness function depending on a vector of 
parameters is given and can be evaluated, but no further 
knowledge about this function is assumed. The aim is to find 
a vector of parameters - in the following called search points 
- that maximizes (or minimizes, depending on the particular 
problem the function models) the function. Often several 
search points - a population of search points - are treated at a 
time. New search points are added by choosing and 
modifying existing search points by randomized mutation of 
some values or by combining the parameters of two (or more) 
chosen search points. Search points are chosen with greater 
probability when they result in a higher (or lower, if 
minimization is desired) function value and search points with 
contrary results are removed. An extensive description of 
evolutionary algorithms can be found in [4], for instance. 
 
In the presented system a simple evolutionary algorithm is 
used. We use equation (2) as fitness function that we want to 
minimize and the coordinates of the reconstructed space 
points and entries of the reconstructed camera matrices form 
the search points. The population consists of a single search 
point that is modified by randomized mutation of some 
values. The new search point replaces the old one if an 
improvement (in this case a decrease of the function value) 
compared to the previous search point occurs. The probability 
and variance of the mutation adapt during the processing of 
the algorithm, i.e., these values vary as well and are taken 
over if they yield a notable improvement. 
 
 
 



4 Results and Examples 

Without doubt no optimization can compensate for deficient 
initial reconstructions. However, both optimization strategies 
– Bundle Adjustment with a Levenberg-Marquardt algorithm 
as well as the evolutionary algorithm – can result in 
substantial improvement, a fact that might not be surprising. 
While the Levenberg-Marquardt algorithm converges at a 
minimum and terminates, the evolutionary algorithm has to 
be stopped by defining termination conditions. In fact, the 
runtime was simply confined by defining a maximal number 
of iterations. This proceeding is justified by the observation 
that a notable improvement can occur after a long state of 
stagnation, so other termination conditions do not seem more 
appropriate. 
 
We applied the evolutionary algorithm on initial 
reconstructions as well as on reconstructions that were 
previously optimized by the Levenberg-Marquardt algorithm. 
The most notable observation was that even in the latter case 
the evolutionary algorithm could generally improve the 
results and in some cases in a substantial way. If we applied 
the Levenberg-Marquardt algorithm afterwards a second time, 
this could often lead to further improvement. 
 
To visualize this results, in figures 2 and 3 we show the 
reconstruction error in two views of an exemplary 
reconstruction at different stages of optimization. Each 
reprojected space point is denoted by a small circle from 
which a line points to the place where the corresponding 
image point was measured. As these points should be 
identical, the lengths of the lines account for the reprojection 
error. 
 
The initial reconstruction is shown in subfigures labeled (a), 
in the other subfigures we see the same view after application 
of the Levenberg-Marquardt algorithm (b), the evolutionary 
algorithm (c) and again the Levenberg-Marquardt algorithm 
(d). 
 
In numbers (the function value corresponding to the squared 
deviation in pixels), the overall reprojection error of the initial 
reconstruction that was calculated from 13 views amounted to 
1,379,510 in all images and was reduced by the Levenberg-
Marquardt algorithm to 938,946. The evolutionary algorithm 
with 34,408 iterations reduced the error to 627,546 and 
allowed a second application of the Levenberg-Marquardt 
algorithm to yield a final error of 204,517. 
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(d) 
Figure 2: One view of the reconstruction at different stages of 

optimization 
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(d) 

Figure 3: Another  view of the reconstruction at different 
stages of optimization 

5 Conclusions 

By presenting an exemplary result we showed how a simple 
evolutionary algorithm can successfully supplement the 
optimization process of a 3D-reconstruction that is generally 
performed by Bundle Adjustment with a Levenberg-
Marquardt algorithm. 
 
One could argue that this success can be explained by the 
deficient initial reconstructions the system delivers, that are 
far from a global optimum. However, if real-life data is used 
we always have to deal with these situations. 
 
Without question, the first step to generate an acceptable 3D-
reconstruction is to upgrade the system to create better initial 
reconstructions by applying the trifocal tensor (as 
recommended in [1], for instance), which is not used in the 
current system. To receive a metric reconstruction, 
auto-calibration techniques can be applied (see [2]). These 
techniques allow for gaining a metric reconstruction without 
needing extensive further information. 
 
Considering the optimization we suspect that evolutionary 
algorithms generally can fundamentally contribute. We used a 
simple evolution strategy only. By using a larger population 
and recombination an improved optimization behaviour 
especially in tough situations could be obtained. Of course, 
this is a broad field still to be investigated. 
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