
Contributed Article

On the performance of neuronal matching algorithms

Rolf P. Würtza,*, Wolfgang Konenb, Kay-Ole Behrmanna

aInstitut für Neuroinformatik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany
bZentrum für Neuroinformatik GmbH, Bochum, Germany

Received 26 November 1997; accepted 7 July 1998

Abstract

For a solution of the visual correspondence problem we have modified the Self Organizing Map (SOM) to map image planes onto another
in a neighborhood- and feature-preserving way. We have investigated the convergence speed of this SOM and Dynamic Link Matching
(DLM) on a benchmark problem for the solution of which both algorithms are good candidates. We show that even after careful parameter
adjustment the SOM needs a large number of simple update steps and DLM a small number of complicated ones. The results are consistent
with an exponential vs. polynomial scaling behavior with increased pattern size. Finally, we present and motivate a rule for adjusting the
parameters of DLM for all problem sizes, which we could not find for SOM.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Correspondence problem; Self-organizing map; Dynamic link matching; Symmetry recognition; Convergence speed; Complexity

1. Introduction

For visual perception in a biological or artificial system
thevisual correspondence problemis of central importance:
‘Given two images of the same physical object decide which
point pairs belong to the same point on the object’. This is a
special case of pattern matching and usually only considered
in constrained form for stereo matching (epipolar con-
straint) or tracking (small time steps and continuous motion
between images). We feel that a generic solution to the
unconstrainedproblem at least greatly alleviates many of
the difficulties encountered by computer vision research on
the one hand and by attempts at modeling human vision on a
neuronal level on the other hand. Invariant object recogni-
tion, for example, becomes easy if a correspondence map of
sufficient density and reliability can be constructed between
objects and stored prototypes (Wu¨rtz, 1995; Wiskott, 1996;
Wiskott and von der Malsburg, 1996; Wu¨rtz, 1997). The
study by Konen and von der Malsburg (1993) is another
illustration of the power of such an algorithm. It describes
a neural network based on Dynamic Link Matching (DLM)
that learns to evaluate input patterns for the presence of one
out of three mirror symmetries. That problem might be con-
sidered academic but the proposed system compared very
favorably with a standard Boltzmann machine (Sejnowski et

al., 1986) in terms of training speed. While the Boltzmann
machine needed some 104 training patterns to classify the
symmetries the DLM system with its inherent capability of
finding second-order correlations could do with single
examples. The basic idea of DLM dates back to Willshaw
and von der Malsburg (1976).

For a solution of the correspondence problem a mapping
M from one image plane to another one, each carrying fea-
turesf(·) has to be established, which must satisfy a combi-
nation of the following three constraints:

M1: M is a one-to-one function from one image plane
onto another image plane.
M2: M is a homeomorphism, i.e. continuous in both
directions.
M3: M is feature-preserving, i.e.f ðMðxÞÞ ¼ f ðxÞ:

For application to real-world problems, these constraints
have to be relaxed.M2 has no meaning for discrete spaces,
so the somehow ill-defined term ofneighborhood preserva-
tion must take the place of continuity (for a thorough dis-
cussion see Goodhill et al., 1995). For real images, strict
equality of the features cannot be expected, soM3 is
replaced by the constraint that the sum of all local feature
similarities should be as large as possible.

There is an abundance of technical solutions for special
cases of the correspondence problem, e.g. optical flow or
disparity algorithms. Matching algorithms for recognition
such as in Lades et al. (1993) and Wu¨rtz (1997) also center

* Corresponding author. Tel.: +49-234-700-7994; Fax: +49-234-7094-
210; E-mail: rolf.wuertz@neuroinformatik.ruhr-uni-bochum.de

0893–6080/99/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(98)00112-9

Neural Networks 12 (1999) 127–134PERGAMON

Neural
Networks

on special aspects like translations and small distortions and
would not apply to large rotations or mirror images without
modification. For technical systems, this tailoring to the
problem at hand is, of course, the only key to success.
When looking forgeneric solutions, a good candidate to
solve the correspondence problem is a self-organizing pro-
cess that develops from an unordered initial state to a map-
ping that fulfils M1 throughM3 as well as possible. The
Self-Organizing Map (SOM) algorithm (Kohonen, 1982,
1990, 1997) seems to be a natural choice. In Bellando and
Kothari (1996), for example, it is used to find frame-to-
frame correspondences for tracking. It strictly enforces
uniqueness (M1) in onedirection, namely that every neuron
has only one pointer to an input vector.

