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Abstract

As a step towards systems that can acquire knowl-
edge automatically we have designed a system that
can learn new objects with a minimum of user in-
teraction and implemented it on our robot platform
GripSee [1]. A novel object is placed into the robot’s
gripper in order to define a default orientation and
a default grip. The robot then places the object on
a turning table and builds up a visual representa-
tion that consists of a collection of graphs, labeled
with multiscale edges. A user interface that can
correct errors in the representation is also part of
the system. The visual representation is comple-
mented by a grip library, which contains possible
ways of grasping and manipulating the object in a
robust manner. We regard this procedure as an ex-
ample of Human Assisted Learning.

1 Introduction

One of the major problems in knowledge represen-
tation is the lack of systems that can actively ac-
quire information from the environment, in order
to assess the results of reasoning processes and ex-
tend the knowledge base. Sometimes this is called
the symbol grounding problem. For a system to be
of practical use, a certain degree of control must
be left to the user. What is required may be called
semi-autonomy: a system (typically a robot) that
can interact with the environment must dispose
of a repertoire of skills that are carried out au-
tonomously, but the actual control of behavior must
be left to a human operator [1].

The knowledge dealt with here is not sophis-
ticated high-level knowledge about complicate in-
teractions between things in the real world, be-
cause there is currently very little chance to ac-
quire such knowledge without extensive program-
ming. Instead we concentrate on modeling simple
knowledge acquisition tasks like learning to recog-
nize a formerly unknown object and to grasp and
manipulate it. More concretely, we describe an ob-
ject representation, which is suited to support the

Figure 1: GripSee’s 3 DoF stereo camera head and
7 DoF manipulator.

behavior of manipulating objects and learning new
objects with a minimum of user interaction.

We are aware of the fact, that the use of “rep-
resentations” in artificial intelligence and robotics
has been heavily criticized for good reasons [2]. In-
deed, highly detailed world models are difficult to
obtain, and it is not sure if they really would make
concrete vision tasks easier. However, enough in-
formation must be stored in the robot itself for it to
be able to remember objects, situations, and suit-
able actions. It is this sort of memory, which we call
a representation here, and we require very strongly
the learnability of a representation, i.e. the possi-
bility for the robot to construct it from raw data
with as little human interference as possible.

The general principle underlying our approach
to knowledge representation is the association of
actions to situations encountered before. Because
no situation is ever identically encountered a second
time a certain degree of generalization is required in
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Figure 2: World, camera, object and gripper coor-
dinate systems

the analysis of the situation (recognition process)
as well as in the parameters guiding the action.

The paper is organized following the stan-
dard distinction between data structures and algo-
rithms: First, we describe the representation of a
single object, then the procedure employed to learn
a new object, and finally the procedures that are
used to recognize and grasp a known object.

2 The object representation

An object representation suited for visually guided
grasping has to integrate 2D visual features and 3D
grip information about a known object, in order to
apply a known grip when the situation requires it.
According to our general philosophy, autonomous
learning of the representation is highly desirable,
therefore complicated constructs like CAD mod-
els are not considered. Rather, we adopt the view
that visual recognition and application of a grip is
mainly a recollection of what has been seen or done
before, with the necessary slight modifications to
adapt to the situation at hand.

2.1 Hardware constraints

GripSee is an anthropomorphic robot system de-
veloped at our institute as a research platform and
demonstrator for a coming generation of service
robots. It is equipped with a redundant manip-
ulator with a parallel jaw gripper featured with
tactile sensors and an active stereo camera head
(see figure 1). The stereo camera head is calibrated
autonomously to the predefined manipulator kine-
matics [6]. The robot’s proportions resemble a sit-
ting human, which makes it suited for exploring
and grasping objects in a table scenario using in-
formation from its visual and tactile sensors [1].

