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The Gestalt principle of collinearity (and curvilinearity) is widely re-
garded as being mediated by the long-range connection structure in pri-
mary visual cortex. We review the neurophysiological and psychophysical
literature to argue that these connections are developed from visual ex-
perience after birth, relying on coherent object motion. We then present a
neural network model that learns these connections in an unsupervised
Hebbian fashion with input from real camera sequences. The model uses
spatiotemporal retinal �ltering, which is very sensitive to changes in the
visual input. We show that it is crucial for successful learning to use the
correlation of the transient responses instead of the sustained ones. As a
consequence, learning works best with video sequences of moving ob-
jects. The model addresses a special case of the fundamental question of
what represents the necessary a priori knowledge the brain is equipped
with at birth so that the self-organized process of structuring by experi-
ence can be successful.

1 Introduction

It has long been realized that perception is not a passive intake of unstruc-
tured sensory signals, but a highly selective and structured active process
employing complicated and widely unknown rules to guide behavior. If
these rules are not hardwired at birth, and we will argue in detail that
some of them are not, this creates a vicious circle of knowledge depend-
ing on perception to arise and perception in turn depending on acquired
knowledge to be possible. An attractive way to break this circle is the pos-
tulate that only some basic perceptual mechanisms are present at birth,
which can be used to learn useful processing rules from the properties of
the environment. These can lead to re�ned perception and, consequently,
the acquisition of re�ned knowledge about the environment. The evolu-
tionary advantage gained from such a hierarchy would be a lower bur-
den on the coding capacity of the genome and more �exibility to cope
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with such environmental changes that happen too fast for evolutionary
changes.

The most prominent rules for visual perception are the Gestalt principles
formulated by Wertheimer (1923) and Koffka (1935). Their basic postulate
is that a percept is more than the sum of the constituent parts in that these
parts are linked to form a coherent whole. The Gestalt principles are rules
that govern what should be linked together to form a percept and what
should not. The most important ones are proximity, similarity, closure, good
continuation, common fate, good form, and global precedence.

Recent research in computer vision has begun to recognize Gestalt princi-
ples as important for object selection and segmentation, and they have been
applied in numerous models of visual perception, where they are usually
taken for granted. To our knowledge, there are two models for their devel-
opment during maturation of the visual system (Grossberg & Williamson,
2001; Choe, 2001), but we know of none that relies on short sequences of a
single natural scene as the basis for learning.

We will present a detailed model of how the principles of collinearity
and curvilinearity can be learned from real visual stimuli, assuming that
the principle of common fate actively organizes perception already at birth.
We will employ three assumptions, which are, to varying degree, covered
by experimental data:

² Gestalt principles are implemented by the connectivity of the visual
cortex.

² There is a hierarchy of Gestalt principles in the sense that some prin-
ciples are already active at birth, and others are developed later and
in�uenced by visual experience. This hierarchy is re�ected in the tem-
poral order in which the various principles become observable during
development.

² The higher principles are learned from experience, while the lower
ones assist in structuring the data to be learned.

Concretely, we will review the literature to present evidence that the prin-
ciples of collinearity and curvilinearity correspond to structured horizontal
connections between simple cells in V1 and that the principle of common
fate is more fundamental than collinearity and curvilinearity. Then we de-
scribe a neuronal model that shows that collinearity and curvilinearity can
be learned from observing moving objects by structuring horizontal con-
nections with a Hebbian learning rule.

The letter is organized as follows. In section 1.1, we review recent psy-
chophysical work on the course of development of various Gestalt princi-
ples in early infancy. In section 1.2, we focus on the role of common fate.
In section 1.3, we look in depth at recent neurophysiological data about
which biological pathways and computations are probably present at birth
or shortly afterward and which are structured by experience. The more
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technically minded reader may want to skip this introduction and move to
section 2, where we describe a simpli�ed model of visual processing up to
V1 and the proposed learning dynamics of the horizontal connections. The
technical details can be found in the appendices. In section 3, the outcome
of computational experiments using this model is presented. Finally, in the
discussion, we extract the basic components that we consider crucial for the
success of the model.

1.1 The Developmental Succession of Gestalt Principles. In this sec-
tion, we collect psychophysical evidence that Gestalt principles are not
present at birth and that they develop one after the other. Although for
adults the Gestalt principles of good form or good continuation are domi-
nant for perceiving an object as a unity, children younger than one year can
hardly make use of them (Spelke, Breinlinger, Jacobson, & Phillips, 1993).
The same holds for texture similarity and color similarity. Twelve-week-old
infants do not use these principles at all with regard to object unity and
slowly start to employ them during the development in the �rst postnatal
year. Detecting form at a very early stage seems to depend on continuous
optical transformations caused by object or observer motion. At 24 weeks,
infants are unable to grasp 3D object form from multiple stationary binocu-
lar views. However, if 16-week-old observers are presented with a continu-
ous geometrical transformation around a stationary 3D object, they are able
to build up a 3D form representation (Kellman & Short, 1987).

The disparity information from the two eyes cannot be used immediately
after birth. It is only at the age of 4 to 8 weeks that the convergence accuracy
of the eyes for distances between 25 cm and 200 cm reaches the accuracy
of the adult (Hainline, Riddell, Grose-Fifer, & Abramow, 1992). Accommo-
dation of the eyes becomes accurate at 12 weeks postnatally (Braddick &
Atkinson, 1979). Stereo vision itself develops even later, at the age of 16
weeks (Yonas, Arterberry, & Granrud, 1987). In the period between 12 and
20 weeks postnatally, strong binocular interaction arises, which at 24 weeks
culminates in a superior binocular acuity and the beginning of stereopsis
(Birch & Salomão, 1998; Birch, 1985).

The contrast sensitivity for spatial frequency gratings increases between 4
and 9 weeks forall spatial frequencies, in line with the convergence accuracy
of the eyes (Norcia, Tyler, & Hamer, 1990). At 9 weeks, the acuity for low
spatial frequency gratings reaches adult levels, but for higher frequencies,
it is still three octaves worse than in the adult (Courage & Adams, 1996).
From this time on, the contrast sensitivity for high spatial frequency gratings
increases systematically in line with the emergence of stereo vision. The
color system develops even later: luminance contrast above 20% is reliably
detectable at the age of 5 weeks, but there is still no response to isoluminant
chromatic stimuli of any size or contrast. In the following weeks, chromatic
gratings are detectable only at low spatial frequencies with an acuity 20
times lower than that for luminance stimuli. The sensitivity to chromatic
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gratings increases more rapidly in the following weeks than the one for
luminance stimuli (Morrone, Burr, & Fiorentini, 1990). Not only physical
factors such as changing photoreceptor density may be responsible for the
changes in contrast sensitivity, but the neural noise is nine times higher in
neonates than in adults and decreases to adult levels during the �rst eight
months of development (Skoczenski & Norcia, 1998).