Another possibility is Dynamic Link Matching (DLM)
(Konen et al., 1994), which also relaxesM1 such that
there is in principle full connectivity between the planes,
and the correct correspondences grow, while all others
decline to small values. In Wu¨rtz (1995), Wiskott (1996)
and Wiskott and von der Malsburg (1996) dynamic link
matching is used to construct correspondence maps for
face recognition.

As self-organization is a notoriously slow process the
convergence speedis an important detail. Its importance
may be lower in the typical application areas that are models
of brain development, but for vision applications where
correspondences must be established in some milliseconds,
it becomes crucial. The authors of Bellando and Kothari
(1996) give no figures about the computational cost of
their system. Short of sound analytical results about conver-
gence times we have used the problem from Konen and von
der Malsburg (1993) as a benchmark to evaluate the relative
performance of DLM (Konen et al., 1994) and the Self
Organizing Map (SOM) algorithm (Kohonen, 1982,
1990). In the context of neuronal modeling of vision it
should be noted that both algorithms have an inherently
sequential component, and consequently the convergence
time matters even if the hardware is highly parallel.

The discretised problem is as follows. There are twoN 3
N layers of neuronsX andY, each neuron carries one ofF
different features. The algorithm must find a feature-preser-
ving one-one mapping. In the following sections we will
define a benchmark problem, present a slight modification
of the SOM that includes the feature similarity into the
learning rule, then describe DLM, and run both algorithms
measuring the performance.

This paper does certainly not attempt a comprehensive
comparison between all applications of SOM and the (much
fewer) applications of DLM which have been developed
during the last decade. Especially, the well-known
dimension reduction capabilities of SOM are not considered
here. We concentrate on the convergence behavior of SOM
and DLM w.r.t. a very specific task, namely the correspon-
dence problem, as described above. Consequently, our
results do not necessarily generalize to different tasks
which could be tackled by both algorithms. Nevertheless,

we believe that the results hold for two-dimensional pattern
matching.

It might be argued that the instantiation of the correspon-
dence problem is too simple. Our concern, however, has not
been the absolute difficulty of the problem but the relative
performance of both algorithms, and that objection would
only be serious if there was reason to believe that one of the
algorithms would change its behavior qualitatively when
moving to real-world images. Furthermore, a very similar
problem has proven to be difficult for Boltzmann machines
(Sejnowski et al., 1986—see above).

2. Definition of a benchmark problem

A fair comparison of algorithms that were developed to
solve different problems and whose full range of applicabil-
ity is still subject of intensive research is not easy. The least
one can do is to define problem and simulations very expli-
citly and leave it to the reader to judge if justice has been
done to both algorithms, which will be specified in Section 3
and Section 4, respectively.

If a square lattice is mapped onto a continuous input
square (a typical problem for the SOM without features),
the correct solution is not obvious. For a fair comparison,
however, the quality of a solution must be assessed by
objective means. The solution is not unique, because mirror
reflections and rotations by multiples of 908 in one of the
layers have, of course, the same quality.

To avoid these problems we have chosen the above-
mentioned mirror-problem as a benchmark. The setup
consists of two square layersX and Y of N 3 N neurons
that in addition carry featuresf [{1, …, F}. The feature
distribution in X is chosen at random, but symmetric1

patterns are discarded. The distribution inY is identical to
the one inX except for a mirror reflection at the horizontal or
vertical symmetry axis of the square or a rotation by
multiples of 908 around the center. Because of the lack of
symmetry, the feature distributions induce a unique
neighborhood-preserving mapping fromX to Y. The
benchmark task for the self-organizing algorithms is to
find this mapping given only the feature distributions.
Similarity of features of neuronsx [X andy [Y is defined
as all-or-nothing for this benchmark (for practical
applications smooth similarity functions are usually more
suitable):

T(~x, ~y) ¼ d(f (~x), f (~y)) ¼
1 if f (~y) ¼ f (~x)

0 otherwise:

(
(1)

Due to the discrete lattices in both layers and the symmetry-
breaking features attached to the neurons, neighborhood

1 This includes symmetries that only arise if the layer topology is a torus,
because DLM actually uses that topology. For a discussion of the treatment
of boundaries see the end of Section 5.