2.2 Grip representation

In contrast to the very sophisticated information
required for grasping with a multifingered hand, a
grip for our parallel jaw gripper can simply be rep-
resented by a homogeneous transformation matrix,
which stands for the gripper’s position and orien-
tation in object coordinates (see figure 2), plus the
opening width of the gripper suitable for the object
(see [5] for details). In the course of the full inte-
gration of our tactile sensors, additional descriptors
will be the grasping force and a desired contact dis-
tribution.

2.3 Visual representation

The visual representation is view-based, i.e., for
each different orientation of the object a set of vi-
sual features is stored, which are extracted from
the left and right stereo images and grouped into
a model graph, which preserves the topological re-
lationships between the features. These model
graphs are stored in a library for different objects
with different orientations and are used to recog-
nize known objects with a graph matching process,
which is invariant under translation and scale.

The situation is made more difficult by the fact
that one and the same object can appear on the ta-
ble not only in different locations and orientations
around the vertical axis, but can also rest on dif-
ferent sides, which potentially changes the visual
appearance completely. At the current state of our
system, such different stable positions are treated
as independent versions of the object and each of
them is stored and learned separately.

2.4 Integrated representation

A complete object representation consists of a grip
library, which contains position and orientation of
suitable grips in object coordinates, and for each
stable pose of the object on the table a set of model
graphs, which cover a complete 360◦ set of rotations
in a reasonable resolution (9◦). Each model graph
is associated with a rotation matrix, which relates
object and camera orientations and with the offset
of the projection of the grasping center (the point
between the gripper tips during a successful grip)
to the center of gravity of the graph nodes in the
image plane.

3 Learning the representation

Learning of a new object (or more precisely, one
stable pose of a new object) is initiated by putting
the object onto the table and having the robot cre-
ate the various views by moving the object around.
This procedure has two serious difficulties. First,
a good grip must already be known for the robot
to manipulate the object in a predictable manner.
Second, the actual orientation of the object should
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Figure 3: Initialization of the learning process. A human operator shows a simple grip, which is then
used by the robot to place the object onto a turntable and collect the views required for recognition.

be known with good precision, because the error
is likely to accumulate over the various views. The
problem of learning new grips from scratch can only
be solved by relying on tactile information. We
have currently constructed and implemented tac-
tile sensors on our gripper, but the extraction of
detailed object information is subject of future re-
search.

In this situation, we have decided to solve both
problems by what we call human-assisted learning.
The general idea is that the acquisition of knowl-
edge is as autonomous as possible, but a human
operator still makes decisions about what is impor-
tant and thus guides the process. Concretely, in the
current case our learning procedure is as follows.
The operator presents the novel object by putting
it into the gripper (which has a defined position
and orientation at that moment), in a position and
orientation that are ideal for grasping. They thus
define both a default grip and the object coordinate
system. The robot closes the gripper, puts the ob-
ject onto the center of a turning table, fixates on
the grasping center, and takes a stereo image pair
of the first object view. Then, the turning table is
rotated by a specified increment (9◦) and a second
view is taken. This is repeated until a full circle of
object views is acquired. After acquisition, all im-
ages are rotated around their center to compensate
for the rotation associated with a combination of
tilt and vergence.

After the images of the views are taken, they are
converted into a collection of labeled graphs. In this
learning step, it is assumed that the background is
uniform (which is the case for the surface of the
turning table) in order to avoid the necessity of
complicated segmentation methods and to assure
as clean graphs as possible in the representation
(see [3] for details).

As we are mainly interested in simple objects,
the first step is contour extraction. Input images
are preprocessed in two different steps, namely the
calculation of Mallat multiscale edges, and a sub-

sequent contour following step, which assigns con-
fidence values to edges, starting from the modu-
lus values of the Mallat transform and modifying
them according to coherent edge information in the
neighborhood.

