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Abstract

The major tasks for automatic object recognition are segmentation of the image and
solving the correspondence problem, i.e. reliably finding the points in the image that
belong to points in a given model. Once these correspondences are found, the local
similarities can be used to assign one model out of a set of known ones to the image.

This work defines a suitable representation for models and images based on a multires-
olution transform with Gabor wavelets. The properties of such transforms are discussed
in detail.

Then a neural network with dynamic links and short-term activity correlations is
presented that estimates these correspondences in several layers coarse-to-fine. It is for-
malized into a nonlinear dynamical system. Simulations show its capabilities that extend
earlier systems by background invariance and faster convergence.

Finally, the central procedures of the network are put into an algorithmic form, which
allows fast implementation on conventional hardware and uses the correspondences for
the successful recognition of human faces out of a gallery of 83 independent of their
hairstyle. This demonstrates the potential for the recognition of objects independently of
the background, which was not possible with earlier systems.

Keywords: Neural network, dynamic link architecture, correspondence problem, object
recognition, face recognition, coarse-to-fine strategy, wavelet transform, image represen-
tation
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Preface

Ich halte dafür, daß das einzige Ziel der Wissen-
schaft darin besteht, die Mühseligkeit der menschlichen
Existenz zu erleichtern. Wenn Wissenschaftler, einge-
schüchtert durch selbstsüchtige Machthaber, sich damit
begnügen, Wissen um des Wissens Willen aufzuhäufen,
kann die Wissenschaft zum Krüppel gemacht werden,
und eure neuen Maschinen mögen nur neue Drangsa-
le bedeuten. Ihr mögt mit der Zeit alles entdecken was
es zu entdecken gibt, und euer Fortschritt wird doch nur
ein Fortschritt von der Menschheit weg sein. Die Kluft
zwischen euch und ihr kann eines Tages so groß wer-
den, daß euer Jubelschrei über irgendeine neue Errun-
genschaft von einem universalen Entsetzensschrei beant-
wortet werden könnte.

Berthold Brecht, Leben des Galilei

This thesis has been developed in the context of neural computation and will therefore
present some truly interdisciplinary work. The basic ideas and techniques come from
physics, the object to be modeled is a biological one, the main material tool is a computer,
some concepts are most readily used by electrical engineers, and sometimes the choice of
terminology reveals the author’s training as a mathematician.

I take the liberty to abuse this preface for a thought which is beyond the range of
science but nevertheless its consequence. My work is but a tessera of a huge worldwide
effort on the general theme of understanding human cognition and modeling it in an
artificial system, in other words equipping a computer with senses , not only sensors. If
this goal will eventually be reached, the limits of machine employment may be pushed to
currently inconceivable extremes.

Last winter Germany experienced the highest post-war unemployment rate, coming
hand in hand with a scaring rise of fascist ideas, movements and actions. It may be
doubted that this can be satisfactorily explained by the German reunion or by normal
fluctuations of economic factors. More probably it reflects a transition to an industrial
production which is widely accomplished by autonomous machines or very cheap labour
from the underprivileged regions of our world. This historical change can only be com-
pared to the transition from an agricultural to an industrialized society with all its pains
and horrors as well as its huge improvements to human life.
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So are the scientists who do this work to be blamed for dooming millions to a life
without a job? Maybe yes. The easy way out of the responsibility, namely claiming that
we are only doing basic research and the effects on the society are the society’s problem, is
blocked by the fact that our resources and our paychecks are not granted for discovering
truth but for the technologies that will come out of our efforts.

But it is also possible that the historical changes will take place regardless of the wishes
of individuals and that refusing to support them would only decouple our country from
the mainstream of development with even worse effects on the economical and and social
environment. We cannot see the future. But certainly we will have to face the problems
our scientific results are likely to bring about.

As human beings we can only experience the changes that are going on with impressive
speed, but in our rôle as scientists we are also culprits. It is our very own responsibility to
think about the implications of our research, because others do not know enough about
it. May God help us to do the right thing.

Bochum, June 1994
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1. Introduction

Wie ich an anderer Stelle ausgeführt habe, halte ich es
für müßig, darüber zu spekulieren, was zuerst da war,
die Idee oder das Experiment. Ich hoffe, daß niemand
mehr der Meinung ist, daß Theorien durch zwingende
logische Schlüsse aus Protokollbüchern abgeleitet wer-
den, eine Ansicht, die in meinen Studententagen noch
sehr in Mode war. Theorien kommen zustande durch ein
vom empirischen Material inspiriertes Verstehen, wel-
ches am besten im Anschluß an Plato als Zur-Deckung-
Kommen von inneren Bildern mit äußeren Objekten und
ihrem Verhalten zu deuten ist. Die Möglichkeit des Ver-
stehens zeigt aufs Neue das Vorhandensein regulierender
typischer Anordnungen, denen sowohl das Innen wie das
Außen des Menschen unterworfen sind.

Wolfgang Pauli, Phänomen und physikalische Realität

Three reasons render the above statement by Wolfgang Pauli suited to serve as a motto
for this introduction. First the theories that will be outlined here and described in detail
in later chapters certainly are too speculative to allow even the idea that they have
been derived in a compelling way from experimental data. Secondly, it emphasizes the
importance of matching internal representations with objects in the outside world, and
this is also the theme of this dissertation. Finally, it supports the opinion that physics
will be incomplete if it ignores the interactions between the world or the experimental
apparatus with the “machinery” that constitutes the observer. Again, the functioning of
this machinery is our theme in the wider sense.

1.1 Object Recognition

The recognition of familiar objects in the environment is a task carried out with such ease
that at first glance even the word “task” may seem inappropriate. A closer view reveals
the problems behind this act of perception. The (visual) environment interacts with our
brain via the distribution of light intensity on the retinae in the eyes. This distribution
can vary considerably, although we are seeing “the same thing”. A slight move of an
object in space changes the distribution severely. The same holds for changes in lighting.
Figure 1.1 shows some images of an object which “obviously” is the same all the time. This
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a) b)
�

c) d)

e) f)

Figure 1.1: Several aspects of “obviously” the same object. The images as
grey-value maps, however, seem to have little in common.
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illustrates that the percept “object” is a huge equivalence class of images created inside
the observer rather than a physical entity in the narrow sense. To make things even more
complicated, such equivalence classes differ considerably between individuals and even
change with time. The practiced eye can classify a respectable number of elementary
particles or particle reactions from their traces in a cloud chamber, where näıve people
would only see a confusing agglomeration of straight and bent lines.

The sheer size of the classes defining one object makes it impossible to store all the
possible views or even a representative subset in memory. This is much more than a
practical argument, because previously unseen objects can be recognized after the presen-
tation of only one or a couple of views. If not all possible views are available the storage
problem becomes less serious, but the need arises for an active process that compares a
known view with the actual retinal image. This process will be called matching.

Given this constraint the obvious (but certainly not the only) way to assign a model
class to a given object is to represent each class by a number of representative elements and
find a suitable similarity function between an object presented and class representatives.
This function can (in principle) be evaluated for all representatives of all classes and
ought to achieve its optimum between the object presented and one representative of the
correct class. Furthermore, statistics about the distribution of similarities among classes
can result in estimates of how reliable the choice of class is. Single representatives will
also be called models throughout this text.

Another complication which must be mentioned but will not be dealt with later on is
the existence of class hierarchies . Object classes may be very rough (e.g., vehicles, trees,
houses, persons, pets, streets, . . . ), or very fine (e.g., blue Volkswagen, red Mazda, white
Mercedes Benz, my own car), or anything in between. The recognition results will be
quite different depending on the choice of class division. Cognition is obviously capable of
rapidly moving through various class divisions and choosing the sort of granularity that
is currently appropriate.

1.1.1 The Correspondence Problem

When undergoing, e.g., perspective changes the points on the surface of an object change
their absolute spatial positions as well as the positions relative to each other. If occlusion
occurs, some of them will vanish completely, others will appear. In order to be able to
compare the resulting images it is necessary to know which pairs of points in the images
belong to the same point on the physical object, or, as the true physical object is not
accessible, belong to each other. This question has turned out to be a central yet very
difficult problem for computer vision. Because it is also crucial for reasonable performance
it acquired the name correspondence problem.

Correspondence problem: Given two images of the same object,
decide which pairs of points correspond to the same point on the
physical object. The fact that some points do not have correspond-
ing partners in the other image must also be established.

This formulation of the correspondence problem is actually the hardest possible form.
Strictly speaking, it is even more general than the one given in the glossary of (Haralick
and Shapiro, 1993) in the sense that the images here may be taken at different times.
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For many applications additional knowledge can be exploited. Two examples are the
matching of stereo images, i.e. finding correspondences between image points from the
two eyes, or the computation of optical flow, where the task is to track points during
movement (or from one camera frame to the next). In the first case the vertical degree of
freedom is removed and the relative position of both eyes is known (see (Marr and Poggio,
1979)). For tracking during movement continuity heuristics can be applied with success,
because if the frame rate is high enough, points can move only very little from frame to
frame. For detailed information about tracking see, e.g., (Tölg, 1992).

Nevertheless, even in those simpler cases the problem is not solved to general satisfac-
tion. This should be kept in mind when the results about the procedures presented here
will be evaluated. Most of this thesis will be concerned with solving the correspondence
problem. The general procedure will be two-stage: 1) Find a suitable representation for
the image information around image points. 2) Define a similarity function for such point
representations and specify a process or algorithm that finds its optimum. As stated
above the actual similarity values between the correspondences found can be combined to
establish a similarity function between pairs of images and thus a way to classify objects.

It can be debated if this approach is really useful. The more natural way seems to be
the construction of three-dimensional representations of objects. However, psychophysical
experiments that test the performance of humans to generalize from known to unknown
object views suggest that cognition does indeed rely on stored views (Bülthoff and Edel-
man, 1992).

1.1.2 Segmentation

One possible variation in images of the same object has not yet been discussed. In
figure 1.1 c) and d) the aspects of the object are identical and the lighting is very similar.
However, it would not be reasonable to attempt to find correspondences between points
in the respective backgrounds , because these are very different.

The models representative for an object therefore must be independent of the back-
ground. When an image is presented that either contains a known object which must
be classified or an unknown object for which a new class must be created, this object
must first be peeled out of the irrelevant background by another active process called
figure-ground- segmentation or simply segmentation.

Psychophysical experiments show that there are many different clues that provide a
basis for segmentation. Examples are common color, common texture, common move-
ment, and many more. These clues are independent of the objects and therefore lead to
bottom up segmentation , because no high-level knowledge is required.

A different way of achieving segmentation is a precise knowledge of the object and a
means of finding a copy of the object representation in the image. Everything outside
this copy then counts as background. This way of segmentation is called top-down .

Segmentation in human vision makes use of both ways of segmentation using all the
clues that are available. It is clear that for unknown objects only bottom-up procedures
can be employed. For a description of some segmentation procedures see, e.g. (von der
Malsburg and Buhmann, 1992; Wiskott and von der Malsburg, 1993) and (Vorbrüggen,
1994). The latter also treats the problem of the incorporation of various clues that may
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partly contradict each other. In (von der Malsburg and Schneider, 1986; Schneider, 1986)
a neural model is presented that can solve the segmentation problem for acoustic data.

In this work we will not deal with such processes. For storing the models the back-
ground has always been removed by hand. For the matching/recognition task the image
presented is segmented top-down with the stored object representatives. This will be
described in sections 5.3.1 and 4.7.1.

1.1.3 Face Recognition

The object classes we will work with are human faces. This choice has several advantages.

• Faces are individual. It can easily be checked by a human if two photos show
the same person. The identity of the person shown on a photo is a very natural
classification of the photo. Thus the additional problems posed by class hierarchies
can be easily avoided.

• They typically show internal distortions, i.e. transformations between views that
cannot be modeled by a simple geometrical group. The other way around, however,
sufficiently small geometrical movements in three dimensional space can be modeled
as distortions.

• The surface texture of faces makes lighting effects less problematic than, e.g. objects
with metallic surfaces.

• There is enough local structure (texture) to allow the sort of representations we will
be using.

• The object-background problem can be studied on several levels — for a recognition
independent of hairstyle, the hair has to be regarded as background, otherwise as
part of the object.

• The problem is difficult yet tractable, and there is sufficient practical interest to
make it more than purely academical.

Nevertheless, we will never make explicit use of the fact that we are trying to recognize
human faces. The procedures can easily be applied for other object classes that either
dont present the above problems or that allow extra tricks to alleviate them. We will
discuss special questions at the appropriate points in the text.

One aim of this work is a closer understanding of how object recognition is really
performed in human or animal brains. For this goal the choice of faces may not be
optimal. Face recognition is one of the most important things for newborn babies, and so
it may be suspected that nature has applied different procedures than for the recognition
of arbitrary objects.

This suspicion is underpinned by a series of investigations that demonstrated the
existence of brain cells that seem to be specialized to the detection and recognition of
faces. These experiments have been carried out with monkeys who had to recognize
monkey faces (Perrett et al., 1982; Rolls et al., 1985) or human faces (Baylis et al.,
1985; Perrett et al., 1984). In both cases the cells were found to respond best to faces,
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in (Baylis et al., 1985) even a sensitivity to the identity of the person was found. The
study (Kendrick and Baldwin, 1987) finds similar behavior in sheep. For a review of the
results see (Perrett et al., 1987).

The interpretation of these experiments, however, is still under debate among neuro-
biologists. Unfortunately, the universe of possible stimuli is much too large to really find
the stimulus that a given cell prefers best. Even if this were possible and one could prove
that stimulus A evokes the largest response in cell X, this would not necessarily imply
that the property to be an “A-detector” would capture the “true” function of the cell.
Apparently face-sensitive cells may have quite a different meaning.

Furthermore, our models will not include speculation on how the information that
a certain object is recognized is represented for further processing. We will be content
with having established good correspondences between image points and being able to
recognize persons this way.

1.2 Is the Brain a Dynamical or a Rule-based Sys-

tem?

For a long time, the human mind has been metaphorically identified with the most com-
plicated machinery that was available. While Descartes still hesitantly divided the human
nature into a machine part (res extensa) and a thinking part (res cogitans) later philoso-
phers and scientists have adopted the radical view that even the mental and spiritual
expressions are simply functions of an, admittedly very complicated, machinery. Proba-
bly the first one to radically support that view was Julien Offray de La Mettrie (1748).
Later the point has been pushed to various extremes, currently amounting to computer
scientists like Marvin Minsky or Hans Moravec who not only believe that all mental func-
tions can be carried out by machines but that they duly should be passed over to machines
thus making the utterly imperfect human race obsolete. This work is certainly not the
right platform for a discussion of the mind-body problem (and neither is the author’s
competence sufficient to engage on it) but one more aspect will be touched because it
helps define the position of the work presented here within science.

On the background of the general inclination to use the most complicated machinery
available as a metaphor for the brain the late twentieth century has two quite different
paradigms to offer: the computer and the nonlinear dynamical system.