128 R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

preservation is clearly defined and the optimal solution is
known beforehand, which gives a straightforward error
measure that can be monitored through the whole process.
Let M t(~x) be the position where neuron~x points in layerYat
time t, andMopt(~x) be the optimal mapping. Then the error at
time t will be

E(t) ¼
∑
~x

(M t(~x) ¹ M opt(~x))2: (2)

For the DLM, the vectorM t(~x) is defined as the center of
mass for all linksJ(~x, ~y) emerging from neuron~x (see Eq.
(6)).

Note that in this benchmark problem the conditionsM1
throughM3 are not conflicting, and the solution is unique.
For real data, where they might be conflicting, the optimal
solution is defined only by the behavior of the algorithms
themselves. This may not be very satisfactory, but the ana-
lytical treatment of either algorithm still leaves much to be
desired (Kohonen, 1997).

For the N 3 N-size benchmark problem a particular
solution is said to haveconvergedif the average position
errorE(t)/N2 is below a thresholde. The number of features
F is a useful parameter to control the difficulty of the
problem. ForF ¼ 1 it is impossible to find non-symmetric
distributions. The more different features there are the fewer
ambiguities are encountered, and the easier the
correspondence problem becomes. For largeF the correct
solution can be found by just searching the identical feature
in the other layer. For all simulations, we have usedF ¼ 10
equally distributed features. See Fig. 1 for the set-up of both
algorithms.

3. A modified self-organizing feature map (SOM)

In order to apply the SOM to the correspondence problem
we have identified the discrete neuron layer with a discrete
layer of neuronsX and the input space with another discrete
layerY. Furthermore, we have included the feature similar-
ity T(~x, ~y) into the learning rule of an otherwise unmodified
SOM-algorithm (Kohonen, 1982, Kohonen, 1990). The
algorithm is as follows.

Initialize pointers fromY to X randomly (one pointer for
each element ofY) and iterate the following until conver-
gence:

1. Choose an arbitrary element~x0 of X.
2. Select the element~y0 of Ysuch thatjM (~y0) ¹ ~x0j is mini-

mal.
3. UpdateM by the following increment

DM (~y) ¼ l exp(¹ l~y¹ ~y0l
2
=2j2)(~x0 ¹ M (~y0))T(~x0, ~y0):

(3)

In the benchmark,T can only take the binary values 0 and 1,
so that iteration steps for neurons with unequal features are
without effect. Therefore, we have optimized the algorithm
by skipping all such iteration steps and choosing~y0 directly
among the neurons with the same features as~x0. Only those
‘effective’ iteration steps will be counted in our results.

Practically all applications of SOM require dynamic
modification of at least one of the parametersl and j to
assure convergence. Different decreasing schemes (linear,
exponential, 1/t) are in use, but are known (Kohonen, 1990;
Kohonen, 1997, p. 88) to yield the same general behavior of

Fig. 1. The setup for the benchmark problem. A correct mapping must be found between two layers, both of which carry features (which are not shown here).A
Self-organizing feature map (left hand side) and dynamic link matching (right hand side) are both applied to the problem, where the learning rates include the
feature similarity between both ends of a link.

129R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

the algorithm. According to our own experience the actual
time course of the parameters matters less than a combina-
tion of a good starting value and the coincidence of the map
reaching its stable state and the parameters reaching zero.
The necessity for parameter adaptation during development
introduces new parameters describing the decreasing speed.
It is clear that neither learning rate nor neighborhood width
may drop below zero. For a linear decreasing scheme, which
we have used throughout, a complete parameter set describ-
ing the algorithm consists ofl0, Dl, j0, Dj.