A graph is then constructed beginning with ho-
mogeneous sampling of the image. A square lat-
tice of points with a spacing of several pixels is
generated. Graph nodes are positioned on these
image points. Each node is connected to all its
neighbors resulting in a maximum of eight neigh-
bors for each node of the graph. A thinning step,
which discards all nodes whose Mallat responses
are below a threshold, cuts the graph down into
regions which actually contain contours. The re-
sulting graph is, in general, no longer connected,
because there may be significant contours in the
background. Therefore, all graphs except the one
with the maximal number of nodes are eliminated
in a separation step.

After the preceding steps all remaining nodes
are still located on the original square lattice and
lie on or directly neighboring to lines of local mod-
ulus maxima. Now, by local adaptation each node
moves to the position of the closest modulus maxi-
mum. This leads to a contour-adapted graph with
nodes positioned on edges only. This local shift can
result in neighboring nodes lying on the same im-
age position. Those multiple nodes are eliminated
by a final simplification step.

Two alternatives to using the turntable may be
considered, namely having the robot place the ob-
ject onto the table in all necessary orientations or
holding it in the gripper while storing the visual
information. Both have not been pursued so far
in order to minimize the mechanical strain on the
hardware. The second possibility, poses the addi-
tional, problem of segmenting and subtracting the
gripper itself from the image of the object. Obvi-
ously, the quality of the object recognition depends
critically on the quality of the model graphs. Our
system therefore contains the possibility to modify
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the node positions by hand, but under good illumi-
nation the automatically created graphs are usually
good enough.

4 Using the representation

4.1 Object recognition

The recognition step yields the identity, position
and orientation of an object on the table. In the
presence of multiple objects, one of them must be
selected by either operator interaction [1] or some
attention control mechanism. After the region of
interest is defined the camera head fixates on the
center of this region (see above).

After that step the recognition proper proceeds
by Elastic Graph Matching [4]. Its main goal is
to establish correspondences between model nodes
and points in the actual image, so that feature sim-
ilarities are only evaluated at corresponding points.
To this end, Mallat feature vectors are calculated
in the pair of stereo images to be analyzed. Then
a distorted copy of a model graph in the stereo im-
age is optimized to fulfill the following (possibly
conflicting) constraints:

• The local image information stored at each
node position of the model graph must match
the image region around the position where the
node is positioned in the neighboring view.

• The distances between the matched node posi-
tions should not differ too much from the orig-
inal distances.

• The matches of one model graph in both
stereo images must approximately adhere to
the epipolar constraint.

This matching procedure is carried out for all
available model graphs and the best matching
graph is assumed to represent the correct object in
the correct orientation. The position can then be
retrieved from the location of the matching nodes.

4.2 Grasping

After identity, position, and orientation of the ob-
ject are known, a suitable grip is selected from the
library and transformed from object coordinates to
world coordinates using the rotation matrix and
offset belonging to the best matching view. The
selection is either based on a command from the
operator (e.g., in the form of a hand gesture) or on
a kinematical optimization criterion. Then an arm
trajectory is planned and executed and the object
is picked up for further manipulation.

5 Conclusions

The representation scheme we have introduced is
well suited for rigid everyday objects, but not for
objects of flexible shape such as wires or cables.

Furthermore, the gripper can grasp objects which
do not exceed certain dimensions, which is a con-
straint applying also to humans.

The major problem for the system as described
here is the lack of feedback during the grasping pro-
cess. Therefore, the gripper has now been equipped
with tactile sensors. As a part of ongoing research
we work on refining the estimates of the object’s po-
sition and orientation produced by the recognition
module using tactile information during the appli-
cation of the grip. Another line of research consists
of learning new grips by imitating the trajectories
presented by a human operator. Finally, the rep-
resentation will be extended by a detailed descrip-
tion of the tactile impressions encountered during
grasping, which may allow the measurement and
subsequent use of quite detailed 3D-information.
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J. Lange, C. von der Malsburg, R. P. Würtz,
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[5] E. Maël. Adaptive and Flexible Robotics for Vi-
sual and Tactile Grasping. PhD thesis, Ruhr-
Universität Bochum, 1999. In preparation.
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