The computer metaphor for the mind has been at the heart of artificial intelligence
research for several decades now. This branch of computer science has celebrated excellent
success at simulating behavior which is located in the upper range of what is supposed
to be intelligent. The way to success was exactly the same as is common in computer
programming: Analyze the problem, formalize it (put it into rules), think up solution
strategies and code them. Examples are chess playing where there is hardly any doubt
that a computer will be world champion very soon, or formula manipulation, where,
e.g., the integration skills of many a scientist are outclassed by commercially available
programs.

These and many more achievements of artificial intelligence share one common feature:
They work within an artificial world where structure and rules are completely defined or
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at least definable. If human intelligence is measured by mathematical or chess playing
skills, then its meaning is reduced to the capability of acting in situations that are well
suited for a computer but not for a human.

There is quite a different set of tasks which to date has resisted formalization and is
generally called real-world-problems . In the current context this does not mean problems
like growth of world population, sparseness of resources or the destruction of nature.
It rather stands for a computer being linked to the outside world via a video camera,
a microphone or any other sensor, and devices to move around and manipulate objects.
Examples for intelligent behavior would include, e.g., putting such a machine in an average
European kitchen and asking it to “get a cup of coffee ready” or to “clean that mess up”.
If current computer systems were capable of doing this, everybody would know it from
the commercials. In spite of large efforts they are not, and if our self-esteem requires that
we define ourselves as superior to machines we had better talk about our everyday life
instead of our written math exams.

Let us now switch our attention to the second metaphor — the dynamical system.
This is the description method which is absolutely central to physics. The basic axiom
is that the state of a system can in principle be described by a set of variables whose
temporal evolution is governed by differential equations.

This can be applied to the brain in an obvious way: According to a simple model
it consists of a number (∼ 1010) of nerve cells that are linked to each other by a larger
number of connections (∼ 1014). The dynamics of the single nerve cell is fairly well known
(with the usual caveat that biology is always more complicated). This together results in
a dynamical system which is huge but still many orders of magnitude below Maxwell’s
demon in charge of a couple of liters of gas.

The discussion on how to best describe the human brain — in artificial intelligence
terms, as a dynamical system, or even better in chemical, neurobiological, psychological, or
theological terms — usually results in the insight that they represent quite different levels
of description which can and must coexist even if their methods are very different, their
results may be contradictory and their proponents often have a hard time communicating
with each other.

After this peaceable compromise I will now elaborate on the view which we will take
for the time of this thesis. We will try and create dynamical systems, that seem to be
reasonable sketches of the biological reality and exhibit behavior that resembles cognitive
capabilities. During this text this desired behavior will be solving the correspondence
problem and object recognition. As there seems to be no chance to treat our dynamical
systems analytically we will make extensive use of computer simulations. Once in the
context of a computer simulation we will often use methods that are not direct simulations
of a given system but simplifications dictated by practical requirements.

This twofold procedure is reflected in chapters 4 and 5. In chapter 4 we will stay very
close to simulating a given dynamical system and show that it is capable of solving the
correspondence problem. In chapter 5 we will simplify the matching procedure in a way
suited for numerical evaluation and prove that it can be extended to perform realistic
object recognition.

This intermediate approach of taking the best of the dynamical systems world and
conventional computing techniques seems to gain many supporters from both sides. For
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the artificial intelligence community the essay (Chalmers et al., 1991) may serve as an
example. From the connectionist side, many of the publications of our institute may be
used as a reference, e.g. (Tölg, 1992; Giefing, 1993).

Besides the practical problems posed by computer programs as models for cognition it
can be argued that dynamical systems are in a very fundamental way more powerful than
computer programs. Pour-El and Richards (1981) show that even a simple linear wave
equation has the capability to evolve from a state which is computable by a Turing machine
to a non-computable state in short time. As a Turing machine is an idealization of real
computers this implies non-computability on any computer. The proof is not difficult,
and the paper can be recommended for anyone interested in fundamental problems of
computer science.

Also, since the 1960s intense study of nonlinear dynamical systems has revealed the
awesome richness of behaviors of which they are capable. So, in believing that the human
brain can be adequately modeled by a dynamical system, we are probably part of the
tradition to model the mind as the most complicated structure currently known.

All this may sound like good news for the dynamical systems point-of-view, but on the
other hand it is sometimes hard enough to write a computer program with desired proper-
ties. If dynamical systems have an even wider range of behavior, even more problems can
be expected for the attempt to find a dynamical system that models what it is supposed
to model. Indeed, in our hands dynamical systems are much harder to manipulate than
computer programs. But it may be hoped that this situation will change with experience
and that later generations will handle such systems with the same casualness as we are
using conventional computer programs.

Beyond the visual object recognition which is our subject here it can be speculated that
neuronal matching algorithms may present a key to a deeper understanding of intelligent
behavior in general. Although it has been argued that rule-based systems may soon
outclass all humans at, e.g., chess playing, there is no doubt that their internal structure
is very different from the way any human player would proceed. Experience has equipped
him or her with a number of known situations and suitable reactions. Although no two
games are identical, this treasure can be efficiently searched for situations similar to the
given one, and in many cases useful actions can be deduced. All that is needed to model
this sort of intelligence is a good way to represent situations and a matching procedure.
Simple as this idea may sound, its realization is far beyond the range of this thesis.

1.3 Outline of Thesis

My thesis describes processes that achieve the construction of mappings between two
images. Such processes typically consist of two loosely coupled parts: a preprocessing
of the image contents and a mechanism that solves the correspondence problem. They
can usually be extended to yield not only a mapping but also a similarity between two
images. Finding the similarities of one image to a stored set of objects finally leads to
recognition of the corresponding object. We will try and answer the following questions:

• How can object classes be represented by one or a few examples?

• What is a reasonable measure for the similarity of a given image and a stored model?
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• How can a dynamical system with the known local properties of the brain achieve
classification?

• Are these principles useful for an artificial recognition system?

Chapter 2 will start with some general considerations about preprocessing, define
Gabor functions, prove their optimality in the sense of phase space localization and then
proceed to wavelet transforms based on these functions.

Chapter 3 explicitly describes the representation of images and models for the matching
task including the parameters which will be used throughout the rest of the thesis.

Chapter 4 will give a short introduction about neural networks and then briefly outline
Christoph von der Malsburg’s (1981) correlation theory of brain function. On the basis
of this framework a dynamical system based on neuronal properties that naturally sets
up ordered mappings is described. This model will then be extended to initialize itself on
a coarse resolution and then be refined to higher resolutions. The need for such a process
will also be motivated.

Chapter 5 will present an algorithmic version of such a coarse-to-fine matching system
which is suited to be run on sequential workstations in reasonable time. Nevertheless, the
algorithm is formulated in a massively parallel manner and would achieve huge speedups
on parallel hardware.

In chapter 6 the matching system from the previous chapter is used to build a hierarchi-
cal object recognition system. Its capabilities are tested under a variety of circumstances.

In chapter 7 the results will be discussed and a comparison of the performance with
other methods will be attempted. This includes comparison with the FACEREC-System,
an object recognition scheme in the development of which the author was involved earlier.
It therefore shares some features of the system described in chapters 3 and 5. Finally,
some potentially fruitful directions for further investigations will be described.

Chapter 8 contains the bibliography, and chapter 9 will give an abstract of the thesis
in German and the author’s curriculum vitae.

1.4 Notational Conventions and List of Symbols

Vectors are denoted by arrows. They are usually two dimensional, sometimes four dimen-
sional (phase space variables). Feature vectors can have arbitrary finite dimension.

All quantities throughout this thesis will be free of physical units for the sake of
simplicity. If necessary, the formulae can be assigned units in a consistent way, measuring,
e.g., space in meters or pixels and spatial frequency in meters−1 or pixels−1.

The important objects in this work are four dimensional, namely phase space repre-
sentations and link structures between two-dimensional neuronal layers. The illustrations
therefore suffer from the impossibility to display a four-dimensional object in two dimen-
sions. Two- or at most tree-dimensional cuts must suffice.

Integrals will be understood in the sense of measure theory, i.e. the same symbol will
be used for Lebesgue-integrals (where the underlying measure is the volume of measurable
subsets of Rn) and for discrete summation (where the measure of a set of points is just
the number of points). The scalar product between finite-dimensional vectors, however,
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will be written as ~xT~y rather than 〈~x | ~y〉 to avoid confusion. Equality of two functions
will mean that they are pointwise identical except for a set of measure 0. In the discrete
cases this means pointwise identity at all points.

The following table presents the most important symbols and variables:

Z,R,C Integers, real and complex numbers
d Dimension of the image space, usually d = 2
U Unit circle in R2 or the interval (−π, π], respectively
U1/2 Upper half of the unit circle in R2 or the interval [0, π), respectively
<(c),=(c), |c|, arg(c) Real part, imaginary part, modulus, and phase of a complex num-

ber
〈· | ·〉 , 〈· | ·〉~x Scalar product between functions, the variable denotes the integra-

tion variable
F Fourier transform L2(R2) → L2(R4)

Ff Finite Fourier transform L2
(
{1, . . . , n}2

)
→ L2

(
{1, . . . , n}2

)
I Image domain, typically [0, 1)× [0, 1) or a discrete subset thereof
M Model domain, typically a discrete subset of [0, 1)× [0, 1)
~x, ~y Image space variables, Cartesian coordinates
~k, ~ω Frequency space variables, polar coordinates
~u Unit or phase space atom ∈ R4

nlev, ndir Number of levels and directions in a discretized wavelet transform
γ(~x) Gabor function

ψ~k, ψkp Wavelet with center frequency ~k
W Wavelet transform L2(Rd) → L2(R2d)
S Sampling set in phase space S ⊆ R4

Sf Sampling set for center frequencies S ⊆ R2

WS Wavelet transform restricted to a sampling set S ⊆ R4

A = |W| Absolute value of W
AS = |WS| Absolute values of WS

P = arg (W) Phase of W
PS = arg (WS) Phase of WS

ta Relative amplitude threshold
ts Threshold for kernels in space domain
tf Threshold for kernels in frequency domain
χA(~x) Characteristic function of the set A, which is zero if ~x 6∈ A and one

if ~x ∈ A
R(I),R(M) Representation of image and model
K Frequency level
M(M, I) Model-image mapping
S Various similarity functions
Sglob(M, I,M) Similarity of model and image on the basis of mapping M
~D(M) Distortion of a mapping M
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tqn Similarity threshold on level n
κ1, κ2, κ3 Significance criteria for recognition
ξ White noise in a dynamical system
f ∗ g Convolution, either continuous or discrete
κ(~x) Interaction kernel
a(n), a(~x) Activity of neuron with number n or of neuron at location ~x
o(n), o(~x) Output of neuron with number n or of neuron at location ~x
s(n), s(~x) Input to neuron with number n or to neuron at location ~x
h(~x) Self inhibition of neuron at location ~x
d(~x) Input to neuron at location ~x
W (n,m), W (~x, ~y) Short term synaptic weight between two neurons
Wp(n,m), Wp(~x, ~y) Permanent synaptic weight between two neurons
Corr(~x, ~y) Correlation between layer neurons in two layers
ϑ(x) Neuronal transfer function R → [0, 1]
Θ(x), δ(x) Heaviside and Dirac distributions
supp(f) Support of the function f , i.e. the set of all points where f is

nonzero
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2. Wavelet Preprocessing

Die ewig Unentwegten und Naiven
Ertragen freilich unsre Zweifel nicht.
Flach sei die Welt, erklären sie uns schlicht,
Und Faselei die Sage von den Tiefen.

Denn sollt es wirklich andre Dimensionen
Als die zwei guten, altvertrauten geben,
Wie könnte da ein Mensch noch sicher wohnen,
Wie könnte da ein Mensch noch sorglos leben?

Hermann Hesse, Das Glasperlenspiel

In this chapter the preprocessing of visual data will be described. In order to motivate the
choice of preprocessing we will discuss wavelet transforms within a framework given by the
algebraic formulation of quantum mechanics. After a short description of the formalism
of position and momentum representation we will direct our attention to three different
interpretations:

1. A representation is a change of variable.

2. A representation reflects the action of a group on the Hilbert space.

3. The single functionals used in a representation describe measurement devices.

2.1 Representations of a Wave Function

Quantum mechanics describe a particle at a fixed time as an element in some abstract
Hilbert space. This description is unique and complete and will be denoted by Ψ.

The elements of this Hilbert space will be called functions , the elements of the dual
functionals . If this terminology appears inconvenient, throughout this chapter the word
“function” will be a synonym for “ket”, “functional” for “bra”. The latter terminology
has been introduced by P. Dirac. His book (Dirac, 1967) is still very worthwhile reading,
chapter III about representations covers the issues we will discuss here. Other textbooks
include (Messiah, 1970) and (von Neumann, 1932). For connections between wavelet
transforms and quantum mechanics that go deeper than needed for our purposes see, e.g.,
(Antoine, 1989; Bertrand and Bertrand, 1989; Paul and Seip, 1992; Battle, 1992).
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For any practical purpose, a representation of the Hilbert space must be used. For
a single particle without spin this is usually the space L2(R3), i.e. square integrable
functions on the three-dimensional Euclidean space. The scalar product between two
functions will be:

〈f(~x) | g(~x)〉~x :=
∫
f(~x)g(~x) ddx (2.1)

We will give the formulae for arbitrary dimension where possible throughout this
chapter. Later on only d = 2 will be required. In the context of visual processing we
will treat a stationary image as an element of L2(R2) and use the terms image space and
frequency space. Frequency will always mean spatial frequency unless otherwise stated.

The Rd underlying the function space can be interpreted as either position space or
as momentum space. The first interpretation amounts to analyzing a wave function with
Dirac-functionals on position space, because the value of the wave function at a location
~x0 is given by the scalar product with the Dirac-functional centered at ~x0. In other words,
those Dirac-functionals are eigenfunctionals of the position operator.