1.2 The Relevance of Rough Motion Information. In this section we
discuss the biological relevance of motion information and collect evidence
that it is available at an early stage of development. We have argued that
neither form nor color nor disparity information can be processed at early
postnatal stages, but luminance information at low spatial frequencies can.
The latter is thought to be mediated mainly by the M-path, which is also es-
sential for motion processing. The Gestalt principle of common fate realized
by common motion of object parts is the dominating principle for perceiv-
ing the unity of an object in 12-week-old infants (Kellman, Spelke, & Short,
1986). This is independent of the direction of motion in 3D space. Common
motion dominates �gural quality, substance, weight, texture and shape in
16-week-old infants (Streri & Spelke, 1989). At this age, the infant is able
to make a distinction between object and observer motion and uses only
object motion for the generation of an object percept (Kellman, Gleitmann,
& Spelke, 1987).

The question arises as to what kind of computation is carried out regard-
ing the visual information originating from a moving object detected by
the retina. Twenty-four-week-old infants can predict linear object motion in
grasping tasks but have dif�culties doing the same for visual tasks involv-
ing tracking of objects that are out of reach (Hofsten, Vishton, Spelke, Feng,
& Rosander, 1998). The apparent inability to predict linear object motion
together with the observation that at low spatial frequencies, luminance
information with suf�cient contrast can be processed directly after birth,
makes it very unlikely that the visual system is able to estimate accurate
motion vectors at early stages of development. Nevertheless, some motion
processing is important in early development: Piaget (1936) reported that
even newborns react to high-contrast stimuli that are moving in front of
their faces. This is consistent with the �ndings on luminance gratings, and
we conclude that at birth, a system must be present that can detect changes
in the visual world signaled by achromatic luminance stimuli of low spatial
frequency.

We interpret these �ndings such that learning Gestalt principles relies
on changes in low-frequency luminance information at times when no ego-
motion occurs. Infants can actively create such a situation by gazing in a
constant direction, where a moving object of suf�cient size and luminance
contrast is present, for a considerable amount of time. This speci�c behavior
is indeed observed regularly, as has been reported by, for example, Piaget
(1936) and Barten, Birns, & Ronch (1971). Our model refers to this particular
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situation, which from “within” the visual system is distinguished by strong
transient responses in retina and cortex, together with the knowledge that
the observer is not moving. In order to complete the model, two things
remain to be speci�ed:

1. What is the supposed neuronal substrate for the functional organiza-
tion according to Gestalt principles?

2. How can this substrate be modi�ed on the basis of the transient re-
sponses caused by object movement?

1.3 Development of the Visual Pathway. In order to motivate our an-
swer to these questions, we now review some facts about the early devel-
opment of connectivity in the visual pathway. Although for the retina, the
process of maturing is not complete after birth, Tootle (1993) has shown that
ganglion cells of cats show burst-like spontaneous activity and that those
cells fatigue very quickly after repeated stimulation with the same stimu-
lus in the �rst postnatal week. We interpret this functionally as a kind of
transient response property that detects changes in the visual input. The
same author further showed that ON- and OFF-ganglion cells are already
present at birth and that the proportion of light-driven ganglion cells ap-
proaches 100% in the second postnatal week. Furthermore, the retinogenic-
ulate (Snider, Dehay, Berland, Kennedy, & Chalupa, 1999) and the thala-
mocortical (Isaac, Crair, Nicoll,& Malenka, 1997) pathways develop mainly
prenatally and are therefore present at birth. In visually inexperienced kit-
tens, 90% of all cells in area 17 are of simple type, and 70% of all visually
active neurons in this area show a rudimentary orientation bias (Albus &
Wolf, 1984), although only 11% are speci�cally tuned to one orientation.
Most of these cells respond preferentially to contrast changes caused by de-
creasing light intensity as 76% of all responding neurons are activated by
OFF-zones exclusively. This means that area 17 shows a sensitivity bias in
favor of dark stimuli immediately after birth. The cells responding to visual
stimuli are located in layers 4 and 6 of the striate cortex, and there is almost
no activity in layers 2=3 and 5 before 3 weeks postnatally. In the fourth post-
natal week, ON- and OFF-zones are equal in number, and almost all cells in
layers 4 and 6 show orientation tuning. Psychophysical experiments show
that in the human infant, contrast differences overrule orientation-based
texture differences in segmentation tasks (Atkinson & Braddick, 1992) up
to the twelfth week.

We now turn to the question of what the neural substrate for learning the
Gestalt principles of collinearity or curvilinearity is. There is extensive evi-
dence in the psychophysical (Field, Hayes, & Hess, 1993; Hess & Field, 1999;
Kovacs, 2000), neurophysiological (Malach, Amir, Harel, & Grinvald, 1993;
Bosking, Zhang, Scho�eld, & Fitzpatrick, 1997; Schmidt, Goebel, Löwel, &
Singer, 1997; Fitzpatrick, 1997), and modeling (Grossberg & Mingolla, 1985;
Li, 1998; Ross, Grossberg, & Mingolla, 2000; Yen & Finkel, 1998; Gross-
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berg & Williamson, 2001) literature that these principles are at least partly
implemented by horizontal connections in V1. The models described by
Grossberg and Mingolla (1985), Grossberg and Williamson (2001), and Ross
et al. (2000) agree with perceptual data even to the point of reproducing
illusionary contours.

Most, but not all, vertical interlayer local circuits in V1 of macaque mon-
keys develop prenatally in precise order without visual experience (Call-
away, 1998). This means that axon terminals at least �nd the right layer and
already form a crude retinotopic projection. However, intralayer horizontal
connections are present but only rudimentarily developed at birth, as most
axon terminals have not yet hit their target cells. Studies of postmortem hu-
man brains show that the �rst horizontal connections develop 1 to 3 weeks
before birth (37 weeks after gestation) in layers 4b and 5. Their number
increases rapidly after birth and culminates in a uniform plexus at around
7 weeks after birth. The patchiness of these projections as it is found in
the adult emerges after at least 8 weeks postnatally (Burkhalter, Bernardo,
& Charles, 1993; Katz & Callaway, 1992). The long-range connections can
extend up to a maximum of four hypercolumns in each direction (Katz &
Callaway, 1992). Burkhalter et al. (1993) further showed that consistent with
the results of neuronal activity in kittens, layers 2=3 and 6 develop horizon-
tal connections later than layers 4b and 5. In layer 2=3, they are not present
until the sixteenth postnatal week and reach maturity in the sixtieth week.
It is interesting to note that the connections in layer 2=3 are patchy from the
start. This suggests that they can already bene�t from the patchiness of the
connections in layer 4b probably mediated by a direct vertical connection
from layer 4b to layer 2=3 that develops after birth (Katz & Callaway, 1992).
Furthermore, as layer 4b belongs to the M-path and provides direct input
to area MT (which is strongly involved in motion processing), we conclude
that the processing of visual information related to motion precedes and
probably supports the processing of form, color, precise stereoscopic depth,
and their integration. This assumption is consistent with the psychophys-
ical results mentioned earlier. The development of horizontal connections
has been shown to depend on the visual input presented (Löwel & Singer,
1992).

