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Abstract. This paper introduces our one-armed stationary humanoid
robot GripSee together with research projects carried out on this plat-
form. The major goal is to have it analyze a table scene and manipulate
the objects found. Gesture-guided pick-and-place This has already been
implemented for simple cases without clutter. New objects can be learned
under user assistance, and first work on the imitation of grip trajectories
has been completed.

Object and gesture recognition are correspondence-based and use elastic
graph matching. The extension to bunch graph matching has been very
fruitful for face and gesture recognition, and a similar memory organiza-
tion for aspects of objects is a subject of current research.

In order to overcome visual inaccuracies during grasping we have built
our own type of dynamic tactile sensor. So far they are used for dynamics
that try to optimize the symmetry of the contact distribution across the
gripper. With the help of those dynamics the arm can be guided on an
arbitrary trajectory with negligible force.

1 Introduction

In order to study models for perception and manipulation of objects we have
set up the robot platform GripSee. The long-term goal of this research project
is to enable the robot to analyze a table scene and to interact with the objects
encountered in a reasonable way. This includes the recognition of known objects
and their precise position and pose as well as the acquisition of knowledge about
unknown objects. A further requirement is an intuitive mode of interaction to en-
able a human operator to give orders to the robot without using extra hardware
and requiring only minimal training. As the most natural way of transferring
information about object locations is pointing, we have chosen to implement a
hand gesture interface for user interaction

This article reviews some of the steps we have taken towards that goal and
first achievements. The whole project has only been possible through the coop-
eration of a large group, and I am indebted to Mark Becker, Efthimia Kefalea,
Hartmut Loos, Eric Maël, Christoph von der Malsburg, Abdelkader Mechrouki,
Mike Pagel, Gabi Peters, Peer Schmidt, Jochen Triesch, Jan Vorbrüggen, Jan
Wieghardt, Laurenz Wiskott, and Stefan Zadel for their contributions.



Fig. 1. GripSee’s 3 DoF stereo camera head and 7 DoF manipulator.

2 Overall system

The robot hardware is shown in figure 1 and consists of the following components:

– A modular robot arm with seven degrees of freedom (DoF), kinematics sim-
ilar to a human arm, and a parallel jaw gripper;

– a dual stereo camera head with three DoF (pan, tilt, and vergence) and
a stereo basis of 30 cm for two camera pairs with different fields of view
(horizontally 56◦ with color and 90◦ monochrome, respectively);

– a computer network composed of two Pentium PCs under QNX and a Sun
UltraSPARC II workstation under Solaris.

Image acquisition is done by two color frame grabber boards controlled by one
of the PCs, which also controls the camera head and performs real-time image
processing for, e.g., hand tracking. The second PC controls the robot arm. Since
image data has to be transferred between the processors, they are networked
with FastEthernet to achieve sufficient throughput and low latencies.



Our software is based on the C++-library FLAVOR (“Flexible Library for
Active Vision and Object Recognition”) developed at our institute. FLAVOR
comprises functionality for the administration of arbitrary images and other
data types, libraries for image processing, object representation, graph matching,
image segmentation, robotics, and interprocess communication [16].

3 Correspondence-based recognition

Recognition from visual data is required at two points in the desired function-
ality, namely the recognition of hand gestures and the recognition of objects.

In contrast to methods employing invariants or signatures our recognition
methods rely on establishing a correspondence map between a stored aspect and
the actual camera image. A big advantage of this type of recognition is that
precise position information is recovered in addition to the object identity.

This position information in image coordinates can be used to measure 3-D
position required for grasping by a combination of fixation and triangulation.
For this to work the cameras must be calibrated relative to the position of the
end effector. We have developed our own neural network-based method to do
this, which is described in [10, 11].

3.1 Features

The difficulty of the correspondence problem depends on the choice of features.
If grey values of pixels are taken as local features, there is a lot of ambiguity, i.e.,
many points from very different locations share the same pixel value without be-
ing correspondent. A possible remedy to that consists in combining local patches
of pixels, which of course reduces this ambiguity. If this is done too extensively,
i.e., if local features are influenced by a large area, the ambiguities disappear if
identical images are used, but the features become more and more sensitive to
distortions and changes in background.

As a compromise vectors of features at various scales (and orientations) can
be used. One possibility is a wavelet transform based on complex-valued Ga-
bor functions [6, 30, 31], with wavelets parameterized by their (two-dimensional)
center frequency. At each image point, all wavelet components can be arranged
into one feature vector, which is also referred to as a “jet”. These features have
turned out to be very useful for face and gesture recognition.