〈δ (~x− ~x0) | Ψ〉~x = Ψ(~x0) . (2.2)

If we use a different (but of course isomorphic) copy of L2(R3) as momentum space then
the momentum representation takes exactly the same form, just in momentum variables:

〈δ (~ω − ~ω0) | Ψ〉~ω = Ψ(~ω0) . (2.3)

If we insist on representing Ψ in space coordinates but with eigenfunctionals of the mo-
mentum operator, then they take the form of complex exponentials:〈

ei~ω~x
∣∣∣ Ψ (~x)

〉
~x

= Ψ(~ω) . (2.4)

Formula (2.4) can be interpreted in different ways:

1. As a definition of the Fourier transform.

2. By comparison with equation (2.3) as the spatial representation of Dirac-functionals
on momentum space.

3. As a change of position variable to momentum variable.

We have seen that the choice of variable or the choice of representation is a fairly
arbitrary procedure and guided only by practical considerations, while the abstract wave
function Ψ is the important thing. Nevertheless, to avoid confusion and for compatibility
with usual notations we will assume that Ψ is given in position space coordinates unless
stated otherwise and write the Fourier transform and its inverse on L2(Rd) as follows

F (Ψ) (~ω) :=
〈
e−i~ω~x

∣∣∣ Ψ (~x)
〉

~x
(2.5)

=
∫

Ψ(~x)ei~ω~x ddx , (2.6)

F−1 (Ψ) (~x) := (2π)−d
〈
ei~ω~x

∣∣∣ Ψ (~ω)
〉

~ω
(2.7)

= (2π)−d
∫

Ψ(~ω)e−i~ω~x ddω . (2.8)
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We see that the pair of position and momentum space representation and the Fourier
transform are actually the same thing. More generally, for every representation we can
define the transform that calculates it from the space representation which will be done in
equation (2.9). The representations in position or momentum space are only very special
choices and plenty of others can be applied when convenient. E.g., the task of finding the
possible energy values of a quantum mechanical system is equivalent to transforming the
space representation to a representation in terms of the eigenfunctionals of the Hamilton
operator. This shows that a good choice of representation makes the desired analyses
much easier.

In chapter 3 we will choose an image representation that suits our needs for the match-
ing task. Before, we will give a general definition of a representation (or transform). Any
family of functionals {f~p | ~p ∈ P}, where P is any suitable parameter set, defines a trans-
form or a representation by means of:

(TPΨ (~x)) (~p) := 〈f~p | Ψ (~x)〉~x . (2.9)

As in the case of the Fourier transform this can be interpreted as a transformation that
changes the variable from space coordinates to parameter coordinates or from space rep-
resentation to the representation given by the set of functionals {f~p | ~p ∈ P}.

Without wishing to dive deep into functional analysis the following properties of trans-
forms are important. A transform is said to be orthogonal if the corresponding functionals
are pairwise orthogonal:

~p 6= ~q =⇒ 〈f~p | f~q〉 = 0 (2.10)

A transform is said to be complete if a function f can be recovered from its transform.
In other words there must be a linear operator T −1 with the property∥∥∥f − T −1 (T (f))

∥∥∥ = 0 (2.11)

For subtleties about ranges and domains of linear operators the reader should refer to
standard texts about functional analysis, e.g. (Yosida, 1980).

The statement that a suitable representation can be chosen to meet the needs for
the desired analysis implies that this choice will be dictated by the physical meaning of
the various representations rather than formal reasons or, in other words, by semantic
aspects. Therefore, a short glance at the physical interpretation of the functionals in the
transform is in order.

Application of the spatial Dirac-functional δ(~x−~x0) on a wave function Ψ(~x) in space
representation gives the value of Ψ(~x0) and can be said to measure this value. Equally,
the application of a complex exponential would give the value of Ψ(~ω0), i.e. the value at
the corresponding location in momentum space.

The use of the word measurement here is not to be confused with actual physical
measurement of wave functions because it is ignoring the fact that the complex phases
cannot be measured. For our purposes in image processing this does not pose a problem,
because we can rely on having positive real data only.

In general, each functional in an arbitrary transform can be interpreted as a measuring
device that surveys a certain subset of phase space, i.e. it is sensitive with a certain
characteristic for a some range of space/momentum combinations. In this sense, the
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eigenfunctionals of the momentum operator are “responsible” for a subspace of constant
momentum and of arbitrary spatial location. As they form representations the ensembles
of Dirac-functionals in position or momentum space can “build up” the whole phase space
and are examples for what we will call phase space atoms . This word will be used as an
illustrative synonym for the functionals in a transform.

2.2 Wavelet Transforms

2.2.1 Definition

For the definition of wavelet transforms and for the visual processing we will only use
functionals that are themselves dual to functions in L2(Rn). In other words we require
the functionals to have finite norm. This makes things much easier because now the
distinction between functions and functionals is no longer needed, and the scalar product
may be used between two functions as usual. In other words, there is a standard way
to turn bras into kets and vice versa. This implies that functions and functionals decay
rapidly as their variables go to infinity and are therefore localized in phase space.

The above definition of a transform is very general if the set of functionals has no
structure. Of course, this is not the case with the position and momentum representations.
All functionals δ (~x− ~x0) can be derived from a single one by a translation of position
space by the amount of ~x0. Therefore, the set of functionals for the position representation
can be regarded as the action of the group of all translations of R3 on the functional δ(~x).
Group action on a function means that the variable of the function is transformed by the
group elements.

Now we will define a wavelet transform as a special transform generated by a single
functional ψ(~x) which is called a mother wavelet and a geometrical group. Formally:

Let G be a group of mappings of Rn onto itself and ψ(~x) a square integrable function

on Rn. Then the set of functionals
{
ψ (g (~x))

∣∣∣g ∈ G
}

defines a wavelet transform by:

(W (f)) (g) := 〈ψ (g(~x)) | f (~x)〉 . (2.12)

Note that the parameters of the family of functionals are now the group elements. If the
group itself is represented by vectors or matrices, this representation may also appear.

For reasons that will become clear in section 2.7 the mother wavelet is required to be
admissible , i.e. to have zero integral, or a Fourier transform with a zero at ~ω = ~0:∫

ψ(~x) ddx = (F (ψ))
(
~0
)

= 0 . (2.13)

It must be noted that the definition of a wavelet transform we have given here is not
the most general one possible. The research on wavelets has only been going on for some
years now, so canonical definitions are not available yet. Some authors, e.g., relax the
requirement of having a single mother wavelet and allow two or more of them. This way,
the first orthogonal wavelet transform on L2(R2) was constructed (Mallat, 1988a; Mallat,
1989).
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2.2.2 Properties and Taxonomy

The definition of wavelet transforms from geometrical groups immediately yields classifi-
cations of such transforms by the properties of the generating group. Especially, we will
talk of discrete or continuous wavelet transforms if they are generated by a discrete or
continuous group, respectively.

In general, this group will contain all the translations of the underlying space. These
translations are conveniently expressed by means of the convolution, which is given here
together with the most important properties:

(f1 ∗ f2)(~y) :=
∫
f1(~x)f2(~y − ~x) ddx (2.14)

=
〈
f1(~y − ~x) | f2(~x)

〉
~x

(2.15)

= F−1 (F(f1) · F(f2)) . (2.16)

Further properties that are easily derived from the above include linearity in each argu-
ment, commutativity and associativity.

What we need is the application of a shifted functional to the function f(~x):

Wtranslf(~x) = 〈ψ(~x− ~y) | f(~x)〉~x (2.17)

=
∫
ψ(~x− ~y)f(~x) d2x (2.18)

=
∫
ψ(~y − ~x)f(~x) d2x (2.19)

= ψ(~x) ∗ f(~x) . (2.20)

The transition from (2.19) to (2.20) makes use of the property

ψ(−~x) = ψ(~x) , (2.21)

which is true for all the wavelets we will use throughout this work. It is equivalent to the
fact that the kernels have real-valued Fourier-transforms.

In the following we will use the convolution form rather than the form with the arbi-
trary group. If the group is G we will denote the factor group modulo the translations
by G.

In our analyses we will only use continuous wavelet transforms because they are much
more flexible and more suitable for describing biological facts. For computer simulations,
however, the parameter groups must be discretized which leads to the apparent contra-
diction in terms of a discretized continuous wavelet transform. This is not the same thing
as a discrete transform because the actual parameter set, the sampling set S ⊆ G, is not
required to be (and usually is not) a group. To avoid the strange term we will talk about
sampled transforms.

A very important property of a transform (representation) is its completeness , i.e.
the possibility to reconstruct a function from its transform. It is important to note that
this property is independent of the orthogonality of the functionals. Not even linear
independence is required. It only means that there are enough of them to cover the phase
space.
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The convolution of an L2 function f(~x) with a second one κ(~x) (called a kernel) is
not an invertible action. This seems surprising in the light of equation (2.16), because it
would suffice to divide the product by F(κ) and apply the inverse Fourier transform to
the result. This procedure, which is called deconvolution fails for two reasons. The first
one is the occurrence of zeros in F(κ). If they are isolated the quotient attains isolated
poles which may or may not be well behaved. If there are sets of measure greater than
zero where F(κ) = 0 it is straightforward to construct a function with nonzero norm such
that its convolution with the kernel is zero. This contradicts the requirement of unique
reconstruction.

The second and crucial reason is the following. F(κ) has the same (finite) norm as the
κ itself. That means that it decays rapidly if |~x| goes to infinity. The quotient of F(f)
and F(κ), however, must have finite norm in order to apply the inverse Fourier transform.
So all functions f for which F(f) does not decay rapidly enough to compensate for the
growth of F(κ)−1 can not be reconstructed. In discretized cases, this problem leads to
severe numerical instability.

Although the reconstruction from convolution with a single kernel is not possible
the reconstruction from convolutions with many kernels (e.g. from a wavelet transform)
becomes simple. This is because the sum of the Fourier transforms of all kernels need not
decay if they are chosen right.

The mathematical formulation of the invertibility of a (sampled) wavelet transform is
the notion of a frame. Given a sampling set Sf ⊆ G the sum of the Fourier transforms of
all kernels must be bounded away from zero and from infinity. Then the quotient in the
deconvolution procedure does not cause any problems.

0 < A ≤
∫

Sf⊆G

|F(g(κ))|2 dg ≤ B <∞ . (2.22)

This formula, like the following ones, of course relies on a suitable measure dg for the
group representation used. The constants A and B are called the frame bounds .

If those bounds A and B exist that means that the integral over all the group elements
has a finite and non-zero value at almost every point in frequency space, and thus recon-
struction can be achieved by division by this integral. This leads to the reconstruction
formula with dual wavelets , which stands for the kernels that result from the division by
the integral from (2.22) in frequency space:

F (f) (~ω) =
∫
G

F ((Wf)) (~ω, g) · F (g(ψ) (~ω)∫
G

|F(g(ψ))(~ω)|2 dg
dg . (2.23)

This is indeed a reconstruction formula for f , because inverting the Fourier transform is
straightforward.

If the sampling set is large enough and the kernels are well behaved it is possible
that both frame bounds can be chosen to be equal. That means that the integral in
inequality (2.22) is a constant. If the group G is continuous and the mother wavelet is
admissible (equation (2.13)) it can be shown that

∫
G

|F(g(ψ))(~ω)|2 dg is independent of ~ω,

and therefore A and B can be chosen equal to that value and the reconstruction formula
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simplifies to:

f(~x) =

 ∫
G

|F(g(ψ))(~ω)|2 dg


−1 ∫

G

(Wf)(~x, g) ∗ g(ψ)(~x)dg (2.24)

Here it has been given in the space domain, because the deconvolution is trivial.
Except for the constant factor this formula looks familiar in the case that the func-

tionals form an orthogonal basis. Indeed, continuous wavelet transforms allow the same
reconstruction formula although the functionals are usually neither a basis nor pairwise
orthogonal. The first factor in the formula shows the importance of the admissibility
condition. It is nonzero only if the Fourier transform vanishes at ~ω = ~0.

For a detailed discussion of the reconstruction from wavelet transforms see (Daubechies
et al., 1986; Murenzi, 1989; Murenzi, 1990; Pötzsch, 1994)

2.3 The Uncertainty Principle and Gabor Functions

Although the notion of a 2n dimensional phase space to represent functions from L2(Rn)
is convenient the 2n phase space coordinates are, of course, not independent variables.
The most famous consequence of this is the uncertainty principle . Stripping away all
physical interpretation it can be stated as follows:

Uncertainty principle: The localization of a phase space atom is
limited in that the product of the variances in position space and
momentum space cannot be arbitrarily close to zero.

All that is needed for the proof is the fact that the Fourier transform converts one repre-
sentation into the other, together with the property

F
(
∂f

∂xj

)
= iωjF(f) . (2.25)

The description partly follows an article by Dennis Gabor (1946), who realized that the
uncertainty relation was equally important for information theory as for physics and
presented all the functions that actually occupy the smallest possible phase space volume
in the one-dimensional case (Gabor functions). Parts are also taken from (Böge, 1980)
and (MacLennan, 1988). In the latter the uncertainty principle has been derived in
arbitrary dimensionality and the optimality of the Gabor functions has been proven. Our
proof here extends McLennan’s proof by establishing the fact that the Gabor functions
defined in (2.49) are indeed the only functions that achieve that minimum. Probably the
first rigorous formulation of the uncertainty principle for vision can be found in (Daugman,
1985).

In one dimension, the space occupied by a function can be defined as its standard
deviation. Analogously, we will define the mean E~x(f) with coordinates Exj

(f)and the
effective widths ∆xj

(f) in position space:

E~x(f) :=

∫
~x|f(~x)|2 ddx∫
|f(~x)|2 ddx

(2.26)
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=
‖~xf‖
‖f‖

, (2.27)

∆xj
(f) :=

√√√√∫ (xj − Exj
(f))2|f(~x)|2 ddx∫

|f(~x)|2 ddx
. (2.28)

We will always assume that the function f decays fast enough for these values to be finite.
There seems to be no reasonable definition of the effective volume which would cor-

respond to the effective width in one dimension. Nevertheless, we will define it as the
product of the widths in the single Cartesian coordinates:

V~x(f) :=
d∏

j=1

∆xj
(f) . (2.29)

This is convenient but not quite satisfactory, because, in general, it is not invariant under
rotations of the coordinate system. This aesthetic flaw can probably be accepted keeping
in mind that the “effective width” in itself is a fairly sloppy concept.

The same definition can, of course, be applied in momentum space by simply replacing
the variable ~x by ~ω. The product of the volume of f in position space and its Fourier
transform F(f) in momentum space will then be called the phase space volume:

Vphase(f) := V~x(f) · V~ω(F(f)) (2.30)

=
d∏

j=1

∆xj
(f)∆ωj

(F(f)) . (2.31)

A close look at the definitions shows that shifting a function in position space does
neither change its volume in position or momentum space nor its mean in frequency space.
This is because the shift results in multiplication of a phase factor in the momentum
representation which is removed by the absolute values in equations (2.26) and (2.28).
Therefore, without loss of generality we may assume that the means of f and F(f)
vanish. Then we can derive the uncertainty relation (2.32) as follows:

Vphase(f)
!
≥ 2−d ; (2.32)

(
∆xj

f
)2
·
(
∆ωj

F(f)
)2

= ‖xjf(~x)‖2 · ‖ωj(F(f))(~ω)‖2 (2.33)

= ‖xjf(~x)‖2 ·
∥∥∥∥∥F

(
∂f

∂xj

)∥∥∥∥∥
2

(2.34)

= ‖xjf(~x)‖2 ·
∥∥∥∥∥ ∂f∂xj

∥∥∥∥∥
2

(2.35)

≥
∣∣∣∣∣
〈
xjf(~x)

∣∣∣∣∣ ∂f∂xj

〉∣∣∣∣∣
2

(2.36)

≥
(
<
〈
xjf(~x)

∣∣∣∣∣ ∂f∂xj

〉)2

(2.37)
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=

1

2

〈xjf(~x)

∣∣∣∣∣ ∂f∂xj

〉
+

〈
xjf(~x) | ∂f

∂xj

〉2

(2.38)

=
1

4

(∫ (
xjf

∂f

∂xj

+ xjf
∂f

∂xj

)
ddx

)2

(2.39)

=
1

4

∫ ∫ xj

∂
(
ff
)

∂xj

dxj

 dd−1x

2

(2.40)

=
1

4

(∫ (
xjff

∣∣∣+∞
−∞

−
∫
ffdxj

)
dd−1x

)2

(2.41)

=
1

4

(∫ (∫
ffdxj

)
dd−1x

)2

(2.42)

=
1

4
‖f‖4 . (2.43)

Dividing the inequality by ‖f‖4, applying the square root to both sides and multiplying
over all dimensions yields the desired inequality (2.32).