Extensive experiments (Behrmann, 1993) have shown
that the performance could not be improved by decreasing
l, and we have kept it constant atl ¼ 1, but the width
parameterj0 and its decrease rateDj had to be chosen
carefully. Both were optimized individually for each pro-
blem size (N ¼ 4, …, 20) by scanning a reasonable para-
meter range (of 40 parameter pairs) with 10 executions of
SOM each. From the best parameter setting we show in Fig.
2 only the 8 best results among the 10 runs. The reason why
we do not show all 10 results is that even with this careful
parameter selection the SOM did not converge in all cases.
This implies that the parameters work well but are not yet on
the safe side for convergence and longer convergence times
must be expected if that is required. The results are consis-
tent with an exponential scaling of the number of update
steps with the problem size (see Fig. 2). The complete

parameter set was as follows: The learning rate wasl ¼

1.0, the initial width of the Gaussian defining the neighbor-
hood was variedj0 [{0.1N, 0.2N, …, 1.0N}, the decrease
Dj varied between 43 10¹7N and 10¹4N. In order to avoid
underflow problems the decrease ofj was cut off atjmin ¼

10¹6N. The number of features was kept atF ¼ 10, the layer
size was variedN [{4, 6, 8,…, 20}. The error threshold for
convergence wase ¼ 1/640 throughout.

4. Dynamic link matching (DLM)

In the DLM scheme layerX is fully connected withYby a
matrix J(~x, ~y) of dynamical links. Their development is
governed by a Hebbian rule with competition and influence
of feature similarity. In other words, links between pairs of
neurons which havesimilar featuresand areactive at the
same timewill be strengthened, others decay. Neighborhood
preservation in DLM is achieved by ensuring that in each
layer only one connected subregionof a given form and
size, which we will call ablob, can be active at a time.
This is a way to code neighborhood in the layer as common
activity in the same time slot. A blob in layerX excites layer
Y by means of the dynamic linksJ(~x, ~y). LayerY supports
only blobs of the same form and size asX. The links only
influence thepositionof the blob inY. This position can be

Fig. 2. Scaling behavior of the SOM algorithm on the mirror benchmark. Only runs with the optimal parameter set for each problem size are shown. The
vertical spread of data points is due to different random seeds. A straight line fits the data well, hinting at exponential scaling with problem size.

130 R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

calculated analytically (Konen et al., 1994). Now only the
neurons in the blob inX and the resulting blob inYare active
and can strengthen their links in the following update step
according to their feature similarities. An activity blob is a
unimodal nonnegative functionb(·) of the layer neurons. In
our simulations we have chosen it to be 1 inside a square of
sizeB 3 B and0 outside. Then, the concrete algorithm runs
as follows (* stands for componentwise subtraction modulo
N):

1. All links are initialized to 1/N2.
2. A position~x0 [X is chosen at random, a blob is placed

there, and the resulting blob position~y0 [Y is calculated
such as to minimize thepotential

V(~y0) ¼ ¹
∑
~y

∑
~x

J(~x, ~y)T(~x, ~y)b(~x*~x0)b(~y*~y0): (4)

3. The activities inX andY are now blobs positioned at~x0

and~y0, respectively, and the linksJ(~x, ~y) are updated by
the learning rule:

DJ(~x, ~y) : ¼ lJ(~x, ~y)T(~x, ~y)b(~x*~x0)b(~y*~y0): (5)

4. The updated links are first normalized by division by∑
~xJ(~x, ~y) and then by division by

∑
~yJ(~x, ~y).

Steps 2 through 4 are iterated until convergence.
The algorithm converges to a state where each neuron in

X hasonestrong link to a neuron inYand all the other links
are very small. In the early stages of DLM the mapping is
not unique. The error function (Eq. (2)), however, requires a
unique mapping. For that reason, thecenter of massfor all
links J(~x, ~y) emerging from neuron~x has been used:

M t(~x) ¼

∑
~y~yJ(~x, ~y)∑
~yJ(~x, ~y)

: (6)