Depending on the application other feature vectors are more appropriate.
The combination of different features has been systematically studied in [20].
For the object recognition described here, a combination of Mallat’s multiscale
edges [8] and object color has yielded good results. For the gesture recognition
Gabor wavelets have been used together with color relative to a standard skin
color. Generally, feature vectors seem to be better candidates for establishing
correspondence maps than scalar features.



3.2 Elastic graph matching

Solving the correspondence problem from feature similarity alone is not possible,
because the same feature may occur in an image more than once. Therefore, the
relative position of features has to be used as well. One standard method for this
is elastic graph matching: the stored views are represented by sparse graphs,
which are vertex labeled with the feature vectors and edge labeled with the
distance vector of the connected vertices. Matching is done by first optimizing
the similarity of an undistorted copy of the graph in the input image and then
optimizing the individual locations of the vertices. This results in a distorted
graph whose vertices are at corresponding locations to the ones in the model
graph. This procedure is described in full detail in [6, 28, 29].

3.3 Attention control

Conceptually, the solution of the correspondence problem includes segmentation
of the scene – when a correct correspondence map is available, the background is
eliminated as well. Practically, the matching algorithms become time consuming
and error prone when the area covered by the object proper becomes smaller
relative to the image size. Therefore, our recognition system usually employs
some attention control to select areas that are more likely than others to contain
an object. It is important that this be fast enough to allow a reaction by the
system. Therefore, only simple cues such as color or motion are used.

A second step to simplify the recognition tasks is fixation, i.e. centering both
cameras on an object point. This also has the advantage to minimize perspective
distortions.

3.4 Bunch graphs

The major drawback of most correspondence-based recognition systems is that
the computationally expensive procedure of creating a correspondence map must
be done for each of the stored models. In the case of face recognition, this has been
overcome by the concept of bunch graphs [28, 29]. The idea is that the database
of models is arranged in such a way that corresponding graph nodes are already
located at corresponding object points, e.g., a certain node lies on the left eye
of all models. For large databases, this reduces the recognition time by orders of
magnitudes. The resulting face recognition system has performed very well in the
FERET test, an evaluation by an independent agency. It was one of two systems
that underwent that test without requiring additional hand-crafted information
such as the position of the eyes in the images to be analyzed. The performance
on the difficult cases, where the images of persons were taken at widely different
times was clearly better than the competitors’ [15]. As a matter of fact, only one
competitor underwent the test without requiring further information regarding
the position of the eyes. This again illustrates how difficult the correspondence
problem really is.
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Fig. 2. Schema of our object representation. Items in parentheses are important object
parameters which currently cannot be extracted from sensor data.

The bunch graph method exploits the fact that all faces are structurally
very similar and correspondences inside the database make sense at least for a
subset of salient points. For general object recognition this is much more difficult.
Consequently, there is currently no suitable data format for storing many aspects
of many objects. The organization of the database of all aspects of one object
is subject of current research in our group [26, 14, 27, 13]. Another successful
application lies in the recognition of hand gestures, where is has been used to
make the recognition background invariant [24, 21, 23].

3.5 Object representation

An object representation suited for visually guided grasping has to integrate
2D visual features and 3D grip information about a known object, in order to
apply a known grip when the situation requires it. Autonomous learning of the
representation is highly desirable, therefore complicated constructs like CAD
models are not considered. Rather, we adopt the view that visual recognition
and application of a grip is mainly a recollection of what has been seen or done
before, with the necessary slight modifications to adapt to the situation at hand.

The visual representation is view-based, i.e., for each different orientation of
the object a set of visual features is stored, which are extracted from the left



Fig. 3. Pick- and place behavior. The user points at one of the objects with a hand
gesture (top left). The hand gesture is recognized and the closest object is picked up
at the angle indicated by the gesture (top right). The robot waits for a new gesture
(bottom left) and places the object at the indicated position (bottom right).

and right stereo images and grouped into a model graph, which preserves the
topological relationships between the features. These model graphs are stored
in a library for different objects with different orientations and are used to rec-
ognize known objects with a graph matching process, which is invariant under
translation and scale. The grips are then associated with the views. A schema
of our object representation can be found in figure 2.

4 Pick and place behavior

The visual recognition techniques outlined above can be applied to everyday
objects as well as to hand gestures. Like all correspondence based methods they
have the advantage to yield detailed position information in addition to object
identity. This makes them well suited as subsystems for a humanoid robot that
can analyze and manipulate a table scene under human control. Thus, we have
successfully implemented a behavior module, which allows a user to point to one
of the objects on the table and have the robot pick it up and place it at a desired
position. So far it is assumed that the robot knows all the objects from their
visual appearance and how to grasp them.



