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Jörg Lücke1, Christoph von der Malsburg1,2, and Rolf P. Würtz1
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Abstract. We consider a cortical macrocolumn as a collection of in-
hibitorily coupled minicolumns of excitatory neurons and show that its
dynamics is determined by a number of stationary points, which grows
exponentially with the number of minicolumns. The stability of the sta-
tionary points is governed by a single parameter of the network, which
determines the number of possibly active minicolumns. The dynamics
symmetrizes the activity distributed among the active columns but if
the parameter is increased, it forces this symmetry to break by switch-
ing off a minicolumn. If, for a state of maximal activity, the parameter
is slowly increased the symmetry is successively broken until just one
minicolumn remains active. During such a process minor differences be-
tween the inputs result in the activation of the minicolumn with highest
input, a feature which shows that a macrocolumn can serve as decision
and amplification unit for its inputs. We present a complete analysis of
the dynamics along with computer simulations, which support the theo-
retical results.

1 Introduction

The cerebral cortex can be subdivided into neural modules, which are associated
to different magnitudes of spatial scale ranging from areas of size of approxi-
mately 20cm2 (in humans), maps (≈ 5cm2) to macrocolumns (≈ 0.5mm2) and
minicolumns of about 0.003mm2. The minicolumns are considered the smallest
neural modules containing several tens up to a few hundred neurons, which are
stacked orthogonal to the cortical surface. The grouping into minicolumns can
be revealed by Nissl stains, as was first done by Cajal, by stimulus-response
experiments or, more recently, by direct measurements of neural connectivity,
e.g. [1]. The minicolumns themselves can be grouped into macrocolumns, neural
modules, which are best studied in primary sensory areas and which are con-
sidered to process stimuli from the same source such as an area of the visual
field or a patch of the body surface [2]. Although different features of columns
of regions concerned with different levels of information processing can vary sig-
nificantly it is widely believed that (1) the neural circuits, at least for neural
modules of small scales, are of a common design which makes them universal for
various computational tasks and (2) that the understanding of the interplay of
the circuitries of the different modules presents the key to the understanding of
information processing of the brain of vertebrates.
Several models of neural networks reflecting the modular organization of the



brain have been suggested. They range from models based on random inter-
connections [3] and Hopfield-like models [4] to models based on self-organizing
interconnections, e.g. [5]. In this paper we study a model of a single macrocol-
umn that consists of a collection of coupled minicolumns and we show that it can
serve as a decision unit, which changes its activity state by a process of symmetry
breakings delicately depending on the relative inputs to the minicolumns. The
model shows a dynamic behavior that differs from so far suggested ones and that
makes possible the construction of networks, in which macrocolumns as principal
units communicate via symmetry differences of their inputs. In such networks
a macrocolumn can individually change its activity state if these differences
are sufficiently non-ambiguous. Here we will be concerned with the dynamics
of a single macrocolumn: In Sec. 2 we study the dynamics of a minicolumn, in
Sec. 3 the macrocolumn dynamics as a coupled system of minicolumn dynamics
is investigated and its properties are discussed, and in Sec. 4 we summarize the
results and give a short outlook to future work.

2 Dynamics of Minicolumns

We consider a minicolumn as a network of N neurons, which are excitatorily
interconnected. The neurons are modeled as threshold devices with refraction
time. Thresholds and refraction times are equal for all neurons. The state of a
neuron at time t, ni(t), is one if the neuron is active and zero if it is not. A
non-refractory neuron is active at time (t + 1) if the input it receives from other
neurons at time t exceeds Θ. The refraction time is chosen as one time step. The
input from an active neuron j to a neuron i is given by the synaptic strength
Tij . The resulting dynamics is given by (i = 1, . . . , N):

ni(t + 1) = S(
N∑

j=1

Tij nj(t) − Θ) · S(1 − ni(t))
︸ ︷︷ ︸

refraction

, S(x) :=

{
0 if x ≤ 0
1 if x > 0

. (1)

The connectivity is random. Each neuron has s synapses on its axon, and each
synapse connects to any post-synaptic neuron with probability 1

N
. All synaptic

weights are equal to a constant c > 0. Note that the resulting interconnection
can include multiple connections between neurons, i.e. Tij > c. Considering the
dynamics (1) it is always possible to compensate any value of c > 0 by an ap-
propriate choice of Θ. Without loss of generality, we choose c to be equal to
1
s

in oder to normalize the sum over all Tij ,
1
N

∑N
i,j=1 Tij = 1. Together with

the constant probability for a synapse to connect to any post-synaptic neuron
we can describe (1) by a simplified dynamics for a single global observable of
the network — the probability p(t) of a neuron to be active at time t. The
probability, pi(t + 1), of a neuron i to be active at time t + 1 depends on the
probability, P A

i (t), to receive enough input and on the probability, P B
i (t), of the

neuron to be non-refractory, and we assume these probabilities to be approxi-
mately independent, pi(t + 1) = P A

i (t) PB
i (t). The probability P B

i (t) is simply
given by the complement of the probability of the neuron i to be active at time



t, PB
i (t) = (1 − pi(t)). For the computation of P A

i (t) we have to estimate the
number of excitatory post-synaptic potentials (EPSPs) received by neuron i at
time t. Due to the assumptions made above the probability Pe(x) of the neuron
i to receive exactly x EPSPs is given by the binomial distribution,