The advantage of this derivation compared with the standard one with the commu-
tator of Hermitian operators lies in the fact that it can easily be extended to classify
all functions with optimal localization in phase space. This optimality is achieved if the
inequalities (2.36) and (2.37) are both equalities. Furthermore, in order to achieve a
necessary condition, possibly nonvanishing means of f and F(f) must be incorporated.

Inequality (2.36) (Schwartz inequality) fulfills the equal sign if and only if the two
functions are linearly dependent, in other words they must be multiples of each other (the
negative sign is just for convenience; so far σj is an arbitrary complex number):

xjf(~x) = −σj ·
∂f

∂xj

. (2.44)

This is easily solved to:

f(~x) = Nj exp

(
− xj

2

2σ2
j

)
, (2.45)

where the integration constant turns into the normalization factor Nj. Since we need a
square integrable function we can already deduce that <(σ2

j ) > 0.

For inequality (2.37) to fulfill the equal sign the scalar product
〈
xjf

∣∣∣ ∂f
∂xj

〉
must be

real. Substituting by equation (2.45) this gives〈
xjf

∣∣∣∣∣ ∂f∂xj

〉
=

〈
xjNj exp

(
− xj

2

2σ2
j

) ∣∣∣∣∣ − 1

σ2
j

xjNj exp

(
− xj

2

2σ2
j

)〉
(2.46)

= − 1

2σj
2
·
∥∥∥∥∥Njxj exp

(
− xj

2

2σ2
j

)∥∥∥∥∥
2

. (2.47)

So σj
2 must be real, or σj must be either real or imaginary. Together with <(σ2

j ) > 0 we
conclude that all σj must be positive reals and the only functions that satisfy the equal
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sign in the uncertainty relation for every component and have zero mean in position and
momentum space are of the form

f(~x) = N exp

−∑
j

xj
2

2σ2
j

 , σj > 0 ; (2.48)

or, simpler:

f(~x) = N exp
(
−1

2
~xTD~x

)
, (2.49)

where D is a positive definite diagonal matrix with entries σ−2
j . The normalization factor

N is still an arbitrary complex number.
Finally, we have to incorporate the possibility of non-zero means of f and F(f), which

will be done by a change of coordinates in position and momentum space. Let ~x0 be the
mean of f(~x) and ~ω0 the mean of (F(f)) (~ω). Then the function

f0(~x) = exp
(
−i~ωT

0 ~x)
)
f(~x− ~x0) (2.50)

has the same variances in both representations as f(~x) and the means in both represen-
tations are zero. The second statement is obvious. The first statement is true because
a shift in one representation results in the multiplication by a (spatially varying) phase
factor in the other. This is then removed by the modulus in the definition of the variance.

By applying equation (2.49) to f0(~x) and solving for f(~x) we finally get the most
general form of a function with optimal localization in phase space:

γ(~x) = N exp
(
−1

2
(~x− ~x0)

TD(~x− ~x0)
)

exp
(
−i~ωT

0 ~x)
)
, (2.51)

with D any positive definite diagonal matrix and N an arbitrary complex number that can
be adjusted in order to norm γ(~x) suitably. These functions are called Gabor functions .
Free parameters are ~x0, ~ω0, the normalization factor N and the positive definite diagonal
matrix D whose entries are the squared inverses of the widths in each dimension. ~ω0 will
also be called the center frequency . For simplicity we introduce the following abbreviation:

‖~x‖D := ~xTD~x (2.52)

With the help of the following formula, which holds for real positive a and arbitrary
complex b and c, integrals of Gabor functions are analytically well tractable:∫

exp
(
−ax2 + bx+ c

)
dx =

√
π

a
exp

(
b2

4a
− c

)
. (2.53)

This formula is verified by quadratic completion with some extra care concerning integra-
tion in the complex plane. It immediately yields the Fourier transform and the integral
of the Gabor functions:

F (γ) (~ω) =
N(2π)d/2√

det (D)
exp

(
−1

2
‖~ω − ~ω0‖D−1

)
(2.54)

∫
γ(~x) ddx = F (γ) (~0) =

N(2π)d/2√
det (D)

exp
(
−1

2
~ωT

0D
−1~ω0

)
(2.55)
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Figure 2.1: Schematic description of the early stages of visual processing.
After (Nicholls et al., 1980).

2.4 Phase Space Representation in Early Vision

Now we will use the above view for the representation of visual information. This will be
very close to neurobiological knowledge about early vision. It must be noted that neuro-
physiological data is usually not accurate enough to support more than qualitative models
of neuronal properties. Heated debates about Gabor functions vs. Hermite functions or
derivatives of Gaussians must be put into this perspective. Also there is currently no
possibility to underpin statements about the distribution of certain properties, because
neurophysiological analysis is restricted to small numbers of cells.

On the retinae in our eyes visual information about the outside world is represented
by the light intensity falling onto photoreceptors with sensitivity maxima at three dif-
ferent wavelengths. Instead of light intensity distributions we will use the psychological
(biological) term stimulus . Correspondingly, the activity of a detector cell will also be
called its response.

We will simplify the situation by ignoring the different colors as well as binocularity
and assuming an intensity distribution on one densely sampled and infinitely large sheet
of point receptors — in other words we will describe the incoming light intensity as a
function from L2(R2). All temporal properties of the stimulus will be ignored.

Some clarification is required when we are talking below about “cells”. Nerve cells
or neurons in the brain are usually meant to have a positive activity value (for a closer
description of neuronal properties see section 4.1). The transforms we will introduce, will
regularly produce negative or even complex values. These are quantities that describe
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small local assemblies of cells, rather than a single cell. In the simplest case, positive or
negative values could be accomplished by a pair of cells, one of which has the receptive
field corresponding to the positive part of the functional, the other to the negative one.
Their activities are then transmitted to following neurons in an excitatory (positive part)
or inhibitory fashion (negative part). Similarly, a complex-valued functional corresponds
to (at least) four cells, one pair for the real part, and one for the imaginary part.

The first stages of processing in the visual system can be adequately described by
transforms in the above sense. The retinal ganglion cells , which represent the first stage of
visual processing, have circular symmetric functionals which can be adequately modeled,
up to a normalization factor, with a difference of Gaussians:

ρ(~x) = σ− · exp

(
−~x

T~x

2σ2
+

)
− σ+ · exp

(
−~x

T~x

2σ2
−

)
(2.56)

The coefficients of the exponentials are adjusted such that
∫
ρ(~x) ddx vanishes. If σ+ < σ−

this functional has the form of a positive peak surrounded by a negative annulus. Such
cells are therefore called “on-center-off-surround”. For σ+ > σ− the opposite kind of cells
results. This model dates back to (Rodieck, 1965).

The retinal ganglion cells connect to the lateral geniculate nucleus which serves as a
relay station and is concerned with merging information from both eyes, control of the
visual pathway during wake and sleep phases, and feed-back control by descending cortical
connections. As we are neither concerned with stereo vision nor with time-variant signals
the influence of this structure on the neuronal signals will be ignored.

The next processing stage is the primary visual cortex . Here the situation starts
getting complicated. There is a variety of cells with different properties. For our models
we only pick the simplest of them, which have been named simple cells by (Hubel and
Wiesel, 1962). Those simple cells have the following properties:

1. Linearity: The response to excitatory stimuli is linear in good approximation.

2. Admissibility: There is no response to a spatially constant illumination.

3. Localization in image space: Each cell has a certain area on the retina, called its
receptive field , outside of which the stimulus does not affect the response.

4. Orientation selectivity: Cells respond best to light bars and edges and their re-
sponse depends on the orientation of the edge or bar in the image space. Each cell
has a preferred orientation and is insensitive to bars or edges perpendicular to this
orientation.

5. Localization in frequency space When stimulated with sine-shaped intensity dis-
tributions they show the same preferred direction as with the bars and edges. Each
cell has a preferred spatial frequency. If the frequency of the sine differs too much
from it there is no response.

The first property means that linear functionals applied to the stimulus data are a good
model for the responses of these cells. The second one requires the functionals to vanish at
~ω = ~0 in frequency space. We will deal with this closely in section 2.5.1. Property 3 is the
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localization in image space, 4 and 5 together mean localization in frequency space, where
4 requires a tuning for the orientation, 5 a tuning for the length of the center frequency.

The applicability of Gabor functions for these functionals has been proposed by (Daug-
man, 1985). In (Marčelja, 1980; Jones and Palmer, 1987; de Valois and de Valois, 1990)
precise measurements are presented that prove this within the possible accuracy. In
(Pollen and Ronner, 1981) experiments are described that find cells with odd and even
symmetries and otherwise very similar parameters in close neighborhood. These underpin
the usefulness of the complex-valued Gabor-functions, because their real and imaginary
parts do have these symmetries.

This model is harshly criticized by (Stork and Wilson, 1990). The most serious criti-
cism is, in the author’s opinion, the fact that the real parts of Gabor functions do respond
to constant illumination. We will account for this problem by modifying the Gabor func-
tions in section 2.5.1. The other arguments do not seem very convincing.

In (Hubel and Wiesel, 1974) the distribution of simple cells with different parameters
such as receptive field size and orientation tuning has been examined. They have coined
the term hypercolumn for the set of simple cells whose receptive fields have the same sizes
and are centered on the same point in image space.

In our view of simple cells as phase space atoms the hypercolumns present a simple
example of small assemblies, or phase space molecules , to use the same metaphor. We
will use various forms of such molecules for or models in chapters 4 and 5.

If the responses of all simple cells in a hypercolumn are arranged to a vector this can
be viewed as a feature vector. It will turn out to be very useful to use such feature vectors
for matching instead of the responses of the cells.

2.5 Turning Gabor Functions into a Wavelet Trans-

form

The Gabor functions introduced in section 2.3 have been shown to be optimal in terms
of phase space localization and to present a good model for a class of neurons in early
vision. In order to construct a wavelet transform, two things are left to do. First, the
admissibility condition as well as the experimental data require that the integral over the
kernels (or, equivalently, over the mother wavelet) must be zero. A fixed function must be
picked as mother wavelet, and the group that generates the transform must be specified.

2.5.1 Admissibility Correction

Equation (2.54) shows that the Fourier transform of a Gabor function is a Gaussian
centered in its center frequency with widths defined by D−1. Figure 2.2 a) shows a
section through the line through the origin in the direction ~ω0.

We will present two different methods of making the the Gabor functions admissible,
i.e. modifying them for their integral to vanish. Both work in the frequency domain. The
simplest approach to just define F(ψ)(~0) = 0 is not recommendable because this would
amount to subtracting a δ-functional, and we wish to use functions from L2(R2). For the
following discussion we will assume ~x0 = ~0 without loss of generality.
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Figure 2.2: Methods for making the Gabor kernels admissible. The fat graphs
in a) and c) show a section through the the Gabor kernel for k = 0.775 in frequency
space. The value at frequency 0 is positive, therefore the kernel is not admissible. In a) a
Gaussian of the same width and appropriate height is subtracted to yield the admissible
kernel shown in b). In c) the kernel is inflected at the origin, subtracted from the original
one and all values at negative frequencies are set to zero. The result is the kernel in d).

The first one follows (Murenzi, 1989; Murenzi, 1990) and subtracts a Gaussian of the
same widths centered at zero. This yields:

F (ψM) =
N (2π)d/2

√
detD

[
exp

(
−1

2
‖~ω − ~ω0‖D−1

)
− exp

(
−1

2
(‖~ω0‖D−1 + ‖~ω‖D−1)

)]
,

(2.57)
and

ψM = n exp
(
−1

2
‖~x‖D

) [
exp

(
−i~ωT

0 ~x
)
− exp

(
−1

2
‖~ω0‖D−1

)]
. (2.58)

This way of assuring admissibility is convenient for analytical considerations, because
the subtraction of a Gaussian keeps the form simple. A big disadvantage is the fact that
the Fourier transform has negative values, even if the normalization factor was positive
(see figure 2.2 b)).

The second method is inspired by the one-dimensional Hilbert transform , and can
therefore, with some phantasy, be regarded as its multidimensional generalization. A
given kernel with a well-defined center frequency ~ω0 is reflected about the line orthogonal
to ~ω0 through the origin and subtracted from the original kernel. Thus the frequency plane
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is divided into two halfplanes separated by that line. Then the values in the halfplane
not containing ~ω0 are set to zero.

If the given kernel is nonnegative and continuous and decays monotonously with the
distance from ~ω0 (as is the case for the Gabor functions) this leads to a nonnegative
continuous kernel which is zero in the origin. Differentiability, however, is no longer
guaranteed.

F(ψH)(~ω) =

{
exp

(
−1

2
‖~ω − ~ω0‖D−1

)
− exp

(
−1

2
‖A~ω − ~ω0)‖D−1

)
: ~ωT~ω0 > 0

0 : otherwise
,

(2.59)
where A denotes the reflection about the mentioned axis:

A~ω = ~ω − 2
~ωT~ω0

~ωT
0 ~ω0

~ω0 (2.60)

The formulae indeed work in arbitrary dimension. In the considerations above the line
orthogonal to ~ω0 must be replaced by the orthogonal complement of ~ω0.

ψH itself does not have a nice analytic form. It contains error integrals, which are
notoriously hard to treat analytically. But for numerical calculation it is very convenient.
Its Fourier transform is not only real but strictly nonnegative.

It must be noted that neither method can work if ~ω0 = ~0. If the Gaussian kernel is
centered at zero, removing the integral must result in drastic qualitative changes to the
form. However, we are not interested in this case.

One drawback behind both methods is the fact that they cannot be generalized to
arbitrary kernels. They rely on the kernels to be localized in frequency space around a
point which is in a certain distance from the origin. For kernels like difference of Gaussians
or Laplacian of Gaussian that are used to describe retinal ganglion cells, the vanishing of
the integral must be enforced differently (see, e.g. (2.56)).