The convergence speed of the algorithm is shown in Fig. 3.
The simulations of DLM on the mirror benchmark have

shown that its parameters are fairly simple to adjust. There
is no necessity to decrease the learning ratel or change the
blob sizeB during iterations in order to obtain convergence.
The form of the blob (circle, square,…) does not influence
convergence. Having chosen the learning ratel as large as
possible without impeding convergence, the only relevant
parameter is theblob size B. Simulations in Behrmann
(1993) have shown that convergence is fastest if a blob
covers half the layer area. We also see from Fig. 4 that for
a 123 12 layer square blobs with a side length of 8 or 9
units give fastest convergence. (A square blob of length

Fig. 3. Scaling behavior of the DLM algorithm on the mirror benchmark. The vertical spread of data points is due to different random seeds. A straight line is
compatible with the data, this time suggesting linear scaling with problem size.

131R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

�����
72

p
¼ 8:49 would cover exactly half the layer area.) The

blob sizeB ¼ N/
���
2

p
, which we used for all DLM simula-

tions, can be shown to maximize the average information
gain per iteration step (see Appendix A for details).

The experimental conditions have been identical to those
for the SOM. The scaling behavior, however, was different.
On variation of the problem sizeN the number of iteration
steps needed for convergence increases only linearly withN
(Fig. 3), in sharp contrast with the exponential behavior of
the SOM (Fig. 2). The complete list of parameters used for
the DLM simulations is:B < N/

���
2

p
for the blobsize,l ¼ 1.0

for the learning rate, a constant feature numberF ¼ 10, a
varying layer sizeN [{4, 6, 8,…, 20}, and a constant error
thresholde ¼ 1/640.

5. Conclusions

During our experiments we have encountered fewer dif-
ficulties in adjusting the parameters for DLM than for the
SOM. Nevertheless, we have invested considerable effort to
tailor both algorithms for the benchmark problem. For DLM
the essential parameter is the blobsizeB which should be
such that the blobs cover half the layer (see Section 5 for a
plausibility argument in favor of this choice). For SOM, the
parameter choice had to be done much more carefully, and
even after that some runs without convergence remained.
That shows that the parameters could hardly be modified for
faster convergence without losing convergence proper.

Figs. 2 and 3 show the number of iterations required to
solve the mirror problem. The comparison of these two

figures is not completely fair, because the single update
steps for DLM are much more complicated (O(N4)) than
the ones for the SOM (O(N2)). In order to show the actual
execution time for concrete layer sizes we have plotted the
number of floating point operations required to reach con-
vergence in Fig. 5. This figure indicates that DLM con-
verges faster once the layer size exceeds 163 16. We
conclude that the convergence time for DLM will scale as
N4 and the one for the SOM as exp(N). For an estimation of
the whole effort, the figures for SOM ought to be multiplied
by a factor of 40, the number of parameter combinations we
tested. The price paid for the faster convergence of DLM is
of course the memory requirement of O(N4) as compared
with O(N2). For a ‘mixed’ complexity measure containing
terms for processing time and memory requirement this
would still not change the exponential vs. polynomial
behavior.

A question that cannot be ignored in the comparison of
neuronal algorithms as models for perception is the time
required on parallel machines. Given arbitrarily many par-
allel processors the single update steps can be executed in
constant time for both algorithms. The update steps them-
selves cannot be parallelized completely. To what extent
partial parallelization (epoch learning) can be applied is
unclear at this point. We therefore expect that on massively
parallel machines DLM will scale linearly with the layer
size, whereas the SOM will retain its exponential behavior.
This is not particularly grave for models of brain develop-
ment, where long convergence times are acceptable. For fast
processes during perception, our results show that SOM is
not suitable. If DLM with its fast convergence is applicable

Fig. 4. Dependence of the convergence speed of DLM on the blob size. The error is plotted against time for a 12x12-layer for different blob sizes BxB (square
blobs) (B is the number in the circle). Best results are obtained forB ¼ 8 andB ¼ 9 which is closest to blobs covering half of the layer area.

132 R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

to other domains of SOM such as finding low-dimensional
submanifolds in high-dimensional feature spaces this must
be left to future research.