The system starts in a state, in which the robot stands in front of a table with
various known objects and waits for a human hand to transmit instructions. The
interaction with the human is initiated by moving a hand in the field of view
of the robot. This movement is tracked using a fusion of skin color and motion
cues. In order to point to an object the hand must stop, which is detected by
the robot using the sudden vanishing of the motion cue during tracking.

Now a rough position of the hand is known, which is fixated by the camera
head. After fixation, the type of hand gesture posture is determined by graph
matching. This matching process also yields a refined estimate of the position
of the hand’s center, which is fixated. The actual identity of the hand gesture
(fist, flat, etc.) can be assigned arbitrary additional information to be conveyed
to the robot. We currently use it to code for the grasping angle relative to the
table (steep grip vs. low grip, etc.).

It is expected that the hand now points at an object, thus the fixation point is
lowered by a fixed amount of about 10 cm. Now, a simple localization algorithm
detects the object, which is then fixated. Now the object recognition module
determines the type of object, its exact position and size in both images and its
orientation on the table.

Like in the posture recognition the cameras fixate on a central point of the
recognized object (which is a feature known for each each view of each object).
This yields the most precise object position that can be expected. Obviously,
this precision is crucial for reliable grasping.

Now a grip suitable for the object and according to what was demanded
by the hand gesture is selected from the set of grips attached to the object and
transformed into world coordinates. A trajectory is planned, arm and gripper are
moved towards the object, and finally the object is grasped. Another trajectory
transfers it to a default position conveniently located in front of the cameras for
possible further inspection.

Then the field of view is again surveyed for the operator’s hand to reappear.
In this state, it should be pointing with a single defined gesture to the three-
dimensional spot where the object is to be put down. The 3D position is again
measured by the already described combination of fixation movements and ges-
ture recognition. Then the arm moves the the object to the desired location and
the gripper releases it.

5 User-assisted object learning

The construction of the object database is a time consuming process, which in-
cludes taking images of the object from all possible orientations and coding useful
grips from different angles. A good part of our work is dedicated to automate
this construction.

Learning of a new object (or more precisely, one stable pose of a new object)
is initiated by putting the object onto the table and having the robot create
the various views by moving the object around. This procedure has two serious
difficulties. First, a good grip must already be known for the robot to manipulate



Fig. 4. Learning the representation of a new object. The object is placed into the
gripper such that a stable grip is known (top). The robot puts the object onto a
turntable (middle) and images of the various views are recorded without interference
from the gripper (bottom).



the object in a predictable manner. Second, the actual orientation of the object
should be known with good precision, because the error is likely to accumulate
over the various views. The problem of learning new grips from scratch can only
be solved by relying on tactile information. We have currently constructed and
implemented tactile sensors on our gripper (see section 6), but the extraction of
detailed object information is subject of future research.

In this situation, we have decided to solve both problems by what we call
user-assisted learning. The general idea is that the acquisition of knowledge is
as autonomous as possible, but a human operator still makes decisions about
what is important and thus guides the process. Concretely, in the current case
our learning procedure is as follows. The operator presents the novel object by
putting it into the gripper (which has a defined position and orientation at that
moment), in a position and orientation that are ideal for grasping. They thus
define both a default grip and the object coordinate system. The robot closes the
gripper, puts the object onto the center of a turntable, fixates on the grasping
center, and takes a stereo image pair of the first object view. Then, the turntable
is rotated by a specified increment and a second view is taken. This is repeated
until a full circle of object views is acquired. After acquisition, all images are
rotated around their center to compensate for the rotation associated with a
combination of tilt and vergence.

After the images of the views are taken, they are converted into a collection
of labeled graphs. In this learning step, it is assumed that the background is
uniform (which is the case for the surface of the turntable) in order to avoid the
necessity of complicated segmentation methods and to assure as clean graphs as
possible in the representation (see [4] for details).

Two alternatives to using the turntable may be considered, namely having
the robot place the object onto the table in all necessary orientations or hold-
ing it in the gripper while storing the visual information. Both have not been
pursued so far in order to minimize the mechanical strain on the hardware. The
second possibility, poses the additional problem of segmenting and subtract-
ing the gripper itself from the image of the object. The quality of the object
recognition depends rather critically on the quality of the model graphs. Our
system therefore contains the possibility to modify the node positions by hand,
but under good illumination the automatically created graphs are usually good
enough.