In the light of the optimality of the Gabor functions the question arises which functions
are optimal in the sense of phase space localization under the extra condition that they
are admissible. The author has not been able to find the answer, but this has no practical
consequences for this work.

2.5.2 Choice of Wavelet Functionals

As mentioned above the neurophysiological data are not good enough to decide between
various mathematical forms of functionals to describe simple cell responses. Some au-
thors prefer the product of a polynomial and a Gaussian, or, equivalently, various spatial
derivatives of Gaussians (see, e.g., (Lindeberg, 1994)). Atick and Redlich (1990) propose
a neural wiring scheme that builds functionals for simple cells from DOG-models of reti-
nal ganglion cells. This results in Jacobi-ϑ-functions, which as they state, for realistic
parameter values look quite similar to Gabor functions.

We will use Gabor functions modified to fulfill admissibility by either (2.58) or (2.59)
throughout the rest of the thesis. For all practical purposes, there is not much difference
between the results of both methods. Because the extra complication does not improve
our results we will choose isotropic Gaussians in the Gabor functions. This means that
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Figure 2.3: The form of the admissible Gabor kernels. The upper figure shows
the Gabor kernel with σ = 2 as it is found as receptive field profile in the visual cortex
and is used for visual preprocessing in this work. On the left the real part is shown, on
the right the imaginary part. The lower figure shows the kernel for σ = 2π.

the diagonal matrix D must be a multiple of the unit matrix and we will replace it by
σ−2. For mother wavelet we choose the function centered at ~ω0 =

(
1
0

)
(For the apparent

inconsistency of physical units see section 1.4):

ψ0 = exp

(
−~x

T~x

2σ2

) [
exp (−ix1)− exp

(
σ−2

)]
(2.61)

The geometrical group that creates the functionals for our wavelet transform will be
the group of all translations, rotations and scalings of the image plane, which is called
IG(2). It can be represented by (s, ϕ, ~y) ∈ R+ × U × R2, where the first parameter
s stands for the scaling factor, the second for the rotation angle and the third for the
translation vector.

We will derive a more compact representation of the wavelet transform generated,
which is also very well suited for numerical implementation. The factor group of IG(2)
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modulo translations consists of all combinations of rotations and scaling. These are
uniquely determined by the action of their transposed matrix on the unit vector

(
1
0

)
.

We need the transposed matrix, because we wish to represent the group action by the
column vector ~k:

~k =

(
k1

k2

)
, (2.62)

corresponding to the group element

g =

(
k1 k2

−k2 k1

)
. (2.63)

Applying this group element to ψ0 yields:

ψ~k(~x) := ψ0 (g(~x)) = N exp

−~kT~k~xT~x

2σ2

[exp
(
−i~kT~x

)
− exp

(
σ−2

)]
(2.64)

We will now apply identity (2.20) and replace the action of translations by convolution.
Transforming a function f(~x) with the wavelet transform generated by the mother wavelet
ψ0(~x) and the group IG(2) is then equivalent to convolution of f with all kernels of the

form (2.64) with ~k ∈ R2\{~0}.

(Wf)(~x,~k) = I(~y) ∗ ψ~k(~y) (2.65)

The origin for ~x is arbitrary, the origin for ~k stands out by the fact that it is not part of
the parameter set. Therefore, we will usually measure ~k in polar coordinates.

This very convenient coding for the different kernels generated by the group action
can also be carried out for nonisotropic Gaussians, i.e., D 6= σ−2. The formulae look a bit
more difficult and we do not need them for our purposes.

2.5.3 Choice of Normalization Factors

The rule that the various functionals are derived from a single one by a geometrical
group already fixes the normalization factors. Deviating from this we will choose the
normalization factors depending on ~k in order to have a transform which is better adapted
to the properties of visual data. This will not change the properties of the transform
besides leading to a slightly modified reconstruction formula.

Natural images have far more specific properties than just producing L2-functions on
the retinae. Unfortunately, it is unknown how the concept of a natural image can be
formalized. This may be a major cause of trouble in computer vision, because visual
algorithms implemented in the brain are probably optimized for a natural visual envi-
ronment. In the absence of a mathematical notion for this environment finding vision
algorithms that could mimic the cognitive capabilities of living beings is very hard. In
any case, it seems a wise idea to incorporate the available knowledge, sparse as it may be.

In the work (Field, 1987) the spectra of various natural images are analyzed and it is
found that the amplitudes decay like 1/|ω|. In the images that will be used in this thesis
we found roughly the same behavior. We will therefore modify our transform such that
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this dependency cancels out and we get comparable response amplitudes for all values of
|~k|. This means that the Fourier transforms of our kernels must have norms proportional

to |~k|. This is achieved by adjusting their normalization factors to be independent of k,
or for simplicity, equal to 1:

(
Fψ~k

)
(~ω) = exp

−σ2
(
~ω − ~k

)2

2~k2

− exp

−σ2
(
~ω2 + ~k2

)
2~k2

 . (2.66)

Form this we derive the normalization in image space:

ψ~k (~x) =
~k2

σ2
exp

−~k2~x2

2σ2

 [
exp

(
i~k~x

)
− exp

(
−σ2/2

)]
. (2.67)

2.6 Sampling Issues For Wavelet Transforms

Until now we have always considered continuous functions on Rd. For the modeling of the
responses of nerve cells this is only an idealization motivated by the fact that mathematics
without infinity is no fun. Once we have to simulate our transforms on a digital computer
we are forced to discretize them again. Therefore, some reflection about discretization or
sampling is necessary.

2.6.1 The Sampling Theorem

The main theorem about the required sampling density of a function is the sampling the-
orem. It is best known for one-dimensional (electric or acoustic) signals and usually only
formulated for those. The extension to arbitrary dimension, however, is straightforward,
and we will give the general form here. The question to be answered is: “How many
samples does it take to represent a given function?”. Obviously, this is an impossible task
in the general case. According to general usage, L2-functions are identical if they differ
only on a set of measure zero, which any finite or discrete sampling set will certainly be.
Additional constraints are needed. Continuity or differentiability are of no use, because
the areas where they have any effect on the function (i.e. the convergence radii of their
Taylor series) can be made arbitrarily small. On the other hand, it would be possible (in
the two-dimensional case) to interpret the image plane as a complex plane and require
the functions to be analytic. Then the reconstruction from a discrete set of points would
be guaranteed by the theory of complex functions (Conway, 1978). However, this would
constrain images in unnatural ways.

The possibility of local manipulations of functions that render the differentiability con-
straints useless have one common property: If one wishes to construct counterexamples
for a sampling set of a certain density the resulting functions attain very high frequencies.
The correct constraint is therefore to exclude this possibility by prohibiting high frequen-
cies. Formalizing this results in the following definition and a theorem about the required
sampling density:

A function from L2(Rn) is called band limited by the frequencies ~η if F(f)(~ω) =
0 outside the hyperrectangle [−η1, η1]× . . .× [−ηd, ηd]. The frequencies ηj are
called Nyquist-frequencies .
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Sampling theorem: A band limited function is uniquely determined
by the sequence of values f

(
k1

2η1
, · · · , kd

2ηd

)
, ~k ∈ Zd.

The proof can be found with varying degree of rigor in signal processing textbooks,
e.g. (Kunt, 1980; Blahut, 1988). It rests on interpolation with sinc-functions:

f(x) =
∞∑

k=−∞
f

(
k

2η

)
sin(2π(x− k))

2π(x− k)
(2.68)

Some care is required with the properties of the functions involved. If the closed intervals
are used in the definition of band limited, functions from outside L2(Rn) can not be
admitted.

2.6.2 Sampling of Wavelet Transform

One reason that the Fourier transform is popular not only for theoretical considerations
but also for practical computations is the fact that it can be computed efficiently. At first
glance, the Fourier transform as well as the convolution look like general linear transfor-
mations which, after discretization, turn into a matrix-vector multiplication, where the
evaluation of each functional is a scalar product. This needs O(n) operations, where n is
the dimension of the data. So a transform needs, in general, O(n ·m) operations to exe-
cute, where m is the result dimension. Fourier transform as well as convolution, however,
have symmetries that allow a faster computation, and their computational complexity is
only O(n log n). The details are very well described in (Press et al., 1988), an in-depth
treatment can be found in (Nussbaumer, 1982).

This is the reason why we formulated the wavelet transform as a convolution in (2.65).
But it also dictates part of the choice of the sampling set. In principle, the sampling
could be arbitrary in the four-dimensional space spanned by the two spatial and the
two frequency directions. But we can only take advantage of the convolution form if
many sampling points lie on planes of constant center frequency ~k. Most fast convolution
algorithms (particularly the one using the FFT, which we will always use) require a
regular grid for each of those planes. For the complete sampling set we have to specify
the sampling of the magnitude of center frequencies, the sampling of their directions ,
and the spatial sampling of the translations or, equivalently, of the single convolutions
belonging to each center frequency.

2.6.3 An Efficient and Intuitive Way to Sample Convolutions

In this section we will discuss three different methods to sample convolution results. For
each method we will start with an image I sampled on a rectangular grid. To take full
advantage of the speed of the FFT the number of sampling points usually is chosen as a
power of two in each dimension, but our considerations are valid for all numbers.

The simplest form to arrive at a sampled convolution result consists in combining
equations (2.16) and (2.65) and replacing the continuous Fourier transform by the finite
FFT Ff .

I ∗ ψ~k = F−1
f

(
Ff (I) · Ff (ψ~k)

)
. (2.69)
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Figure 2.4: Nyquist-sampling in frequency space. The kernel in frequency space
is symbolized by the concentric circles. Outside the largest circle its value is below the
threshold tf . The thresholded kernel is band limited by the dark rectangle. Inverse Fourier
transform of this rectangle leads to a different sampling in image space.

As the FFT does not change the dimension of the data this leads to the same sampling
for image and convolved image. This method will be called full sampling .

The wavelet kernels are localized in frequency space, and therefore one can make use of
the sampling theorem. Strictly speaking, I∗ψ~k is not band limited, because the support of
F(ψ~k) is the whole plane. However, they decay fast enough to be approximated very well
by a band limited function. In other words, we will fix a threshold tf and approximate
F(ψ~k) by the modified kernels:

F(ψbl
~k
) =

{
F(ψ~k) : F(ψ~k) > tf

0 : otherwise
. (2.70)

Now we consider the smallest rectangle that is centered in the origin and contains the
support of F(I) · F(ψbl

~k
). No information is lost if the values outside this rectangle are

discarded. The sampling strategy now simply consists in taking the inverse FFT of the
data in this rectangle. This will automatically lead to a subsampled convolution result
without loss of information. We will call this method Nyquist sampling.

The full sampling can easily be recovered from this by inverting all the steps: Take
the FFT of the rectangle, pad the resulting rectangle with zeroes up to the desired size
(resolution), and take the inverse FFT. This is accurate up to numerical errors in the FFT
(which are small). Of course, this method can also be used to achieve higher resolution
than the original image had. This constitutes a method for interpolation with band
limited functions. This sampling procedure is nothing more than an illustrative way to
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Figure 2.5: Sparse sampling in frequency space. The kernel in frequency space
is symbolized by the concentric circles. Outside the largest circle its value is below the
threshold tf . Values of the transform which lie outside the dark square are zero. Therefore,
it suffices to apply the inverse Fourier transform to this square only, which leads to a much
sparser sampling than the one shown in figure 2.4. The fact that the center of the square
is not at ω = 0 is accounted for by subsequent multiplication with the wave corresponding
to that shift.

apply the sampling theorem: The required sampling density is 2π divided by the Nyquist
frequency. See figure 2.4 for a graphical illustration.

The reason why the full sampling can be recovered from the Nyquist sampling is that
chopping off the zeroes is an invertible action. A second look at figure 2.4 reveals that
inside the rectangle defined by the Nyquist-frequencies there are still many zeroes left. If
the support of the kernel is limited to some rectangle defined by ~η1 (lower left corner)
and ~η2 (upper right corner) the sampling theorem can be applied after shifting the origin
into the center of the rectangle, i.e.

~ηc =
1

2
(~η1 + ~η2) . (2.71)

Nyquist sampling can now be applied to this shifted function. Afterwards, the shift can
be reversed by multiplication of the result by exp(i~ηT

c ~x). If only the amplitudes of the
result are required, this multiplication can be omitted because it only changes the phase.
This sampling strategy will be called sparse sampling. It is clear from figure 2.5 that this
leads to a much sparser representation. Numerical values for the number of units resulting
from each strategy can be found in section 3.6.1.

The sparse and Nyquist sampling strategies lead to a representation with few entries
for low frequencies and many for high ones. If those (planar) representations for the
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Figure 2.6: Frequency space covering of sampled transform. The Gaussian-
like curves show a section through the kernels F (ψhilb) in frequency space at the center
frequencies k = 0.4, k = 0.775, and k = 1.5. The fat curve is the squared sum of the
three kernels. This is the relevant curve for reconstruction. In the ideal case of infinite
frequency space sampling it would be a constant.

single frequencies are stacked on top of each other (highest frequencies at the bottom) this
resembles a pyramid. Pyramid representations have been introduced by Burt and Adelson
(1983) and form a standard technique in computer vision (Cantoni and Levialdi, 1986).
Our presentation here is special in the sense that the pyramid structure is directly derived
from the form of the kernels, and the possibility of an arbitrary number of directions of
center frequencies is included.

2.7 Reconstruction From Sampled Wavelet Trans-

form

For reconstruction of the image from the wavelet transform a discretized version of the
continuous reconstruction formula (2.24) can be used. What needs to be specified is the
measure dg which must be some function of d2k or better d|k|dϕ, because our frequency
sampling will be in polar coordinates. First, our wavelets are not normalized, their norm
is proportional to |~k|. So, equation (2.24) must not be applied for ψ~k but for |~k|1ψ~k,

instead. Second, the sampling of the length of ~k is logarithmic, so the area element d2k is
not |k| d|k| dϕ, as it would usually be, but |k|2 d|k| dϕ. Inserting all this into (2.24) yields:

I(~x) =
∫
S

W(~x,~k) ∗ ψ~kd|k| dϕ , (2.72)

which leads to the following reconstruction procedure:

1. For each value of ~k compute Ff (W(~x,~k)) with an FFT.

2. Multiply the results of 1. with Ff (ψ~k) (separately for each value of ~k).
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3. Pad the results of 2. with zeros to reach the desired resolution (separately for each

value of ~k).

4. Add the padded results up for all values of ~k.

5. Calculate the inverse FFT of this sum.

Results of this reconstruction from the various sampling strategies can be found
in 3.6.1. They will show that for reasonable parameters the reconstructions can be very
similar to the original. Of course, no discretized reconstruction formula can recover the
integral of the image (or the absolute grey values), because it has been carefully removed

by the choice of the kernels. In the continuous case, this is recovered by the limit |~k| → 0.