1.4 Relation to Natural Image Statistics. An article about learning from
natural stimuli is incomplete without discussing what is known in the liter-
ature about the statistics of such stimuli. The idea that the visual system is
wired in a way that it provides an ef�cient and nonredundant representa-
tion of the incoming signals goes back to Attneave (1954) and Barlow (1961).
Based on this principle, there have been successful predictions of properties
of retinal, lateral geniculate nucleus (LGN), and simplecells in V1. Examples
without attempt on completeness include Olshausen and Field (1996), Bell
and Sejnowski (1997), and van Hateren and Ruderman (1998). A complete
review of this line of work is beyond the scope of this letter but is done beau-
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tifully in Simoncelli and Olshausen (2001). Additional assumptions have to
be employed—typically either the sparseness (Olshausen & Field, 1996) of
a cortical representation or the statistical independence of the activities of
the cells involved. The latter leads to properties of visual cells resulting
from independent component analysis (van Hateren & Ruderman, 1998;
Bell & Sejnowski, 1997). Also, translation invariance is usually assumed,
because otherwise the required statistical basis would become intractably
large.

During review of this article, we learned that independent component
analysis has recently been applied successfully to networks of V1 cells that
support contour enhancement (Hoyer & Hyvärinen, 2002). They learn a
feedforward layer of contour coding cells that take input from complex
cells in V1. The underlying assumption is sparseness of coding.

With our model, we take a slightly different approach. We do not em-
ploy any assumption about sparseness or independence of cortical signals.
Rather, we model the spatiotemporal properties of the visual pathway up
to V1 and apply Hebbian learning to the horizontal connections between
simple cells. The model is more sophisticated in biological detail than others
in this area. For example, positivity of neuronal responses is always main-
tained. As a consequence, the stimuli are preprocessed in a nonlinear way
before providing data for learning. The importance of such nonlinearities
has been pointed out by Zetzsche & Krieger (2001). A feature that our model
shares with the others is the explicit assumption of translation invariance,
which leads to weight sharing during learning. This assumption is rather
unbiological but hard to avoid for keeping computation times acceptable.

2 Methods and Models

Starting from the data just reviewed, we assume that the speci�c connectiv-
ity pattern of long-range horizontal connections provides the neural basis
for the Gestalt principles of collinearity and curvilinearity. This notion is
supported by the apparent co-occurence of the use of these principles and
the maturation of the respective connections during development. This an-
swers the �rst question raised at the end of section 1.2 about the neural
substrate of Gestalt principles. In order to answer the second one about
how these connections develop depending on object motion, we propose
a quantitative model of how the transient retinal stimuli are propagated
toward the cells interconnected by the axons in question (see Figure 1) and
how their connection strengths are modi�ed. We model the relevant parts
of the visual pathway running from the retina via the retinogeniculate and
thalamocortical connections to the simple cells of layer 4b in primary visual
cortex and apply a Hebbian learning rule to shape the connectivity.

All functions we will use to describe our model are functions of two-
dimensional space, but we omit this dependency for convenience of no-
tation. The full details of the retina model are given in appendix A.1; we
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Figure 1: Illustration of the complete model.

summarize only the important features here. The retinal photoreceptors
show a strong transient response to changing stimuli. Their output is passed
to bipolar cells, and �nally ganglion cells perform a spatial �ltering using
the well-known center-surround antagonism that enhances local contrast
differences. As the temporal information detected by the photoreceptors is
preserved, the ganglion cells show a transient output as well.

Our retina model is based on the model for Y-ON-ganglion cells devel-
oped by Gaudiano (1994), which is extended in two respects. First, both
ON- and OFF-ganglion cells are modeled and, second, the time course of
the transient response pattern of each cell is represented in a simpli�ed way
by just two values (see Figure 2): a maximal transient response vtr when
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Figure 2: The computation of the discrete approximations vtr and vst to the
continuous transient activity of an ON ganglion cell.

new input comes in, and the steady-state activity rate vst while this input
is constantly present. Here, it is assumed that the timescale of the ganglion
cells is faster than the change in the input, which is recorded by a camera at
3 frames per second. This requirement results in an upper bound for object
speed relative to the timescales used for the neuronal processing.

Neither the LGN nor the cortical layer 4c® is explicitly modeled, as it is
assumed that in early ontogenesis, no processing relevant for the develop-
ment of Gestalt principles is performed there. Therefore, the activity of ON-
and OFF-ganglion cells provides direct input to the simple cells in layer 4b.
It will become clear later that for the purpose of our model, it is not neces-
sary to model all aspects of inhibitory neurons in striate cortex in detail. A
detailed model of the cortical dynamics mediated by short-, middle-, and
long-range corticocortical connections is also not required. Let us explain
why. There are a lot of inhibitory interneurons in the cortex that receive af-
ferent input themselves and affect the excitatory pyramidal cells later by at
least short-range lateral connections. We assume that the main effect of those
inhibitory connections with regard to our model is to avoid an excitatory
explosion when input arrives at the cortex, as only afferences are coming
in. This assumption is realistic because the high neural noise in neonates
(see section 1.3) requires strong global inhibition—stronger than the over-
all excitation—in the cortex to keep the whole system stable. Furthermore,
activity mediated along horizontal connections alone should not be able to
trigger a response in a target cell. If inhibitory neurons have no other func-
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tion than the ones mentioned, we can avoid modeling them explicitly by
letting only those excitatory cortical cells participate in the structuring of
long-range cortical connections that receive strong primary afferent input
themselves. Consequently, we do not need to model the cortical dynamics
further at this early stage of development, as purely intracortical in�uences
at a postsynaptic neuron without strong primary afferent input should not
have signi�cant impact on the activity. In the adult, however, there are sub-
stantial in�uences from intracortical long-range connections, and also the
neural noise is reduced by a factor of nine.

The modeled simple cells are arranged in hypercolumns, and during the
simulations, a long-range connection structure between these cells emerges.
One cell of each hypercolumn can be connected to any cell located in a 9 £ 9
square surrounding its own hypercolumn. Each simple cell in the model in
fact represents a local pool of cells that all have similar properties. Therefore,
it makes sense to model connections of a model cell to itself.

One of the crucial features of our model for the development of a spe-
ci�c long-range connection structure is that the cortical simple cells in
layer 4b show a transient response pattern. In the results section, we will
see that this transient cortical response pattern enables the development
of an iso-orientation long-range connection structure as it is found in an-
imals (Schmidt et al., 1997). In the following, we describe how we model
the transient cortical activity starting with the transients of the ganglion
cells. An interesting question, which is beyond the range of this article, is
how these responses are produced biologically. For simplicity (and com-
putational tractability), we omit all biological details that could be part of
the theoretically possible mechanisms (e.g., single-cell properties, sustained
local inhibition) that enable transient responses. These must be investigated
in the animal and by models on a �ner scope than ours.

We have found that the success of the model depends much more on the
fact that the response is transient than on its precise time course. Therefore,
for each time step n between the acquisition of successive video frames, the
output of an ON- or OFF-ganglion cell is discretized to two values vtr.n/

and vst.n/. Consequently, it is also natural to discretize the primary afferent
response a that a simple cell would show if no other (intracortical) in�uences
were present to a transient and a stationary value atr and ast, respectively.
a is computed by a 2D spatial convolution (denoted by ¤) with the kernels
gON and gOFF representing the synaptic couplings made by ON-afferences
and OFF-afferences to the cortical cells:

atr.n/ D vON
tr .n/ ¤ gON C vOFF

tr .n/ ¤ gOFF

ast.n/ D vON
st .n/ ¤ gON C vOFF

st .n/ ¤ gOFF: (2.1)

The full details of the cortex model are given in equations B.1 through B.3.
Here it is suf�ces to mention that the functions gON and gOFF are responsible
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for the orientationÁ and the polarity(C; ¡) of the simplecell receptive�elds.
The resulting receptive �elds for the ÁC cells are shown schematically in the
top row and left-most column of Figures 3 and 4. Regardless of the detailed
mechanism that causes the transient nature of the cortical cell response, if
a transient response is triggered at frame n, then there must be a difference
in the primary afferent input of this frame ast.n/ and the primary afferent
input the cell received during the previous frame ast.n ¡ 1/. Then it follows
from our retina model that there has to be a difference in the values of atr.n/

and ast.n/ as well, as after the transient over- or undershoot, a new steady
state ast.n/ will be reached, which cannot be equal to the old one ast.n ¡ 1/,
because otherwise there would have been no transient response at all.