A possible objection to the comparison we have presented
is that the topologies of the neuronal layers are different.
SOM is always executed with the normal topology of the
square, DLM with torus topology. The reason for this is
purely practical. SOM with torus topology very often does
not converge with the parameters used for the square topol-
ogy. It appears that its self-organization is supported by the
influence of the borders. DLM on the other hand does not
show good self-organizationwith boundaries, mainly
because the neurons there have a lower chance of being
hit by a blob, and also the derivation of the position of the
induced blob which is used in the placement of theY-blob
(step 2 of the DLM-algorithm) is no longer valid (see Konen
et al., 1994 for the derivation).

Particularly annoying in this context is the fact that the
definition (Eq. (6)) of the center of mass is not independent
of the choice of coordinate system on the torus. It is indeed
ill-defined in the beginning, when all links are about equal in
size. However, it has the crucial property that for a fully
converged mapping the resulting pointers are identical to
the actual links. We consider the early steps, when it
might indeed give strange results, as not important for the
convergence speed. Later on, only a few neighbors of each
link will have significant size, so the problem occurs only at

the boundary. If a link there should be dragged towards the
center of the square, although the proper position ought to
be near the boundary, this is simply a distortion from the
ideal mapping and can, consequently, only result in a dis-
advantage for DLM. Furthermore, the very fact that in our
experiments DLMdoesconverge using that measure, shows
that this effect is rather negligible.

To summarize: we have tested SOM and DLM on a
simple two-dimensional matching problem, the correspon-
dence problem for the case of identical but mirrored or
rotated patterns. We encountered difficulties in the para-
meter adjustment of SOM in the sense that a considerable
parameter range had to be checked by trial and error. In the
case of DLM, all parameters could be fixed by a simple rule
and led to satisfactory results. After scrupulous parameter
adjustment for each layer size, measurements of conver-
gence times for SOM showed an exponential dependence
on the layer size, while the results for DLM were consistent
with a polynomial one without any need for parameter
adjustment by trial and error. It appears safe to conclude
that for matching large patterns without reduction of dimen-
sion DLM should be preferred over SOM. We cannot be
absolutely sure that the optimal parameter sets for the SOM
have actually been tested; especially a different choice of
decrease schedule for the neighborhood width could
possibly bring some improvement. Consequently, we expect
our results to stimulate further research on the important

Fig. 5. Floating point operations required for the SOM and DLM on the mirror benchmark. The data indicate that DLM is faster for layers larger than 16x16.

133R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

question of how optimal parameters for SOM can be found.
Only then can the question of the scaling of convergence
time with problem size be tackled more seriously than by
presenting examples.

Appendix A The optimal blob size for DLM

It is intuitively clear that there must be an optimal blob
size which leads to fastest convergence of the DLM: too
small blobs let only very few links learn in each iteration
while a blob as large as the whole layer allows only learning
according to the feature similarities.

With a simple argument we will demonstrate why the size
of a blob which covers half of the area of the neuron layer is
optimal. N2 is the number of neurons in the whole neuron
layer andB2 the number of neurons in each blob. Let us
assume that we have in a certain iteration step a pair of blobs
in X- andY-layer which are correctly positioned in the sense
of the underlying mapping (this is usually the case after a
short initial phase).

What can be learned in this constellation about the correct
mappingMopt? At least we learn something about neurons
~x [X and~y [Y which are definitelynotconnected, namely
the ones where one partner is inside the blob and the other
one outside the other blob. Without a priori knowledge
about the link matrix, we then learn from the blob pair
that all links that connect cells inside a blob with cells out-
side a blob, i.e. 2B2(N2 ¹ B2) links cannot belong to the
correct mapping.

Now, the most information from such a blob pair is
gained if this is maximal. Setting the derivative to zero
yields B2 ¼ 2N2, thus the blob area must cover half of the
layer.

This argument assumes that the time when the blobs
are still at non-corresponding positions does not influence
the convergence time. From a lot of simulations we have
seen that it is very frequently zero (blobs are at corre-
sponding positions from the very first step). It is also
unclear how the overlaps of blobs between different
iterations should be accounted for. The simulation results
(see Fig. 4 and Behrmann, 1993 for full details) indicate
that both effects are probably negligible for practical
purposes.