2.8 Multiresolution Transforms: Wavelets and Be-

yond

From the connectionist point of view the concept of wavelets with the condition to have
a geometrical group act on a single functional may seem too narrow. The totality of all
functionals or phase space atoms is probably not governed by mathematical elegance but
rather by the visual experience of the brain during development. This may result in a
variety of forms of functionals as well as very incomplete groups, using only the subsets
that are relevant for the visual tasks.

The newest mathematical developments in this direction are presented by (Mallat and
Zhang, 1993). Here the data are evaluated with what is called a dictionary of function(al)s
and only the most significant responses are kept to represent the data. This leads to
an elegant way of telling signal and noise apart without having to make very explicit
assumptions about the structure of either.

This transform has been applied successfully to sound analysis. Here, the extension
of the wavelet functional dictionary by sines and Dirac-functionals yielded very good
results, because these are often present in sound data. The extension to two-dimensional
image data is straightforward but computationally very expensive. Also, the choice of a
dictionary is much less obvious here. In the long run, it should be possible to learn the
dictionary from visual experience. A very crude version of this idea is used in the adaptive
sampling scheme where we will keep only the wavelet responses whose amplitudes exceed
a threshold (see section 3.6). An alternative, but similar concept which insists on more
structure is that of wavelet packets (Coifman and Wickerhauser, 1992). These are usually
optimized for tasks in data compression.
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3. Representation of Images and
Models

Entweder ein Ding hat Eigenschaften, die kein anderes
hat, dann kann man es ohne weiteres durch eine Be-
schreibung aus den anderen hervorheben und darauf hin-
weisen; oder aber, es gibt mehrere Dinge, die ihre sämtli-
chen Eigenschaften gemeinsam haben, dann ist es über-
haupt unmöglich auf eines von ihnen zu zeigen.
Denn, ist das Ding durch nichts hervorgehoben, so kann
ich es nicht hervorheben, denn sonst ist es eben hervor-
gehoben.

Ludwig Wittgenstein, Tractatus logico-philosophicus

This chapter gives a complete description of the image representation that will be used
throughout the thesis together with the procedures that are used to calculate it efficiently.
Furthermore, a simple edge representation will be discussed.

3.1 Image Processing

Images are taken by a video camera, low-pass filtered by averaging over a 4× 4 neighbor-
hood and reduced to a resolution of 128× 128 pixels.

A sampled continuous wavelet transform with Gabor kernels modified to fulfill admis-
sibility is applied. The method for this (in all our numerical applications) will be the one
described by equation (2.59). As described in section 2.5.2 the kernels are parameterized

by their center frequency ~k. The normalization factors in frequency space are constant for
all center frequencies as we have motivated in section 2.5.3. The Gaussian envelopes have
been chosen to be circularly symmetric, therefore the reflection about the axis orthogonal
to ~k (see section 2.5.1) can be replaced by inflection about the origin. Finally, the Gabor
kernels are forced to be band limited as described in section 2.6.

Putting all this together yields the final form of the kernels in frequency space:

F(ψ~k)(~ω) =

 exp
(
− (~ω−~k)2

2σ2|~k|2

)
− exp

(
− (~ω+~k)2

2σ2|~k|2

)
: ~ωT~k > 0

0 : otherwise
, (3.1)
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F(ψbl
~k
)(~ω) =

{
F(ψ~k)(~ω) : F(ψ~k)(~ω) > tf

0 : otherwise
. (3.2)

For the rest of the thesis we will drop the “bl” and simply use ψ~k for the kernels.
The transform is executed by taking the Fast Fourier Transform of the image, multi-

plying by the kernels in frequency space, reducing the size of the frequency representation
according to the procedure described in 2.6.2, and finally applying the inverse FFT.

3.2 Suppressing the Background

In this section we will collect all the steps that lead to our image and model representations
and describe in full detail how they are generated. All parameters will be specified in
section 3.4.5. These parameters will be used throughout the thesis unless stated otherwise.

When working with a phase space representation all operations that require exact
localization are bound to cause problems, because the information available in the repre-
sentation at one point is always some weighted average of the image at the surrounding
points. In the course of visual processing this becomes serious when the model has to be
separated from the background. Without engaging on the question how this separation
can be achieved we have to discuss the consequences for our representation.

In the vast majority of cases model and background are separated by a clear cut
line. This does not imply that this line must always be visible, but there are always
pairs of points one of which belongs to the model and the other to the background, but
nevertheless they are direct neighbors in the image plane. Therefore, the corresponding
phase space atoms centered at model points close to the border will always be influenced
by the background. When the background changes, these atoms will match poorly.

Several levels of sophistication can be applied to overcome this problem. In (Pötzsch,
1994) a linear transformation is estimated and applied that achieves independence of the
background as well as possible. Here we will take the radical view that these atoms
represent contaminated information and have to be discarded altogether.

The model is defined by a mask in the image plane:

µM(~x) =

{
1 : ~x is part of the model
0 : otherwise

(3.3)

In other words, we require the model to be an arbitrary subset of the image plane and
define µM as its characteristic function.

The next step will be to decide which phase space atoms do belong to the model in the
sense that they are independent of the background. Because the support of the Gabor
kernels is the whole image plane this condition will not be met by any atom with absolute
accuracy. If the background contains arbitrary huge peaks of light intensity, it is possible
that these contaminate all atoms in the whole image. In this case the representation is
empty and the whole matching procedure fails. We will therefore restrict the discussion
to “reasonable” images, where the Gabor responses in the background are smaller or in
the same order of magnitude as in the model.

Then we will define an effective support for the Gabor kernels. Because this is only
an approximation, anyway, we will make the further simplification to assume a circular
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a) b)
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c) d)

e) f)

Figure 3.1: The aspects of one person in the various databases. a) is the standard
position that is used to create the models. f) is an example for a model with segmentation.
b) through d) show the pictures in the test databases I1 through I3 (see section6.1.2),
where the persons looked 15◦ or 30◦ to their left or showed a facial expression of their
choice. In e) the picture was taken with a different focal length resulting in roughly half
the size of the face in the image.
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support. Its radius is defined as that distance from the center where the Gaussian envelope
of the kernel decays to ts, the spatial threshold under which the kernel is sufficiently close
to zero to be ignored. Besides this parameter the radius is dependent on the magnitude
of the center frequency |~k| and the relative bandwidth σ, and can be easily calculated:

R(~k) =
σ

|~k|

√
−2 ln (ts) . (3.4)

Now the model/background separation for the phase space atoms can be clearly de-
fined: A unit belongs to the model representation if and only if its central location has a
distance to the background larger than the corresponding R.

This introduces a clear asymmetry between model and background. If it should be
necessary (which for our purposes is not the case) to treat the background as a separate
object this procedure would yield three distinct types of units: The ones belonging to
the model representation, the ones belonging to the background representation and the
intermediate ones which are discarded.

Fortunately, for the classification of the units it is not necessary to calculate the dis-
tances between unit centers and all image points. It suffices to convolve the mask µM

with the characteristic function χR of a disk of radius R. This is due to the fact that
the integral over the product of the characteristic functions of two sets is equal to the
characteristic function of the intersection of the sets:

(~x,~k) ∈ SM ⇐⇒
∫
µM(~y)χR(~y − ~x) d2y =

∫
χR(~y) d2y , (3.5)

where χR(~y) =

{
1 : |~y| < R
0 : otherwise

. (3.6)

In spite of the wrong sign in χR(~y − ~x) this can be implemented as a convolution,
because χR is inflection-symmetric.

3.3 Amplitude Thresholding

In order to keep the representations as compact as possible the influence of units with very
low response amplitudes must be discussed. These amplitudes, which are smaller than
a certain threshold, can be set to zero in good approximation. Before discarding those
units completely, it must be assured that their phases do not carry important information.
In section 5.4.1 we will discuss in detail that this is indeed the case. Low amplitude
responses are close to complex zeros in the continuous transformation, and therefore the
corresponding phases are ill-defined or, in other words, very unstable under minimal shifts
of the sampling grid. It is therefore advisable to set a threshold and discard all amplitudes
below that threshold with the double effect of making the representation more compact
and improving the reliability of the phase matches (see section 5.4). We introduce the
(relative) threshold ta and include only such units in the representation with amplitudes
not smaller than this threshold times the maximal amplitude in the whole representation
(the sampling set before thresholding is denoted as S0:

(~x,~k) ∈ S ⇐⇒ A(~x,~k) ≥ ta ·max(AS0) (3.7)
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a) b)
�

c) d)

Figure 3.2: Problematic objects for the model representation.. The represen-
tation with background suppression relies on sufficient structure inside the object. For
objects like the ones shown here this is not suitable. They can only be matched on the
basis of their edge information.
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3.4 Generating the Representations

3.4.1 Model Representation

1. A picture of the object to be modeled is taken with the video camera and subsampled
to the standard resolution. The result is M(~x).

2. The area in the picture which belongs to the object is defined by a segmentation
algorithm or by hand. The corresponding mask µM is stored.

3. The picture is Fourier transformed.

4. For each ~k ∈ SF the Fourier transform of the picture is multiplied with the discrete
kernel F(ψ~k) as defined in equation (2.66).

5. The result is reduced in size according to the sampling strategy used (see section
2.6.2).

(a) In the case of Nyquist sampling the smallest rectangular area which is centered
in the origin and where the result is effectively nonzero (i.e. ≥ tf ) is cut out.

(b) Full sampling is a special case of (a), namely for tf = 0

(c) In the case of sparse sampling the smallest rectangular area where the result
is effectively nonzero (i.e. ≥ tf ) is cut out. Then it is shifted to be centered at
the origin, the shift vector is stored.

6. The inverse Fourier transform is applied to this and yields complex unit responses,
which are then separated into amplitude and phase. In the case of sparse sampling
the phase is corrected in order to take the shift vector applied before into account.

7. The sampling set is reduced by discarding all units that are influenced by the back-
ground with the procedure described in section 3.2 using the mask µM .

8. The sampling set is further reduced by discarding all units whose amplitudes are
smaller than ta ·maxASM (see section 3.3).

The (complex) responses of all remaining units are stored as six-tuples with the entries:

1. horizontal location 0 ≤ x1 < 1

2. vertical location 0 ≤ x2 < 1

3. length of center frequency kmin ≤ k ≤ nlev

4. direction of center frequency 0 ≤ d < ndir · π

5. amplitude value 0 ≤ A(x1, x2, k, d)

6. phase value −π < P(x1, x2, k, d) ≤ π

Those entries will also be referred to as (u1, . . . , u6).
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a) b)
�

c) d)

Figure 3.3: Reconstruction from representations with various sampling
schemes. The original image in a) has been transformed and the units influenced by
the wrap around at the border have been removed. b) shows the reconstruction from the
transform with full resolution (consisting of 172,140 units), c) from the one with Nyquist
sampling (60,776 units), and d) the one from sparse sampling (20,620 units)
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3.4.2 Image Representation

The image representation is generated exactly in the same way as the model representation
except for the fact that there is no segmentation. The mask µI is chosen as identical to
the image area and step 5 is only used in order to remove the artifacts introduced by the
wrap-around of the finite Fourier transform.

3.4.3 Subrepresentations

For the matching procedures described in chapters 4 and 5 we will have to use subsets of
the image and model representations. These are simply subsets of units that adhere to
certain properties. Specifically, we will use the subrepresentations of all units which have
a given modulus of the center frequency. These will be called frequency levels K|~k|(I),
K|~k|(M) or simply levels. They are defined as the set of all units in the representation

whose length of center frequency (or third component in the six-tuple) is equal to |~k|.
For further simplification we replace the index |~k| by the corresponding number i if |~k| =
kmin · (kmax/kmin)i. Then the whole representation is the union of all levels:

R =
nlev⋃
i=0

Ki (3.8)

3.4.4 Image Database

Now we have completely specified how models and image are prepared for the match-
ing procedures described in chapters 4 and 5. For simplicity each stored object will be
represented by one model in the form of an array of six-tuples.

The image to be classified is another array of six-tuples which, due to the lacking
segmentation will usually be much longer than the ones belonging to the models.

For evaluating the abilities for object recognition we are using 5 databases with faces
of 83 persons. The first one contains one frontal view and is used to create the model
representations. The second and third ones contain images of the persons looking 15◦

and 30◦ to their left, respectively. Database 4 contains an arbitrary facial expression and
is used for evaluating the deformation tolerance. In 5 the pictures were taken with a
different focal length, resulting in a size of the face 50%. The possibility of including
size-invariant matching will be shown in section 5.8. Figure 3.1 shows the five views of
one person, including the segmentation used for the matching.

The databases 1, 2 and 4 are the same as in (Lades et al., 1993), with two persons
omitted for whom the pictures 3 and 5 were not available. The results can therefore be
compared with that system, which will also be briefly described in 7.1. Most results for
the single mappings, however, have been obtained with persons not in the databases in
order to avoid the danger to optimize systems with respect to the special data at hand.

3.4.5 Standard Parameters

In the following all free parameters of the representations are fixed. The image resolution
will be 128× 128 pixels. The sizes of the center frequencies for the wavelet transform will
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Figure 3.4: Effects of amplitude thresholding. The image from figure 3.3 has
been transformed with sparse sampling. All amplitudes below ta times the maximum of
all amplitudes have been discarded. The reconstructed image has been compared with
the one obtained without thresholding (Figure 3.3 d)) by taking the squared pixelwise
difference and dividing it by the norm. This relative error is plotted on the left hand side
vs. the relative threshold. The right hand side shows the number of remaining units vs.
the relative error. It can be seen that our default value of ta = 0.05 leads to compact
representations without introducing too much deviation in the image information.

be sampled logarithmically, their directions uniformly:

Sf =

kmin ·
(
kmax

kmin

) k
nlev

(
cos

(
dπ

ndir

)
sin

(
dπ

ndir

))
∣∣∣∣∣∣ k ∈ {0, · · · , nlev} d ∈ {0, · · · , ndir − 1}

 , (3.9)

ndir = 4 , (3.10)

nlev = 2 , (3.11)

kmin = 0.4 , (3.12)

kmax = 1.5 . (3.13)

In the following we specify the standard values for the relative bandwidth, the thresh-
old for the amplitudes, the spatial cutoff for the kernel values and the cutoff for the kernels
in frequency space: will be:

σ = 2.0 , (3.14)

ta = 0.05 , (3.15)

ts = 0.125 , (3.16)

tf = 0.125 . (3.17)

3.5 A Simple Edge Representation

The representations described here have an obvious limitation: They cannot be applied
to objects with hardly any internal structure, because here the wavelet responses will
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be very close to zero except for model boundaries. The boundaries, however, have been
discarded because the wavelets centered there are influenced by the background.

In cases like the one shown in 3.2 one can rely only on the edge structure to get
a matching. Therefore, we describe a simple edge representation which is calculated
similarly to the model representation. It is clear, that the background suppression can
not be applied in this case.