Pe(x) =

(
Ns p(t)

x

)

(
1

N
)x(1 − 1

N
)Ns p(t)−x. (2)

In order to facilitate later calculations we approximate (2) by a Gaussian dis-
tribution (x̄ = s p(t), σ2 = s p(t) for N � 1). Integrating all probabilities for
numbers x > s Θ we finally receive a compact and easy to handle description of
the dynamics (1) in terms of the activation probability p(t),

p(t + 1) = Φs(
p(t) − Θ

√

p(t)
) (1 − p(t)) (3)

where Φs(x) = 1√
2π

∫ √
s x

−∞ e− 1

2
y2

dy . Equation (3) can be used to reproduce cal-

culation results of [3] where (2) was approximated by a Poisson distribution.
Here we will exploit (3) to introduce a special kind of inhibitory feedback.
Inhibitory neurons differ more substantially in their properties than just gen-
erating negative post synaptic potentials. On average, inhibitory neurons have
thicker axons than excitatory ones and their post-synaptic targets are concen-
trated on the cell bodies and the proximal dendrites. This suggests to model
inhibition as being generated faster than excitation. We will therefore model the
inhibitory influence on the excitatory neurons to be present already in the next
time-step. The dependency of the inhibition I(t) on the activity of the excitatory

neurons we choose to be proportional to the global activity B(t) =
∑N

i=1 ni(t)
and further demand that it is equally sensed by all neurons. Such a dependency
turns out to stabilize the activity in the most efficient way. Replacing Θ in (3)

by I(t) + Θo with I(t) = µ
B(t)
N

= µ p(t) yields:

p(t + 1) = Φs(
(1 − µ) p(t) − Θo

√

p(t)
) (1 − p(t)) . (4)

It is now possible to determine the maximal values of stationary activity P for
parameters s, Θo, and µ by numerically computing the function

Ps,Θo
(µ) := max { p | p = Φs(

(1 − µ) p − Θo√
p

) (1 − p)} . (5)

Function (5) can be compared to the values of stable stationary activity obtained

by directly simulating equation (1) with Θ = µ
B(t)
N

+ Θo. For the simulations
one has to consider coherence effects which are due to possibly cycling neuron
activities but which can be suppressed by noise or by varying the number of
possibly active synapses after each time-step (see [3]). For s = 20, Θo = 1

20 , and
µ ∈ [0, 2], e.g., it turns out that the predicted activity rates match the measured
ones with absolute errors around 0.01 for values of p between 0.5 and 0.05. For
lower activity rates the approximation of (2) by a Gaussian distribution gets too
coarse. If the coherence effects are not suppressed, the dynamic behavior can
differ significantly from the computed one.



3 Inhibitorily Coupled Minicolumns

We now consider a system of k inhibitorily coupled minicolumns. The calcula-
tions are independent of the number of minicolumns such that the results are
applicable to relatively small macrocolumns (k ≈ 2, ..., 10) as suggested, e.g., by
short-ranging lateral inhibiting cells [6] [7] or to macrocolumns of about 0.5mm2

for k of size of several hundreds. Each minicolumn consists of M excitatory neu-
rons with interconnection as above. In analogy to (1) the dynamics is described
by N = kM difference equations (α = 1, ..., k; i = 1, ..., M):

nα
i (t + 1) = S(

M∑

j=1

Tα
ijn

α
j (t) − I(t) − Θo) · S(1 − nα

i (t)) , (6)

where the inhibitory feedback I(t) is equal for all neurons. We want to have
stable stationary mean activity in the macrocolumn and therefore again choose
the inhibition to be proportional to the over-all activity B(t) =

∑

i,α nα
i (t). We

get in this case I(t) = µ
B(t)
N

= µ
k

∑k
α=1 pα(t) , where pα(t) = 1

M

∑M
i=1 nα

i (t)
is the probability of a neuron in column α to be active. The direct simulation
of dynamics (6) shows a complex behavior and for a wide range of parameters
s and Θo we get stable ongoing activity. The dynamics favors to activate only a
subset of minicolumns whereas the others are switched off. Hereby, the number
of minicolumns which can be activated strongly depends on the proportionality
factor of the inhibition µ. The points of stable activity and their dependency
on µ can be studied again by the reformulation of (6) in terms of the activation
probabilities pα(t) of the different minicolumns. Calculations in analogy to above
yield a system of α = 1, . . . , k difference equations:

pα(t + 1) = Φs(
pα(t) − µ

k

∑k
β=1 pβ(t) − Θo

√

pα(t)
) (1 − pα(t)) =: Gα(p(t)) (7)