From this interpretation it can be conjectured that an
antiHebbian learning rule could give better results. We
will certainly try this suggestion by one of the referees for
future versions of DLM.

The blobs of DLM can also be interpreted in the
following way. The goal is to relax the continuity constraint
M2, because continuity between discrete spaces is trivial. A
topology (and thus continuity) is usually defined in terms of
the collection of open sets. This can hardly be used to get a
workable definition of neighborhood preservation, because
again, all sets are open indiscrete spaces.

However, topology can also be defined in terms of

neighborhood systems. This leads to Cauchy’s definition
of continuity: A function f is continuous if and only if for
each neighborhood V of a point f(x) there is a neighborhood
U of x such that f(U) # V. DLM can be interpreted as trying
pairs of neighborhoods and making sure that the points
inside the neighborhood inX are hindered from being
mapped outside the neighborhood inY. Neighborhoods
smaller than the blobs are created virtually by the intersec-
tion of two or more blobs from the succession of blobs
during the self-organizing process.

References

Behrmann, K.-O. (1993). Leistungsuntersuchungen des ‘Dynamischen
Link-Matchings’ und Vergleich mit dem Kohonen-Algorithmus.
Technical Report IR-INI 93-05, Ruhr-Universita¨t Bochum; Master’s
Thesis, Universita¨t Karlsruhe.

Bellando, J. and Kothari, R. (1996). On image correspondence using
topology preserving mappings. InProceedings of the International
Conference on Neural Networks, Washington, 1996 (pp. 1784–
1789).

Goodhill, G.J., Finch, S., and Sejnowski, T.J. (1995). Quantifying
neighborhood preservation in topographic mappings. Technical Report
INC-9505. Institute for Neural Computation, UCSD, La Jolla, CA
92037, USA.

Kohonen, T. (1982). Self-organized formation of topologically correct
feature maps.Biological Cybernetics, 43, 59–69.

Kohonen, T. (1990). The self-organizing map.Proc. IEEE, 78, 1464–1480.
Kohonen, T. (1997).Self-organizing maps(2nd Ed.). Berlin, Heidelberg,

New York: Springer Verlag.
Konen, W., & von der Malsburg, C. (1993). Learning to generalize from

single examples in the dynamic link architecture.Neural Computation,
5, 719–735.

Konen, W., Maurer, T., & von der Malsburg, C. (1994). A fast dynamic link
matching algorithm for invariant pattern recognition.Neural Networks,
7 (6), 1019–1030.

Lades, M., Vorbru¨ggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C.,
Würtz, R.P., & Konen, W. (1993). Distortion invariant object
recognition in the dynamic link architecture.IEEE Transactions on
Computers, 42 (3), 300–311.

Sejnowski, T., Kienker, P., & Hinton, G. (1986). Learning symmetry
groups with hidden units: beyond the perceptron.Physica D, 22,
260–275.

Willshaw, D.J., & von der Malsburg, C. (1976). How patterned neural
connections can be set up by self-organization.Proceedings of the
Royal Society, London, B, 194, 431–445.

Wiskott, L. (1996). Labeled graphs and dynamic link matching for face
recognition and scene analysis. InReihe Physik. Thun, Frankfurt am
Main: Verlag Harri Deutsch.

Wiskott, L. and von der Malsburg, C. (1996). Face recognition by
dynamic link matching. In J. Sirosh, R. Miikkulainen and Y.
Choe (Eds.),Lateral interactions in the cortex: structure and
function. Austin, TX: The UTCS Neural Networks Research
Group, Electronic Book, ISBN 0-9647060-0-8, http://www.cs.
utexas.edu/users/nn/web-pubs/htmlbook96.

Würtz, R.P. (1995). Multilayer dynamic link networks for establishing
image point correspondences and visual object recognition. In
Reihe Physik(Vol. 41). Thun, Frankfurt am Main: Verlag Harri
Deutsch.

Würtz, R.P. (1997). Object recognition robust under translations,
deformations and changes in background.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19 (7), 769–775.

134 R.P. Wu¨rtz et al. / Neural Networks 12 (1999) 127–134