The real output o of the ganglion cell—the one that can be measured
experimentally by counting action potentials and linearly transforming the
base rate to zero—can then be approximated as

o.n/ D max.atr.n/ ¡ ast.n/; 0/: (2.2)

The response in equation 2.2 is quantitatively a bit too strong, as the relax-
ation of the afferent input ast.n/ may not be complete in the time between
two consecutive frames. However, the important feature for our model is
that transient responses are successfully detected by this output function.
To point out how crucial the transient nature of cortical responses in layer 4b
is for the development of long-range connections, we have done additional
simulations with simple cells having sustained (o¤) instead of transient re-
sponses,

o¤.n/ D max.ast.n/ ¡ 2; 0/; (2.3)

where 2 is a constant near the baseline primary afferent activity.
A simple Hebbian learning mechanism is used for the adaption of the

long-range synaptic strengths:

1wij D ²oioj: (2.4)

For computational ef�ciency, this learning rule is not applied to single
synaptic weights but to ensembles of equivalent connections. Two con-
nections are equivalent if their pre- and postsynaptic cells have the same
orientation and polarity, and they span the same cortical distance. This ef-
fectively leads to a system of connections that is translation invariant by
design. Mathematical details and a biological motivation can be found in
section B.2.

If the transient cortical responses o are inserted into equation 2.4 to eval-
uate the correlation between pre- and postsynaptic cell, respectively, the
connection structure shown in Figure 3 emerges. We will argue in section 3
that this is suitable to form the anatomical basis for the Gestalt principle of
collinearity.
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Figure 3: Learned synaptic strengths.The left-most column shows the classical
receptive �eld shapes Á

pre
C of presynaptic simple cells and the top row those of

the postsynaptic cells (Ápost
C ). The other squares show the spatial distribution of

synaptic strengths of one presynaptic cell to a 9 £ 9 patch of postsynaptic cells of
constant orientation selectivity.Both types of squares use the same scale in retinal
coordinates. The weights are coded in gray scale, with white corresponding to
the highest weight. The central position of each 9 £ 9 array corresponds to a
connection between pre- and postsynaptic cells in the same hypercolumn. The
weight distribution shown has been learned on the basis of the transient cortical
responses de�ned in equation 2.2 with a Hebbian learning rule (see equation 2.4).
The in�uence of cortical connections far exceeds the size of the classical receptive
�elds. Furthermore, the connections that are established prominently connect
simple cells with nearly the same orientation in hypercolumns that in retinal
coordinates refer to points lying in the direction of their preferred orientation.
Thus, it supports collinearity and curvilinearity.
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Figure 4: This �gure shows long-range cortical synaptic strengths that develop
if sustained cortical responses (see equation 2.3)are used in the Hebbian learning
rule (see equation B.4). For an explanation of the display arrangement, refer to
Figure 3. The in�uence of the strong gray tone diagonal in the background of the
used images can easily be detected in most of the synaptic connection �elds. This
example shows how the arbitrary background dominates the learning process
of long-range connections when sustained cortical responses are used.

If the simulations are done with the same visual processing but with
the Hebbian learning on the basis of the sustained cortical responses (o¤)
the resulting connection structure is qualitatively different (see Figure 4).
In this case, no general principles are learned, but the �nal connection
structure re�ects properties of the particular visual data used for
learning.
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Figure 5: One frame of a typical camera sequence used in the simulations. There
is a single moving object in front of the observer and a structured background.
The strong diagonal gray tone border in the background is used to illustrate the
difference between sustained and transient responses in the learning rule. Such
a biased background is a problem for static responses, which tend to learn just
that bias. If transient responses are used, the distribution of orientations caused
by the moving person is much broader.

3 Results

The simulations have been performed with sequences of camera images like
the example shown in Figure 5. A typical sequence consisted of 100 to 200
frames and showed a person moving in front of a camera and performing
some arm movements. In the whole sequence (one frame is shown in Fig-
ure 5), the person was the only moving object and there is a strong diagonal
gray tone border in the background.
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The learned long-range connection structures for the transient (see equa-
tion2.2) and the sustained (see equation 2.3) cortical responses are illustrated
in Figures 3 and 4, respectively. The shown cells all have the same polarity
and vary only in orientation. The results are very similar for the cells of the
other polarity Á¡, while cross connections between different polarities have
not been examined in detail.

We now interpret the results shown in Figure 3 that have been obtained
when the transient cortical responses (see equation 2.2) have been used. In
detail, the results are:

² The size of the long-range connection structure far exceeds the size of
the classical receptive �eld.

² The strongest connections are established from the reference hypercol-
umn (central array positions) to itself. They connect a pool of identical
presynaptic cell types with themselves (iso-orientation).

² There are, in addition, strong connections in the 3 £ 3 neighborhood
of the reference hypercolumn to iso-oriented cells.

² The connections from the (central) reference hypercolumn to other hy-
percolumns are made to cells with a similar orientation of pre- and
postsynaptic receptive �eld, respectively. Looking at these connec-
tions, one can see that the direction of the strongest connections corre-
sponds to the orientation in the receptive �elds (collinearity). There-
fore, the receptive �eld is somewhat extended by these long-range
connections.

² The connectivity pattern diminishes in strength with the difference in
orientation of pre- and postsynaptic receptive �elds (curvilinearity).

This shows that the use of transient responses for Hebbian learning can
lead in an ef�cient and robust way to a connection structure suited to form
the anatomical basis for the Gestalt principle of collinearity and even curvi-
linearity (Field et al., 1993; Hess & Field, 1999; Guy & Medioni, 1996). The
importance of transient responses is elucidated by comparison with the re-
sults from the same learning rule applied to the sustained responses shown
in Figure 4 caused by the same stimuli. The resulting horizontal connection
structure is qualitatively different from the one in Figure 3. The most sig-
ni�cant long-range connections are established to the postsynaptic cells in
column 6 of Figure 4. These show a strong response to the tilted edge in
the background of the sequence. Furthermore, almost all long-range con-
nections are in the direction of the that edge.