Equations (7) can be studied by a stability analysis and we just give the relevant
results: For a macrocolumn with k minicolumns we get a family of 2k potentially
stable stationary points of the form,

qγ = (qo, qo, . . . , qo
︸ ︷︷ ︸

l-times

, 0, 0, . . . , 0
︸ ︷︷ ︸

(k-l)-times

), qo = P(
l

k
µ), (8)

and all permutations. Their stability is determined by the eigenvalues of the
Jacobian of G(p) (see (7)) at these points which can be computed to be

λ1,2 =
1 − P( l

k
µ)

2
√

P( l
k
µ)

(1 ± l

k
µ +

Θo

P( l
k
µ)

) Φ′
s(h(

l

k
µ)) − Φs(h(

l

k
µ)), λ3 = 0, (9)

where h(µ) = (1 − µ)P(µ) − Θo√
P(µ)

. λ1 is of multiplicity (l − 1), λ2 of multiplicity 1,

and λ3 of multiplicity (k − l). We get eigenvalues of magnitude greater than one



Fig. 1. A Stationary over-all activity in a macrocolumn (k=4) plotted against µ for
s = 20 and Θo = 1

20
. The four plots correspond to states of four to one active mini-

columns (dotted parts mark unstable stationary activity). B Screenshots of a macro-
column with four minicolumns. Each picture shows one activity-configuration of the
respective activity probability (white pixels mark active neurons).

if and only if l
k
µ gets greater than a critical value µc. Hence, the stability of

a stationary point (8) with l ≥ 2 is determined by its critical value µl := k
l
µc.

For a macrocolumn consisting, e.g., of k = 4 minicolumns we get a collection
of 15 non-zero stationary points of type (8), whose stability is determined by
the three critical points µ4 = µc, µ3 = 4

3µc, and µ2 = 4
2µc. For s = 20 and

Θo = 1
20 their values are µ4 ≈ 0.76, µ3 ≈ 1.01, and µ2 ≈ 1.52. In Fig. 1A

the stationary over-all activities Bl(µ) = lM P( l
k
µ) are plotted for l = 4, . . . , 1

active minicolumns together with the points µ4, µ3, and µ2, which mark their
intervals of stability. The macrocolumn’s dependency on µ can be used to force
the network to perform successive symmetry breakings: if we start for µ < µ4

with the totally symmetric stable stationary point (P(µ), . . . , P(µ)) and slowly
increase the parameter, the macrocolumn is forced to break the symmetry by
switching off one of the minicolumns as soon as µ > µ4. The activity is then sym-
metrized between the minicolumns which remain active. But as soon as µ > µ3

this symmetry is broken again. The process of symmetrizing the activity among
the active columns and breaking the symmetry again continues until just one
column remains active (see Fig. 1B). If the macrocolumn is exposed to input
in form of externally induced EPSPs, it will keep the minicolumn with highest
relative input active while successively switching off the others. After each sym-
metry breaking the network symmetrizes the minicolumn activities again and
the next decision can be made relative to the inputs to the columns with non-
zero activity. For a macrocolumn with four minicolumns of N = 100 neurons,
with s = 20, Θo = 1

20 , and µ increased from zero by 0.01 per time-step already



an average difference of three EPSPs per neuron every 10 time-steps is sufficient
to select the corresponding minicolumn with a probability of more than 99%.
The results were again obtained by direct simulation of (6) with coherence sup-
pression. Simulations with a wide range of parameters show comparable results.
The dynamics can further be shown to be robust against various perturbations,
e.g. input or threshold noise, and against relaxation of assumptions such as strict
disjointness of minicolumns.

4 Conclusion and Future Work

We have shown that a macrocolumn of inhibitorily interconnected minicolumns
can have the dynamical property to symmetrize its activity among the active
minicolumns and to break this symmetry spontaneously if a parameter of the
inhibition is increased. This behavior was shown to be very sensitive to external
input. For values of µ near to critical points small input differences are already
sufficient to change the global state of the macrocolumn significantly. A macro-
column can therefore serve to select and amplify inputs to its minicolumns. It
can do so either directly with the parameter µ set near to critical points or in-
directly by a succession of symmetry breakings with increasing µ. The repeated
activity-suppression of the column with weakest input together with the sym-
metrization of the remaining activities presents a property not observed in usual
winner-take-all mechanisms. Networks of interconnected macrocolumns can be
expected to converge from a state of maximal activity to a state of minimal one
by a process in which each macrocolumn makes a decision only if its input is
sufficiently non-ambiguous. The networks can be applied to problems such as
signal integration or classification and are subject of our current investigations.
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