After transformation and subsampling exactly as above the results for each center
frequency are scanned for local maxima of the amplitudes. Each response amplitude is
compared with its spatial neighbors in the direction ±~k and discarded unless both of them
are smaller than itself.

The concept of neighbor in various direction does not pose problems if, as in our case,
the directions are 0◦, 45◦, 90◦, and 135◦. If more directions are required, this probably is
hard to generalize.

After removing everything beside local maxima amplitude thresholding can still be
applied to remove maxima that do not stem from real edges but rather from numerical
noise in the absence of any local structure.

This leads to a very compact image code which is inspired by and similar to Mallat’s
multiscale edges (Mallat and Zhong, 1991). The differences are that four directions instead
of two are used and that the spatial sampling density is frequency dependent in our case.

3.6 First Experiments with the Model Representa-

tion

Before engaging on the matching task we will describe some experiments with the rep-
resentations defined above. They will also motivate the choice of the parameters σ and
ta.

3.6.1 Reconstruction

Although the reconstruction of an image from a representation will not be needed for
the matching procedures it is important for the choice of parameters and for giving a
quick impression of the information content in the representation. The method we are
using follows the reconstruction formula (2.24), which basically states that each unit must
be multiplied with the corresponding kernel and the result be integrated over all center
frequencies.

So the procedure is as follows. For each center frequency the corresponding units are
extracted and the (complex) responses are arranged into a rectangular matrix, whose size
depends on the maximal density (resolution) of units present in the whole representation.
If the representation has been calculated as described in section 3.2 this is straightforward.
If further manipulations have been applied it may require some rounding of the locations
(x1, x2) of the units. The responses of all units that are missing in the representation
are set to zero. This matrix is Fourier-transformed and multiplied with the kernel in the
frequency domain; the results are added up over all center frequencies. A final inverse
Fourier transform yields the reconstructed image.
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a) b)
�

c) d)

Figure 3.5: Reconstruction from single frequency levels. Picture a) shows the
reconstruction from the full representation, b) from K0, c) from K1 and d) from K2 only.
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a) b)
�

c) d)

Figure 3.6: Reconstruction from edge representation. The original image in a)
has been transformed and the units influenced by the wrap around at the border have been
removed. Then only the units with local amplitude maxima as defined in section 3.5 have
been kept. b) shows the reconstruction from the transform with full resolution (21,735
units), c) from the one with Nyquist sampling (12,520 units), and d) the one from sparse
sampling (5,176 units). Although the last reconstruction does not look particularly good
it is worth noticing that this representation has much fewer units than the original image
had pixels.
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When comparing the result with the original image, e.g. in figures 3.3 or 3.7 it has to
be kept in mind that the absolute gray value cannot be reconstructed because all kernels
have vanishing integral. Due to the finite sampling of the center frequencies also the
very low frequency components will be missing from the reconstruction. This could be
easily remedied by storing the total grey values and a few low-frequency components in
addition to the representation. This has not been done, because the reconstructions are
by far good enough to allow human recognition.

3.6.2 Reconstruction from subrepresentations

The reconstruction procedure has been formulated in such a way that it can be applied to
any subrepresentation. In this subsection we treat five interesting cases of subrepresen-
tations, namely the ones remaining after amplitude thresholding with various thresholds,
the single frequency levels and the edge representation from section 3.5. In order to get
some visualization of the information contained in the frequency levels we present the
results of reconstruction from this particular kind of subrepresentations in figure 3.5.

In (Mallat and Zhong, 1991) a very sophisticated reconstruction procedure is applied
that recovers the image from the multiscale edges with excellent quality. Here, we are not
so much interested in image compression but rather in matching. So for our purposes,
any reconstruction algorithm will do that reproduces a version of the image that is easily
recognizable by a human. This makes sure that we did not lose too much information
when choosing a compact representation.

These considerations led to the attempt to simply use the same reconstruction pro-
cedure as for the normal representation, which is described in detail in section 3.6.1.
Figure 3.6 shows the results. From this example (out of several that we have tested the
algorithm with) it can be concluded that this simple-minded reconstruction procedure suf-
fices to fulfill the above requirement. It could certainly be improved by applying iterative
improvement like the one used by Mallat.

3.6.3 Affine Image Transforms

Due to its construction, the continuous wavelet transform allows a simple formula for the
behavior under the affine transformations of image space that constitute its geometrical
group. In other words:

W
(
f(A~x+~b)

)
(~y,~k) = W(f(~x))

(
(A~y +~b,

(
AT
)−1 ~k

)
, (3.18)

if ATA is a multiple of the unit matrix. In two dimensions those matrices are arbitrary
combinations of rotation, scaling and reflection. This yields the following method to apply
such a transform to a representation.

Translation: The translation vector is added to (u1, u2).

Scaling: (u1, u2) are multiplied with the scaling factor, u3 is divided by the scaling factor.

Rotation: The vector (u1, u2) is rotated by the rotation angle, which is also added to u4.
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a) b)
�

c) d)

Figure 3.7: Reconstruction from affine transforms of an image. The representa-
tion as a collection of unit responses is very well suited for creating scaled, rotated and
shifted versions of the image. Note that neither scale factor nor rotation angle need to
suit the sampling of center frequencies.
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Reflection: (u1, u2) is reflected about the axis, the response phase u6 is replaced by
u6 + π.

These steps can be combined in order to apply all combinations of the four transfor-
mations. In order to keep a representation with units centered only within [0, 1) × [0, 1)
all units falling outside this area are discarded.

This easy way to apply geometrical transformations to a representation can eventually
be used for the matching procedure to include scale- and rotation invariance, once the
scaling factor and rotation angle have been estimated somehow. Here we only present the
reconstruction of transformed representations to demonstrate the success of the method
(figure 3.7).
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4. Hierarchical Dynamic Link
Matching

Zwar ists mit der Gedanken-Fabrik
Wie mit einem Weber-Meisterstück,
Wo ein Tritt tausend Fäden regt,
Die Schifflein herüber hinüber schießen,
Die Fäden ungesehen fließen,
Ein Schlag tausend Verbindungen schlägt.

Johann Wolfgang von Goethe, Faust

4.1 Neural Networks

In this section we will give a brief overview of the basics of neural network modeling.
This approach is central to the attempt to describe cognitive capabilities as dynamical
systems. Therefore, it is necessary to outline the building elements that will constitute
our dynamical system.

4.1.1 Dynamics of Model Neurons

The main physiological substrate of the brain consists of neurons or nerve cells. As usual
in science these can be studied on various description levels. Basically, any neuron consists
of a cell body, a complicated branching pattern that receives input from other cells, the
dendrites or dendritic tree and an axon that transports the activity to other neurons. The
research on the functioning of this transport works has revealed a fascinating universe of
molecular channels in the cell membrane that can transport electric activation. Viewed on
this level, a single nerve cell may well have a higher degree of complexity and organization
than a complete computer (disregarding the fact that both terms are pretty ill-defined).
This should be kept in mind when evaluating claims about artificial brains that can soon
be expected. Another fascinating piece of architecture are the synapses that make the
contacts between the axons of sending neurons and the dendrites of receiving ones. These
are complex systems of various chemical and electric processes.

In our context we are not interested in those details but rather in the properties of
networks of neurons. It is clear, that we must abandon nearly all detail about single
neurons in order to study the network effects. All we will keep is the notion of a model
neuron that receives input from a number of other model neurons (eventually including
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Figure 4.1: Some biological neurons. From (Nicholls et al., 1980).
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itself), apply some simple transformation to that input and transport the resulting output
to other neurons, which in turn do the same thing.

The important objects of study then are the connections between the cells and the
transformation inside the cell. The situation is further simplified in the following way:
There is an activity of the neuron which leads to an output signal via a simple nonlinear
function. Neurons are connected by synapses that are characterized by a single number,
their synaptic strength or their synaptic weight or simply weight . If there are n the cells
in a system the weights, in general, can be represented by a n× n matrix. Output values
are transported to other cells via synapses, which multiply them by their weights and thus
turn them into input signals for the other cells. Finally, each cell calculates its activity
from the summation of all input signals by certain dynamics. This model will be put into
formulae in the next subsection. Once the dynamics of the neurons, the nonlinearities and
the matrix of the weights are specified, this describes the behavior of the net completely.
The main issue of neural network research is how to specify the weight matrices in order
to achieve a desired behavior.

Our model neurons will differ from biological neurons in one more way, that has
already been discussed in section 2.4. Their activities may (in principle) take negative
values, which can model the activities of biological neurons only if this activity describes
at least a pair of cells, one of which has an excitatory, the other an inhibitory effect on
their target cells. This is acceptable because it makes the modeling so much easier.

The activity a, the output o and the input (stimulus) s of a model are ruled by the
following dynamical system:

τa
d

dt
a = −a+ s (4.1)

o = ϑ(a) (4.2)

s =
∑

i

W (i)o(i) (4.3)

The summation in (4.3) runs over all neurons that have a forward connection to the
special neuron considered.

The nonlinearity ϑ(x) is supposed to be monotonically increasing and map R into the
interval [0, 1]. Typical choices are the Fermi function

ϑ(a) =
1

1 + exp(−λa)
, (4.4)

which converges to a Heaviside function for λ→∞, or

ϑ(a) =


0 : a < 0
a : 0 ≤ a ≤ 1
1 : a > 1

. (4.5)

The latter is very practical for fast numerical implementation and does not share the
drastic effects of a Heaviside function. Mappings onto R+ like ϑ(a) = max(0, a) are
also in use, but the complete absence of nonlinearities would lead to boring (and useless)
behavior of the models (von der Malsburg, 1973).
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Equation (4.2) needs some further comments because here the first difference between
conventional neural networks and our dynamic networks becomes clear. Depending on
the position in the network, the input s is either a sensory input or a summed output
from other neurons or a mixture of both. Conventional networks, including, e.g., back-
propagation schemes, use the situation where the switching of activities is instantaneous,
or τa = 0 for all units. In this case the resulting network is not really a dynamical system
but only a stimulus-response system that follows the development of the input pattern
without delay and without any internal dynamics. Neural networks of that kind have
been applied successfully to invariant object recognition, e.g. in (Pitts and McCulloch,
1947; Rosenblatt, 1961; Fukushima, 1980). Nevertheless, we will argue in section 4.2 that
this paradigm it too narrow to yield a brain model that could capture the task of object
recognition or solve the correspondence problem under realistic conditions.

4.1.2 Connections Between Model Neurons

In equation (4.3) the connection strengths between model neurons have already been
introduced. A neural network is a directed graph with neurons as vertices and connections
as edges, which are labeled with their synaptic weights. In principle, every network can be
modeled by a complete graph, with a connection between every pair of neurons, because
the non existing edges can be given zero weights. This modeling strategy, however, is
not advisable, because the connectivity of neural nets is usually a limiting factor for
their simulation. Furthermore, connections may have to bear more information than
only a single weight, namely if they are modifiable or not and on which time scales.
This further enhances the storage and computation time problems. For those reasons
predefined structure must be exploited wherever possible.

The most common structure is a network of several layers . These are subsets of
neurons arranged in planes where the connections inside a plane are regular in the sense
that the connection strength between the neurons is only a function of their distance
vector. This has the advantage that these intralayer connections can be modeled by
convolution with a connectivity kernel which is much simpler than having to model an
arbitrary connection matrix. The intralayer connections are usually not modifiable. This
scheme contains the (important) case that the kernels are identically zero, i.e. the layers
have no internal connections at all.

In order to describe neuronal layers, the variables a, o, and s for the single neurons
are replaced by a(~xL), o(~xL), and s(~xL), where ~x denotes the position inside the layer,
and L is a symbol that specifies the layer. According to our general standard, ~xL will be
viewed as continuous or discrete whatever is more suitable. Also we will drop the index
L wherever the layer is clear from the context.

In the following we will be mainly concerned with interlayer connections , i.e. synaptic
connections between two layers. Here, in general, we have to model full weight matrices
which we will write as W (~y, ~x). The activities a(~x) of neurons in one layer serve as inputs
d(~x) for the ones in other layer, here denoted by the variable ~y:

d(~x) =
∫
W (~y, ~x) · ϑ(a(~y)) d2y (4.6)

After the introduction of short-time weights in section 4.2 they will serve as a code for
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image point correspondences in the sense that corresponding pairs of image points will
attain a high weight in their connection, noncorresponding ones will have no connection
or very low weights.

4.1.3 Unsupervised Learning

A simple counting argument shows that the connectivity of the brain can not be completely
determined by genetic information. The number of cells in the cortex has an order of
magnitude of 1010. The genetic code of a human, however, consists of “only” about 109

base pairs and is therefore simply too small to code even for the connectivity between
brain cells, let alone for the corresponding weights.

Beyond this consideration which is contestable from various sides there is plenty of
neurobiological evidence that the development of the brain relies heavily on stimulation
from the environment. This can be shown already on the lowest levels of vision, so there
is hardly any doubt that the same applies to higher brain functions. This statement does
not directly touch the old and heated debate if our very high cognitive and social functions
are dictated by genetic or environmental influences because it is completely beyond the
current reach of neuroscience to follow either trace up to behavior.

During the course of brain development there is usually no agent that would tell
the brain that it is doing the right thing. Most of this developmental learning must
rely on extracting statistical information from the environment, in other words, brains
are probably optimized to deal with regular environments, and to make use of those
regularities. This strategy constitutes a very important evolutionary advantage, because
changes in the environment, i.e. the vanishing of old regularities and the emergence of
new ones, can be very rapid. If the brain structure was stored genetically, only the usual
evolutionary mechanisms could lead to adaptation. If the brain development happens in
close interaction with the environment, one generation can suffice for that adaptation.
This special form of brain development is generally called unsupervised learning , because
no supervisor is necessary to form the brain. (The opposite, supervised learning is used to
name methods that make neural networks behave like a desired function in the stimulus-
response paradigm. This is mentioned only for completeness and is not relevant in our
context.)

The simple cells that have been discussed in detail in section 2.4 present an example
for unsupervised learning. Even though they represent a very early stage of vision and
their function is very similar in all healthy animals of one species experiments show that
they are not hardwired from birth on. There is a certain time during development of
the animal, the critical period , when their orientation selectivity is formed. For kitten
this period ranges from 3 to 13 weeks postnatally. If they are kept in an environment
which lacks variety in orientations and forced not to move around, the cells sensitive for
the absent orientations do not develop. The adult cats will have a “selective blindness”
and are unable to see the orientations they have not learned during their critical period
(Hirsch and Spinelli, 1970; Blakemore and Cooper, 1970).

A dynamical system that models the development of simple cells has been proposed in
(von der Malsburg, 1973). It shows exactly the behavior described above: If stimulated
with a rich set of patterns, the full range of orientation selectivity develops, with a reduced
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set, only a reduced range of orientations is found, although all cells have developed some
specificity.