To a lesser extent, the same holds for the connection strengths for the
neighboring four columns (4–8) of column 6 and just the presynaptic cells
with an orientation difference of 90 degrees (shown in row 2 and the last
row of Figure 4) to the gray tone border cells show almost no developed
connection structure. One can say that the learned connection structure is
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dominated by the strong gray tone border that is an accidental property
of the background. As the gray tone edge is constantly present in the im-
age, cells with an orientation similar to that of the gray tone border are—
according to their tuning curve—active as well. Therefore, although their
presynaptic cell activation may be relatively weak, their connection strength
to the gray tone border cells increases with each learning step. One could
argue that this is a problem of the threshold 2 used in equation 2.3, and
that an increased threshold should �lter out the weak responses to borders,
so that just the presynaptic border cells connect to the postsynaptic border
cells, leaving the rest mainly unchanged. This procedure could work for
any particular image, as probably one can �nd a threshold that �lters out
the important borders and suppresses the weak responses for that particu-
lar image. However, given the variations in natural images, this threshold
must be changed from image to image, because a weak response to a border
in one image may be of the same magnitude as the response to the strongest
border in another image. One could think that a kind of adaptive threshold
that decides about the presence of a border, taking its strength in relation
to the maximum border strength found in the image could be a solution.
Related to this is the idea of normalizing the maximal responses in the im-
age. These approaches have the additional disadvantage that even a “noise”
image would participate in the learning process to the same degree as an
image with very strong borders.

The results show that the inclusion of transient responses in the model
overcomes these conceptual problems by using information from two dif-
ferent cues: the gray tone and the occurring change in subsequent images.
Therefore, only moving edges in the image take part in the learning pro-
cess, while static ones have no in�uence. Because it was not possible to learn
collinearity with sustained cortical responses out of the same amount of bi-
ased image data that was suf�cient for transient ones, one can say that using
transient responses is an ef�cient and robust way to do so. One could ar-
gue now that with different kinds of backgrounds presented or with a large
variety of directions present in one background, the disturbing in�uences
will eventually average out, and in the end, the same connection structure
as with transient response could emerge. With a well-balanced input or at
least a very large input of different visual scenes, this may be possible. It
would, however, be a considerable risk for the infants if early development
depended critically on this condition. It may also be argued that the ad-
vantage of transient over sustained responses is only a consequence of the
orientation bias in the background.

In order to clarify the two previous points, we have applied our model to
standard image collections, which we concatenated into sequences. In this
case, transient responses are pointless, because there is no real movement.
Learning from the sustained responses also yields a biased connection struc-
ture, which supports collinearity in the horizontal and vertical orientations
but hardly in the oblique ones. See Figure 6 for the results on the database
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Figure 6: Long-range cortical synaptic strengths learned from a sequence of
static natural images. Transient responses make no sense in this case, so the
sustained cortical responses (see equation 2.3) are used in the Hebbian learning
rule (see equation B.4). For an explanation of the display arrangement, refer to
Figure 3.

available from British Telecom. More stimulus sets together with the learn-
ing results are available from our Web site and described in appendix C.

4 Discussion

We have started from the assumption that there is a hierarchy of Gestalt
principles and that the principle of common fate is more fundamental than
the one of good continuation. Technically speaking, this can be reformulated
as saying that motion is a primary cue for the task of segmenting objects
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from the background. Closed boundaries (as supported by collinearity and
curvilinearity) provide a secondary cue that can be learned using the pri-
mary one. In this situation, an important strategy is the distinction between
observer motion and object motion. This information is probably detectable
by a newborn, but it is very unlikely that it can already be used accurately
on a cellular level, although there is evidence that this is possible even for
4-month-old neonates (Kellman et al., 1987) and in the adult (Leopold &
Logothetis, 1998). How can object motion be detected by newborns? A very
easy way for the organism to achieve this distinction is to gaze in one direc-
tion for a considerable amount of time (Piaget, 1936). While the direction
of gaze is �xed, changes of illumination on the retina cannot be caused by
eye movements or observer motion. Consequently, the structuring process
in the cortical model is strongly dependent on the feature constellations re-
sulting from moving objects. Using the latter, we have shown (see Figure 5)
that it is possible to learn, for example, the Gestalt principle of collinearity,
or more precisely, the anatomical structure of long-range connections in pri-
mary visual cortex, which probably implements this Gestalt principle and
was found experimentally by Schmidt et al. (1997). They showed that cells
with an orientation preference in area 17 of the cat are linked preferentially
to iso-oriented cells, a result reproduced by our model. Furthermore, the
coupling strength diminishes with the difference in preferred orientation of
pre- and postsynaptic cell.

From a technical point of view, our system has learned by experience
something similar to an association �eld (Field et al., 1993; Hess & Field,
1999), projection �eld (Grossberg & Williamson, 2001), or extension �eld
(Guy & Medioni, 1996). These are well known to aid the concept of collinear-
ity and curvilinearity in technical computer vision algorithms and biolog-
ical models. Actually, the learned arrangement of synaptic strengths may
provide means of improving the extension �eld (Guy & Medioni, 1996) al-
gorithm, as strong connections between cells with similar orientation are
established in all directly neighboring hypercolumns, even if the hyper-
column lies in a spatial direction different from the pre- and postsynaptic
orientation. Another lesson learned is that one presynaptic cell type should
connect not only to one speci�c postsynaptic cell type in the target hyper-
column, but with a smaller synaptic weight to a range of types with similar
orientation in the same target column.

Recently, two models have been presented that address the ontogenesis
of Gestalt principles. In Grossberg and Williamson (2001), a very detailed
perceptual model emerges from learning. It is remarkable how well the
performance of this model matches neurophysiological measurements. In
Choe (2001), PGLISSOM, a variant of the self-organizing map, leads to lat-
eral connectivities similar to the ones shown in Figure 3 after learning from
patches of elongated gaussians. Our model differs from those in the respect
that we consider only horizontal connections and show that these can be
learned from real camera images. Using real sensor data complicates things
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considerably, and consequently other details, for example, stability against
contrast changes, have not been addressed. However, we could show that
the complexity of data required for learning can be taken from actual mo-
tion. It is clear that these connections are only one aspect of a complete
system, but we believe it is worthwhile to study the isolated subsystem.

There are several possible reasons for the result that the desired learning
effect could be achieved by using the transient rather than the sustained re-
sponses. The �rst is the biased background. The moving object is much more
likely to provide the rich variety of oriented edges required for learning. The
transient responses do not react to the static background, and therefore that
bias cannot in�uence the connection structure. This also suggests that ob-
ject motion is preferable to observer motion. Pure observer motion against a
static background would learn exactly the background biases, and the same
holds for saccadic eye movements. Furthermore, the common motion of
object edges gives strong hints that these edges belong together. This could
not be achieved if the whole background moved consistently. In order to
learn from sustained responses, the background would have to vary a lot
in order for the biases of individual backgrounds to average out.

Using only one sequence may be regarded as a weakness of our system,
and, of course, it would provide far too little data to cover the environmen-
tal properties. This problem is greatly alleviated by assuming translation
invariance and therefore employing massive weight sharing. Keeping this
in mind, our results indicate that concentrating on the moving parts of a
scene provides excellent preprocessing for learning of collinearity. Actually,
the fact that one sequence is suf�cient clearly demonstrates the power of
our preprocessing to select the data relevant for learning. Also, the number
of images in the collections is clearly rather small, but we tried to keep about
as many as we had movie frames for a fair comparison.