6 Tactile sensors

In the course of the project it has become clear that visual information in a
humanoid setup is not accurate enough for precise grasping. It should be en-
hanced with tactile information for fine tuning during the application of a grip.
As none of the currently available sensors met our requirements for a robust
system that was very sensitive for dynamic touch, a new type of sensor has been
developed [18, 19]. In combination it complements two static elements (for x-



and y- direction, respectively) with 16 dynamic sensor elements on each jaw of
the gripper.

As a first approach to behavior guided by tactile sensing we have imple-
mented a method for guiding the robot arm manually on a desired trajectory.
The signal from each sensor is binarized with a suitable threshold and triggers a
predefined reflex movement, which is represented by a translational and a rota-
tional movement vector relative to the gripper. The translation vector moves the
contact position towards a target position, e.g., the center between both gripper
jaws. This results in a radial vector field for the translation, where each direc-
tion is given by a vector pointing from the target position towards the sensor
position. The rotation vector turns the gripper such as to maximize the number
of sensor contacts, i.e., it attempts a parallel orientation of the gripper jaw to
the hand’s surface. The opening width of the gripper is controlled to keep loose
contact with the hand. In case of contact with both gripper jaws it receives a
small opening signal, and in case of one-sided contact a small closing signal.

This control can be used to guide the robot arm on a desired trajectory by
putting a hand between the jaws. If adjusted suitably, the movement components
of each sensor element add up to a motion which minimizes the asymmetry of
the contact around the hand and thus follows the hand’s movement through
the configuration space. Given a simple static object with parallel grasping sur-
faces, the same strategy will eventually converge to a situation with a symmetric
contact distribution around the desired grasping position on each gripper jaw.
For grasping, this can be followed by pressure-controlled closing of the gripper.
Turning this method into a good grasping strategy with minimal requirements
on object shape and developing a systematic way to learn optimal vector fields
are subjects of current research. Full details about the dynamics and the overall
robot control can be found in [7].

7 Related work

A comprehensive study of the state of the art in robotic grasping is clearly
beyond the scope of this paper. To put the work into perspective, I classify the
methods used in terms of the possibilities provided in [3]. The control structure is
hierarchical in the sense that the vision system estimates a 6D grasping position,
and then a grasping trajectory is calculated. Possible grips are associated with
object identities and part of the objects’ description. The 3D position and the
object’s orientation on the table are derived from the recognition procedure,
the remaining DoF of the grip orientation is derived from the user interaction.
Different from the servoing systems in, e.g. [2], our system is currently “endpoint-
open-loop”, as no attempt is made to follow the end effector visually. A complete
“endpoint-closed-loop” system like the one described in [5] would be desirable,
but we will have to develop a suitable visual model of the end effector first
that could accommodate the quite complicated occlusions arising at the critical
moment of actual grasping. Tracking the manipulator with algorithms like in [9]
is not enough in such situations. In order to circumvent these problems, we are



currently planning to correct the control errors resulting from visual inaccuracies
using the tactile sensors.

Our system is designed to resemble the situation in human perception as
closely as possible, which distinguishes it from the work done on industrial ma-
nipulators. The latter are usually non-redundant, and the cameras can be po-
sitioned according to the needs of the task at hand. Robot systems similar to
our approach include [25] and [12]. The attention mechanisms and active depth
estimate bear resemblance to the system described in [1].

8 Outlook

In the following I give an outlook on projects that are currently underway in
order to enhance the robot’s capabilities.

8.1 Imitation learning

In addition to learning the visual appearance of objects the learning of grips is
important. As it is hard to define what constitutes a good grip an attractive
method is to have the robot imitate trajectories performed by a human. We
have measured the trajectories of a pair of thumb and index finger from a Ga-
bor transform with specially adapted parameters [22] with encouraging results.
Another project tries to estimate the arm position in whole-body gestures. First
results have been published in [17].

8.2 Further problems

Among the problems to be tackled next is the interpretation of the output of
the tactile sensors and the classification of situations such as a sliding object, a
perfect grip, and an unstable grip from the time series displayed by the tactile
sensors during grasping. A further task will be to learn a representation of 3D
space in a way that is suitable for manipulation. Concretely, the robot body
(and possibly other parts) must be represented so that collisions can be reliably
avoided. The relative calibration of vision, touch and proprioception must be
improved, and it is highly desirable to have it updated during normal operation.
The optimization of grips from sensor data has already been mentioned. On the
visual side the organization of the object database to make rapid recognition
possible is the most pressing issue. Finally, the integration of the sensor infor-
mation to a coherent percept of the environment and a good organization of the
overall behavior must be pursued.
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