It may be argued that a biased background is an unrealistic assumption
in the visual world of ambulatory system. However, there is considerable
orientation bias in collections of natural images, at least in the environ-
ment given by the campus of Duke University (Coppola, Purves, McCoy,
& Purves, 1998). Our results indicate that moving objects yield a more even
distribution of orientations, although we have not studied that systemati-
cally. The assumption that persons moving about can providea major source
of data for visual learning of young infants seems safe. It may also be ar-
gued that 100 static images are too few to learn. However, even large image
sets would show the bias described by Coppola et al. (1998). Learning from
static images imprints this bias into the connection structure, as can be seen
in Figure 6. At least our experiments show that learning is faster when based
on the transient responses to image sequences showing real motion.

Regarding the biological relevance of our model, many details have
been omitted and many simpli�cations been made in order to achieve a
computationally tractable size. However, good results have been reached
with a combination of basic mechanisms: spatiotemporal retinal �ltering,
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topology preservation in the cortical map, the transient nature of cortical
cell responses, and Hebbian learning. It is a well-established fact that all
those single building blocks of our model exist in the brain, so the complete
model should be regarded as a valid approximation to one of the processes
that organize perception during early development.

The problem of learning relevant feature constellations from natural im-
ages has been known at least since the models of Marr (1982) were in-
troduced. We think that the main reason for the dif�culties faced by the
approach is the concentration on feature constellations that are present in
the whole image. Due to the nature of Hebbian learning (or other second-
order correlation rules), the useful second-order feature constellations are
much harder to detect in the whole image than in the part of the image
representing a single object. Of course, usefulness is not a physical entity,
but arises from the natural desire of living creatures to be able to distinguish
objects for various purposes, like grabbing, escape, or ingestion, which in
turn yields considerable evolutionary advantage.

The problemprobably gets harder the morecomplexthe features become,
because of their diminishing statistical signi�cance in whole images of nat-
ural scenes. If one considers features like collinearity, vertices, or closed
boundaries, which de�ne a geometric object, or combinations of closed
boundaries, which are listed here in order of their assumed complexity, then
the statistical signi�cance to �nd those features in whole images probably
not only diminishes with rising complexity, but the more complex features
are probably not encountered often enough to make a difference statistically.
And even if there is a small signi�cance for those complex features, it would
take a long time and a lot of different scenes to learn them using a statistical
algorithm. For the case of collinearity, Krüger (1998) was able to show that
collinearity and short-range parallelism are statistically signi�cant features
of natural images if the set of images examined is large and varied enough.
Geisler, Perry, Super, and Gallogly (2001) link this to the psychophysical
performance of contour grouping and conclude that this must be due to an
underlying neuronal structure. Our system shows that the necessary varia-
tion can be derived from a single scene with one object moving across it for
long enough that the movement covers all image locations. Both studies are
opposite extremes; the reality for a newborn consists of neither snapshots
of many possible scenes nor a single moving object. Both together show
that the neural circuits underlying the collinearity Gestalt principle can be
learned from natural input.

An important aspect pointed out by Geisler et al. (2001) and Simoncelli
and Olshausen (2001) is that simple linear correlations are not suf�cient to
extract interesting statistics from natural data. Hebbian learning, however,
relies on linear correlations. In our case, it has been applied to nonlinearly
preprocessed data, so there is no contradiction here. Geisler et al. (2001)
also �nd that curvilinearity cannot be learned from simple co-occurence but
requires Bayesian co-occurrence statistics. Again, this is not a contradiction
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due to the nonlinearities in our model, which are motivated biologically
rather than statistically.

Comparison of our results to the ones from Hoyer and Hyvärinen (2002)
is made dif�cult by the fact that the assumptions about the underlying net-
work are different. Their model relies on a feedforward structure for contour
coding, while our emphasis is on horizontal connections. It seems that hori-
zontal connections would hurt the statistical independence of the cells they
connect, so our model does not map naturally onto the ICA concept. The
biological evidence is certainly too sparse to make a decision in favor of one
of these assumptions. This is clearly a point that requires further analysis
on the modeling as well as on the biological side.

Further technical studies (Pötzsch, 1999) indicate that feature constella-
tions of higher complexity, such as vertices that seem to play an important
part in object recognition, cannot be learned by simple correlation learning
rules that operate on the features of the whole image. As indicated above,
these useful features are probably not statistically signi�cant features of nat-
ural images. If this is the case, complex features can be learned from natural
images only if there is purposeful behavior that carefully selects the data
worthwhile to be learned. Concentrating on moving objects seems to be a
good strategy even in the absence of a tracking mechanism. It can be con-
jectured that more sophisticated mechanisms like head and eye saccades
can boost learning further. Reinagel and Zador (1999) show that effect on
learning image statistics; therefore, a positive effect on learning Gestalt rules
may be expected.

Appendix A: Model of Subcortical Processing

A.1 Retina Model. We do not model the development of the retina it-
self during the postnatal weeks. Instead, we extend and modify an existing
retina model (Gaudiano, 1994) to compute ON- and OFF-Y-ganglion cell
responses. Once this is done, we discretize the continuous differential equa-
tions in time by values for each cell type (ON and OFF). The activity rate
vst corresponds to the tonic or steady-state part in the continuous model
and the transient rate vtr to an upper bound for the maximum transient or
phasic rate of the ganglion cell response (see Figure 2). These discrete ap-
proximations of the retina model are essential because their output is used
in the model for the cortical layer. To understand how these equations are
derived, we now go into the details of the continuous retina model. Note
that the spatial dependency of the functions used is omitted to improve
readability.

A.2 The Photoreceptors. Given the light intensity value pn for each pixel
of the camera image recorded at time tn, we de�ne a function pIn.t/ that
is equal to pn for all times t in the interval of [tn; tnC1/. The values of this
function pIn.t/ are the interval of [pmin

In ; pmax
In ], which isgiven by the camera as
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[0; 255]. We compute the nonlinear photoreceptor response r.t/ according to

r.t/ D z.t/p.t/ with (A.1)

p.t/ D [pmax ¡ pmin]pIn.t/=.pmax
In / C pmin: (A.2)

Here, the biological fact is taken into account that at extreme light intensities,
a photoreceptor can perform temporal high-pass �ltering. To achieve this,
the photoreceptor adapts its response rate under extreme constant light in-
tensity toward its base rate activity by multiplying the visual input p.t/ (see
equation A.2) with an internal state z.t/. The way this internal state is com-
puted makes clear that it is something like a short-term memory for light
intensity. By this light adaption mechanism, a sudden change to a given
extreme light intensity level produces a short-term activity rate substan-
tially different from the one produced under a constant light intensity of
the same extreme magnitude. The photoreceptor response r.t/ is computed
by using the transformed light intensity p.t/. The simple linear rescaling
in equation A.2 to the interval [pmin; pmax] is necessary, because the increased
minimal value allows for dynamic photoreceptor behavior. We have chosen
pmin D 30; pmax D 255. The chosen value of pmin is not particularly criti-
cal but should be well above zero, because otherwise, low light intensities
in the visual world cannot be modulated by the internal state of the pho-
toreceptor and therefore cannot trigger a dynamic photoreceptor response
distinguishable from the response to constant low light intensity.

The rate of change dz=dt of the internal parameter depends on the relative
intensity prel.t/ (see equation A.4) of the visual stimulus that the photore-
ceptor receives:

dz=dt D F[M ¡ z.t/] ¡ Hprel.t/z.t/ with (A.3)

prel.t/ D .p.t/ ¡ pmin/=.pmax ¡ pmin/: (A.4)

Here F, M, and H have the values chosen by Gaudiano (1994). M is the
maximal value of z.t/, and F is a gain parameter controlling how fast z.t/
approaches M in the absence of light (prel.t/ ´ 0). On the other hand, Hprel.t/
controls the decay of z.t/.

A.3 Bipolar and Ganglion Cells. The next steps in retinal processing are
the integration of photoreceptor activity by horizontal cells and the feed-
forward processing by bipolar cells. We summarize horizontal in�uences of
horizontal and amacrine cells in a later step of the model (see equations A.7
and A.8), and concentrate on the straightforward modeling of bipolar cell
responses bC;¡. It is assumed that one bipolar cell receives input from just
one photoreceptor. The value rmax D pmaxM is given by equation A.1 as M
is the maximal value of the internal state z.t/ of a photoreceptor and pmax



Learning the Gestalt Rule of Collinearity from Object Motion 1887

the maximal light intensity:

bC.t/ D r.t/ and b¡.t/ D rmax ¡ r.t/: (A.5)

The ganglion cell activity v.t/ itself is modeled using the shunting equa-
tion, A.6, �rst used by Grossberg (1970) and Sperling (1970). In our particu-
lar equation, the ganglion activity rate v.t/ is limited to the interval of [0; 1]
without passive decay:

dv.t/=dt D [1 ¡ v.t/]u.t/ ¡ [v.t/]w.t/: (A.6)

The excitatory u.t/ and inhibitory w.t/ inputs contribute to the ganglion
cell response in a PUSH-PULL way, which means that each bipolar cell
contributes to both center and surround mechanisms of the ganglion cell in
different quantities (McGuire, Stevens, & Sterling, 1986). For ON-ganglion
cells, these in�uences have been modeled by the following equations, where
we use the gaussians c (central) and s (surround) with the parameters of the
Gaudiano model for Y-ganglion cells extended to two dimensions:

u.t/ D c ¤ bC.t/ C s ¤ b¡.t/; (A.7)

w.t/ D s ¤ bC.t/ C c ¤ b¡.t/: (A.8)

Biologically, these in�uences come from lateral integration mediated by
horizontal and amacrine cells. For OFF-ganglion cells, equations A.7 and
A.8 have been used with bC.t/ and b¡.t/ interchanged. In our simulations,
the center gaussian has a value of ¾ equal to 3.18 pixel and the surround
gaussian of 3.89 pixel.

The analytical solutions of equation A.6 for ON- and OFF-cells then are

vON.t/ D E=pmax[c ¤ r.t/ ¡ s ¤ r.t/] C FON; (A.9)

vOFF.t/ D ¡E=pmax[c ¤ r.t/ ¡ s ¤ r.t/] C FOFF; (A.10)

where the following abbreviations have been used for convenience of nota-
tion:

E :D 1=.MVs C MVc/; (A.11)

FON :D MVs=.MVs C MVc/; (A.12)

FOFF :D MVc=.MVs C MVc: (A.13)

The numbers used in these de�nitions are as follows: Vs and Vc are the
integrals over the two gaussians used for modeling center and surround
in�uences in the PUSH-PULL model.
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So far, we have presented a continuous model for ON and OFF ganglion
cells, and one can discuss various aspects of the model like the validity of
the used simpli�cations, for example, where exactly in the retina the spatial
integration takes place, how the temporal �ltering is probably done, and
more. We refer the reader to Gaudiano (1994) for these arguments.

As shown in Figure 2, the continuous time course is now approximated
by two values, computed as follows:

rtr D pnzn¡1; (A.14)

zn D MF=.F C Hpn/; (A.15)

rst D pnzn: (A.16)

With these approximations and using the continuous equations for the gan-
glion cell responses (equations A.9 and A.10) we can approximate the ON-
and OFF-ganglion cell activity discretely in time and represent each of them
by two values that describe the spatiotemporal properties of the ganglion
cell responses:

vON
tr D E=pmax[c ¤ rtr ¡ s ¤ rtr] C FON (A.17)

vON
st D E=pmax[c ¤ rst ¡ s ¤ rst] C FON (A.18)

vOFF
tr D ¡E=pmax[c ¤ rtr ¡ s ¤ rtr] C FOFF (A.19)

vOFF
st D ¡E=pmax[c ¤ rst ¡ s ¤ rst] C FOFF: (A.20)

Appendix B: Cortex Model

How should the cortical layer be modeled? Recall from section 1.3 that
after birth, 90% of all active cells are of simple type. For that reason, we
will not consider complex cells here, as they probably play only a minor
role directly after birth and most likely develop afterward. Additionally,
the development of the long-range connection structure of different kinds
of simple cells after birth probably occurs at different speeds. The devel-
opment of the long-range connection structure between edge detector (odd
symmetry) cells of all scales is expected to be more robust than the one of bar
detector (even symmetry) cells immediately after birth. One reason for this
is the increased sensitivity to low spatial frequency gratings of the cortical
cells (see section 1.3) in the newborn. This phenomenon assigns a special
role to the edge detector cells. An edge between two large areas of high
and low luminance, respectively, remains an edge for all edge detector cells
independent of their scale or spatial frequency. This is not true, for example,
for a bar detector cell, as the strength of the response is determined by the
preferred spatial frequency and the size of the bar presented. Therefore, we
restrict our model to simple cells with odd symmetry that are functionally
edge detectors.
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How can edge detector cells be modeled? Equation 2.1 describes the pri-
mary afferent response of a simple cell, and the terms gON and gOFF are now
de�ned in detail. The most important feature of an edge detector cell is its
preferred orientation Á, and for each orientation, there are two edge detector
cells: one with positive (ÁC) and one with negative (Á¡) polarity. They can
be modeled by using the sine part of a Gabor function, equation B.1, with
different signs. In our simulations, we use cells with eight different orien-
tations Á and do not model other properties of simple cells like selectivity
for motion direction. The formulas are as follows:

g.x; y; Á/ D exp
³

¡ k2.x2 C y2/

2¾ 2

´
¢ sin.kx cos Á C ky sin Á/; (B.1)

ÁC : gON D max.Cg; 0/, gOFF D max.¡g; 0/; (B.2)

Á¡ : gON D max.¡g; 0/, gOFF D max.Cg; 0/: (B.3)

The parameters are ¾ < 2 and k D 0:5. A value of ¾ above two leads
to receptive �elds with more than two signi�cant ON- or OFF-sub�elds
in contrast to the data about simple cells. Note that the resting activity of a
cortical neuron in equation 2.1 is nonzero despite the vanishing integral of g
in equation B.1. The reason is that the resting activity of the retinal ganglion
cells is nonzero, and there are afferences only to the cortex. Biologically,
it is not likely that the synaptic strengths of the afferent thalamocortical
connections are so �nely tuned in the �rst postnatal weeks as the Gabor-
like receptive �elds imply. With the high speci�c connection structure given
in equations B.2 and B.3, the effects of the short-range intracortical inhibitory
and excitatory connections are implicitly modeled, which are the probable
basis for sharp orientation tuning (Somers, Nelson, & Sur, 1995). However, to
use parts of a Gabor function is an easy alternative way to implement some
form of orientation tuning without the computational cost of modeling the
short-range corticocortical excitatory and inhibitory feedback connections.

B.1 Cortical Organization. We assume that the retinogeniculate and
thalamocortical pathways already exist at birth and that their mapping is
already retinotopic (see section 1.3). Simple cells sensitive to low spatial
frequencies also exist, and their theoretical primary afferent responses are
modeled using equation 2.1. The receptive �eld center positions Ep 2 N2

for the simple cells are placed in the image at grid points with a distance
of four pixels in the horizontal and vertical directions. For each of those
grid positions, a hypercolumn consisting of simple cells of eight different
receptive �eld orientations is modeled. Within one hypercolumn, each spe-
ci�c orientation is represented by two cells ÁC and Á¡ with receptive �eld
properties de�ned by equations B.2 or B.3. All cells in one hypercolumn
have the same receptive �eld center Ep0 in retinal coordinates, and neighbor-
ing hypercolumns have different receptive �eld centers Epk . Each cell of a
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hypercolumn establishes connections with all neurons of its own hypercol-
umn and with all neurons in the neighboring four hypercolumns in each
direction of the cortical plane (9 £ 9 neighborhood). Each model cell rep-
resents biologically a pool of cells with nearly the same properties, and
therefore a model cell was allowed to make connections to itself. To avoid
border artifacts, learning of long-range connections was disabled in the �rst
four hypercolumns at the border of the cortical plane.

B.2 Learning Horizontal Connections. We now shift our focus to the or-
ganization of the long-range cortical connections illustrated at the bottom of
Figure 1 and in more detail in Figure 7, in which the repeated regular struc-
ture is representing a hypercolumn with eight orientations (only four are
shown) and two polarities. A small segment of the cortical plane is shown,
and the dashed arrows in it illustrate the range of the cortical horizontal
connections.

To adapt the synaptic weights, the difference in primary afferent input
in equation 2.2 is used in equation 2.4 to select only those cells that have a
transient cortical response. Equation 2.4 is a Hebbian learning rule. 1wij is
the change of synaptic strength between neuron j and i, and ² is a general
learning factor that controls the impact of each learning step. The choice
of ² is not critical. To illustrate the effect of transient responses, we have
also examined a Hebbian learning rule that uses only the sustained (see
equation 2.3) cortical responses:

1wij D ²o¤
i o¤

j : (B.4)

This corresponds to the classical interpretation of the Hebbian postulate in
neural modeling because it is a correlation learning rule that operates di-
rectly on the input. All cells that have a primary afferent response above the
baseline activity µ of equation 2.3 may participate in the structuring process.

After the increment of equation 2.4 or B.4 is used to update the synap-
tic strengths, equation B.5, two additional procedures are incorporated. To
avoid arti�cially high synaptic values, a connection strength above one is
reset to one by equation B.6. To introduce competition between synapses,
the total synaptic strength for a given ensemble C is held constant at K by
normalizing the weights after each learning step and multiplying them with
K, equation B.7:

wij Ã wij C 1wij (B.5)

wij Ã min.wij; 1/ (B.6)

wij Ã wijK=
X

C
wij: (B.7)

One of the steps to make the model applicable to natural image data is
the introduction of ensembles C of equivalent connections. First, we will
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Figure 7: The cortical horizontal connection scheme. A small segment of the cor-
tical plane is shown to illustrate the range of the long-range connections (indi-
cated by the dashed arrows) and some connections of an ensemble of equivalent
connections (indicated by the solid arrows and explained in the text). The re-
peated regular structure represents a hypercolumn with 8 orientations (just four
are shown) and two polarities. Refer to section B.1 for a detailed explanation.

give a technical description of such an ensemble and then explain the bi-
ological motivation for building those ensembles. All established connec-
tions can be characterized by four parameters: the receptive �eld center
position Ep 2 N2 of the presynaptic cell, the spanned distance measured in
hypercolumns Er 2 Z2, orientation and polarity of the presynaptic simple
cell Á

pre
C;¡ and the orientation and polarity of the postsynaptic simple cell

Á
post
C;¡ . Mathematically, one can build the equivalence classes from the re-

lation that two connections—and with them their synaptic weights—are
equivalent if they have the same Er, Á

pre
C;¡ and Á

post
C;¡ but possibly different

centers.
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By doing this, we have introduced translational invariance of the syn-
apses that connect the same pre- and the same postsynaptic cell types over
the same distance of hypercolumns, which is illustrated for a few connec-
tions by the solid arrows in equation A.3. As we have two polarities and
eight different types of cells as pre- and postsynaptic cells and 9 £ 9 dif-
ferent Er, we have 1296 ensembles of connections for each presynaptic cell
type of the reference hypercolumn and a total of 20,736 ensembles for this
hypercolumn as a whole. As an example, the four solid arrows in Figure 7
are equivalent and are forced to have identical weights.

What is the biological foundation for building these ensembles? Consider
a newborn with a moving object in front of it. The newborn will gaze in one
direction, and the image of the objects moves over the retina. Then on a
larger timescale, the newborn will shift its head trying to follow—not very
successfully, because of the low tracking accuracy after birth (Hofsten et al.,
1998; Piaget, 1936)—the stimulus and gaze again in the new direction. This
happens several times until the newborn has lost the object. If we now think
of the visual input the newborn receives in terms of object features projected
on the retina, we see that the same features are shifted on the retina because
of the object motion and because of the more or less randomly distributed
eye or head saccades of the newborn. One could argue now that this should
mainly affect horizontally neighboring cells and not vertically neighboring
cells because most movements are on the horizontal surface. But when the
newborn is gazing in one direction and then moves his head or eyes to
gaze in another direction, it is very unlikely that this can be done without a
vertical shift given the low accuracy of tracking movements in the newborn.
The structuring of long-range connection strengths in the cortical region that
corresponds to the retinal area covered by the object will, of course, average
in time over all presented stimuli, and this average should be the same
for equivalent connections because the object features seen have been the
same on average. The result should be connection strengths of roughly the
same magnitude for equivalent connections. Therefore, we can model just
one synapse for each ensemble of connections and reduce the amount of
synapses drastically.

Appendix C: Input Data

We have applied the model to two movies of a person moving and wav-
ing his arms in front of a background from a seminar room. The back-
grounds showed different biases. The sequence “moving.mpg” consists of
199 frames, and the background contains a diagonal rectangle.

In the course of revising this article, we also applied the model to the
sequence “fw carsten.mpg,” which is in color and has a larger resolution,
because it was collected for a different experiment. This movie consists of
100 frames and shows no strong diagonals in the background. Sampling has
been adjusted and color ignored. The results for the transient responses are



Learning the Gestalt Rule of Collinearity from Object Motion 1893

very similar to the ones for the other sequence. The ones for the sustained
responses re�ect the different background bias.

To clarify the relationship to static natural images, we have applied the
model to movies made out of 60 frames from a texture database from MIT
(http:==www-white.media.mit.edu=vismod=imagery=VisionTexture/) and
one with 98 frames from a scene database by British Telecom (ftp:==ftp.
vislist.com=IMAGERY=BT scenes/).

All four sequences as well as the respective learning processes can be re-
trieved on-line from (ftp:==ftp.neuroinformatik.ruhr-uni-bochum.de=pub=

pictures=gestalt/).
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