The obvious question of how such a system can get off the ground at all has a very
simple answer which has been given by Donald Hebb (1949) in a speculative way: The
synaptic weights in the immature system are randomly distributed. Thus any stimulus
leads to a diffuse response in the sense that all target cells react in a mediocre way to
all stimuli. Then the weights of the synapses that connect active feature detectors and
target cells with an activity slightly above average are slightly strengthened. The idea
behind this is that the connections between cells active in response to the same stimulus
are good connections in the sense that they reflect important knowledge about the world
and are worthwhile reinforcing. Put into a differential equation that reads

d

dt
W (n,m) = λW (n,m)o(n)o(m) . (4.7)

This equation leads to the growth of a weight if the two cells n and m connect by the
corresponding synapse are active at the same time. The speed of this growth is governed
by the learning rate λ.

If many stimuli are presented to the net there would be a statistical chance for every
single weight to grow, and all of them would simply explode towards infinity. Therefore,
Hebb’s principle must be accompanied by another one which restrains the unlimited
growth of all synaptic weights. Several authors have applied various principles here,
the simplest include competition among all synapses that either target on the same cell
or originate from the same cell or both. This transcribes to the dynamical system as a
constraint, which, for the three possibilities mentioned, takes the forms:∑

n

W (n,m) ≤ Wmax (4.8)∑
m

W (n,m) ≤ Wmax (4.9)∑
n

W (n,m) ≤ Wmax ∧
∑
m

W (n,m) ≤ Wmax (4.10)

This constraint can, in principle, be enforced by an evolution equation (Eigen, 1971;
Hofbauer and Sigmund, 1988). Such equations describe systems that are self-amplifying
and have to compete with other self-amplifying systems for a limited resource. This would
lead back to a dynamical system without constraints, which would be more convenient for
analytical treatment. As our system is too complicated for analytical treatment, anyway,
we do not need this complication. In our simulations, we will simulate small time steps
of the dynamical system and enforce the constraint by normalization after every step.
Also this formulation is very plausible in the biological sense. The linear dynamics of
link growth is limited by the finite physiological resources of a cell to receive or produce
synaptic connections.

4.2 The Dynamic Link Architecture

We will now return to the problem of invariant recognition. The neural network models
that adhere to the stimulus-response scheme run into problems when they are confronted
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with realistic problems, i.e. real images. The reason for that is that the range of invari-
ances achieved by the brain is so large that it cannot be covered with enough examples
for the network to learn all of them. This can be alleviated by introducing extra neurons
every time a new invariance is needed. This is nicely demonstrated with the neocognitron
in (Fukushima, 1980). However, in order to achieve a realistic system, the amount of new
cells to be introduced to cover the whole spectrum of invariances soon exhaust the total
number of cells available.

The clue to a possible solution lies in a closer analysis of this spectrum. Although there
are many invariances that the brain can achieve it can not achieve them equally well. Some
tasks take distinctly more time than others. This is not described by a structure like the
neocognitron, because (once it has developed to its final state as a pattern recognizer) the
processing time needed to classify an input pattern is practically constant. This leads to
the idea that recognition in the mature system is an active process , a convergence of the
system to an ordered state.

From the vast psychophysical literature scrutinizing the processing times of human
subjects performing recognition tasks we will only sketch one example to back the argu-
ment. The explicit experiments are described, e.g. in (Treisman and Gelade, 1980).

Human subjects were presented combinations of green and red crosses and circles.
Afterwards, the subjects were asked to give statements like “I have seen a red cross in the
left half of the screen and a green circle in the right half.” If the presentation was long
enough, this was an easy task. When the presentation times were reduced below some 50
milliseconds the performance degraded in a remarkable fashion. The subjects could still
decide if they had seen cross and circle or only crosses and that these had the same or
different colors. However, the assignment of color to the cross or circle dropped to chance
level.

This can be interpreted in the following way: Assuming that there are hardwired
detectors for the simple features like “cross” or “circle” or “red” or “green” those probably
do not exist for the combined features “red cross” etc.. Instead, the combination of low
features into higher ones constitutes an active process that takes time, and it takes more
time than a simple, hardwired stimulus-response scheme would require.

Rather than going through more psychophysical experiments we will consult our ev-
eryday experience to convince ourselves that specialized detectors can not exist for all
complex objects. This is because we can recognize new and unusual feature combinations
without any problem. Everybody can recognize a purple cow on the first occurrence even
if neither experience nor evolution had any need to develop neurons responsible for such
a strange creature.

Stimulus-response neural networks cannot account for the experiments described
above. In order to overcome this shortcoming the Dynamic Link Architecture (von der
Malsburg, 1981) postulates that there must be a mechanism that can bind simple features
into complex ones, and that this mechanism should exist on a very low physiological level.
This requires the introduction of a new set of dynamical variables that can code for the
presence or absence of binding between two neurons. The proposed solution consists in
introducing a second set of synaptic weights that are modifiable on the very short time
scale of cognitive processes and are constrained by the long-term weights (that code the
long-time experience). They will be called short-time weights or dynamic links . For no-
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tational convenience the symbols W (n,m) and W (~yL, ~xL) will be used for these weights
in the following, the long-term (permanent) weights will be denoted by Wp.

For a complete description, the dynamics of these short-time weights must be specified.
This choice is very much constrained by the requirement that the dynamics of a synapse
can make use only of dynamic variables whose values are accessible to that synapse,
namely the activities of the pre- and postsynaptic cells and the distribution of all the
synapses on either cell. Throughout the rest of this chapter, the same equations that
have been introduced above for unsupervised learning, namely equations (4.7) and one
out of (4.8), (4.9), and (4.10), will govern these dynamics, with the extra constraint

W (~yL, ~xL) ≤ Wp(~yL, ~xL) . (4.11)

To date a problem with this postulate is that the physiological basis is not very clear.
This leads to some freedom in the choice of dynamics. So some authors find it preferable
to use rapidly switching gating neurons instead of dynamic links (Hinton and Lang, 1985;
Phillips et al., 1988; Olshausen et al., 1993). This leads to the need for more neurons,
but the cell counting techniques are too poor to allow an empirical decision between these
theories. From the theorist’s point of view, this debate is not too important, because the
central issue is the dynamics of the connections and not their physical basis. Of course,
the latter would constrain the first, but the required biological data is not available yet.

We close this section by summarizing the fundamental principle of the dynamic link
architecture: Additional to the long time synaptic weights there are short-time synaptic
weights that are dynamic variables with time constants in the same order of magnitude
as the cell activities. Their strengths code for the degree of binding that exists between
the neurons involved. Their dynamics are ruled by short-time correlations of neuronal
activities and competition among each other. The complete system converges rapidly from
an unordered initial state to a highly organized state which corresponds to a percept.

4.3 Dynamic Link Matching for Object Recognition

In this section we review a first dynamical system that can solve the correspondence
problem on the basis of the Dynamic Link Architecture. It has been described under
various aspects and with varying detail in (von der Malsburg, 1988b; Lades et al., 1993;
Konen and Vorbrüggen, 1993; Konen et al., 1994).

The system architecture consists of two neuronal layers, an image layer and a model
layer, both of which are equipped with feature detectors.

The interaction kernels that describe the intralayer connections have the form:

κ(~x) := α exp

(
−~x

T~x

2ρ2

)
− β , 0 < β < α (4.12)

This means that neighboring cells have excitatory (positive) connections while distant
cells have inhibitory (negative) ones.

Then the dynamics of a single layer attain the form

d

dt
a(~x) = τ−1a(~x) + (gκκ(~x)− cg) ∗ ϑ(~x) + s(~x) , (4.13)
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where s(~x) denotes a possible input to the layer.
It can be shown that if the input is small this equation converges to an asymptotically

stable state where only one disc-shaped region of the layer has positive activity (Amari,
1989; Konen et al., 1994). The size of this region is governed by the parameters α and
β. For brevity we will refer to this region as a blob in the following. The location of the
blob is determined by asymmetries in the initial conditions. As a consequence, only the
cells inside the blob have a nonzero output. A spatially constant activity also constitutes
a stationary state of the system. However, this is an unstable one and can be avoided by
adding an arbitrarily small noise term.

For the whole system two such layers are interconnected by dynamic links in the way
that each cell in the image layer has a connection to all cells in the model layer. If the
weights are sufficiently small (which is easily regulated by adjusting Wmax) both layers
still adhere to the above dynamics and form blobs. Once two blobs are formed the weight
dynamics are updated. For solving the correspondence problem, not only the activities
of the cells contribute to the weight modification but also the feature similarities. The
growth rate of a weight is proportional to the product of both. The appropriate formula
reads:

d

dt
W (~y, ~x) = λW (~y, ~x)T (~y, ~x)o(~y)o(~x) . (4.14)

The growth is again limited by one of the equations (4.8), (4.9), or (4.10). The matrix
T codes the feature similarities. The exact features are not of interest here, the ones
defined in (7.2) with the similarity function from equation (7.3) are well suited (Konen
and Vorbrüggen, 1993).

This system solves the correspondence problem in the following way: The similarity
matrix T has many local maxima, corresponding to the feature ambiguities which turn
the correspondence problem into a problem. The blobs in each layer now constrain the
area where the weights can grow in the way that only neighboring cells contribute to the
growth of weights. This disambiguates the feature correspondences if the blobs are small
enough.

The whole process of blob formation and weight update is repeated many times with
random noise as initial condition. Then the blobs statistically have covered all image loca-
tions and all model locations. The growing weights, however, influence the blob formation
in the model layer because corresponding areas get a higher and higher probability to
be simultaneously active in a blob pair. This constitutes a self-organizing system that
indeed converges to the desired one-to-one mapping between corresponding image and
model points.

The system described in this section has two shortcomings. First, the resetting of the
blob formation has to be done by some control unit which is not part of the dynamical
system. Second, many iterations of blob formation and weight update must be applied
until the final mapping is achieved. The first shortcoming will be remedied by the in-
troduction of running blob dynamics in section 4.5, the second will be alleviated by a
hierarchical scheme that starts by establishing rough correspondences on small layers of
low-frequency features and then successively refines that mapping using the information
from higher frequency bands.
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4.4 The Need for Hierarchical Processing

The use of pyramidal representations is often disparagingly referred to as being but a
technical trick to save computer resources and having no significance for the description
of biological systems. The main argument is that in such systems all processing is so highly
parallel that considerations of processing time are pointless. This is certainly the case for
recognition systems such as the neocognitron (Fukushima, 1980; Fukushima et al., 1983)
which, after the training phase, are hardwired, simple stimulus-response systems. In such
a system implemented on completely parallel hardware, the processing time should indeed
only depend on the time constants of the neurons and the propagation times. If we adopt
the view that recognition needs an active matching process as proposed by the Dynamic
Link Architecture, the situation is quite different. The only way we see to circumvent
the feature ambiguities by introducing topological constraints is to work off the various
locations sequentially. This requires more processing time if the neuronal layers involved
get larger.

If a rough mapping can be established on the basis of few cells and the refinement steps
already can build on this rough approximation to the final mapping, some parallelity can
be reintroduced. This is necessary, because human object recognition can be, under the
right circumstances, extremely fast. Experiments that are currently carried out by Irving
Biedermann at the University of Southern California in Los Angeles suggest that object
recognition is possible with a presentation time shorter than 70 milliseconds (Biederman
et al., 1994). Although it is not clear that the complete recognition process is finished
within the presentation time the brute force dynamic link matching gets its problems
when realistic time constants are incorporated.

Psychophysical experiments by (Watt, 1987) demonstrate that coarse to fine processing
indeed does occur when a stimulus is presented. Experiments in our institute have shown
that for the special case of stereo matching the visual system can make use of coarse-to-fine
strategies but does not always do so (Mallot et al., 1994).

The experiment proposed in figure 4.2 shows that recognition can be achieved on the
basis of low-frequency information but is severely impeded if information on higher levels
contradicts the right interpretation. In our context this can be interpreted as follows. A
mapping process is initialized on a low frequency level and successively refined to higher
ones. In the low-pass filtered image soon no further levels are available and the result
is taken for a recognition. In the complete image, the patch boundaries introduce high
frequency components that have nothing to do with the face. The visual system, however,
doesn’t notice the trick and recognizes a pattern of squares with different grey values.
This is certainly not the only possible interpretation. Experiments would be interesting
that explore the recognition of the unfiltered image with very short presentation times.
Unfortunately this sort of experiments is probably hard to do once the subjects know the
trick.

There is evidence that the dynamic link matching as well as its algorithmic caricatures
(see sections 4.3, 7.1, 7.2.1, and chapter 5) receive much of their power from the use of
local feature vectors. This means that the local elements of each of the two layers of the
system described in section 4.3 must contain as many feature detectors as the length of
the vector requires, and those must have one-one connections between the layers. In order
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Figure 4.2: Experiment for multiresolution recognition. If watched from usual
reading distance this person cannot be recognized. Introducing low-pass filtering by
squinting or moving it to a distance of several meters from the eyes can lead to recognition.
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for size-invariant matching to be possible this connectivity must extend to connections
between each feature detector and the corresponding ones on all different scales. This
is quite a lot of neuronal machinery, and it seems logical, within the framework of the
correlation theory, that part of it is not hardwired but worked off sequentially. This is
also proposed by the model presented here. The feature vectors include only the various
directions on one scale, the different scales are treated sequentially.

There is another argument from the computational side. Due to the partially se-
quential nature of the dynamic link matching it is not only technical but applies also
to the biological model. The matching in the dynamic link framework takes processing
times proportional to the number of connections between layers if strict one-one mappings
are required. This means a computational complexity of n4 with n the linear size of a
layer (Behrmann, 1993). This argument can be put the other way around: Short process-
ing times on high resolution layers will produce spatially extended mappings. These may
be viewed as an interpolation of more precise mappings on subsampled layers.

As a final argument I should like to turn the tables and state that the view of neuronal
tissue as continuous fields is only a technical trick, because mathematics (or theoretical
physics) without infinity is no fun at all. The brain is obviously (spatially) discrete, and
there is no reason to believe that nature should waste resolution on information in low
frequency bands. Although the statistical data about the distributions of receptive field
properties in primary visual cortex seems to be too sparse to make an empiric judgment
here, this sort of thrift has been established in the optic nerve (Wässle et al., 1986).

4.5 Layer Dynamics

The dynamics in this section follow the general model for the activity of neural lay-
ers (Wilson and Cowan, 1973; Amari, 1980). The special setup with the self-inhibiting
and reciprocally connected layers has been developed by (Wiskott and von der Malsburg,
1994). There is so far no complete analytical treatment of these dynamics so we will
restrict ourselves to a qualitative description and simulations.

The general form of dynamics for a neuronal layer will be the following:

τa
d

dt
a(~x) = −a(~x) + cκ (κ(~x)− cg) ∗ ϑ(a(~x)) + cc − chh(~x) + css(~x) + cξξ (4.15)

d

dt
h(~x) =

{
τ−1
h+ (a(~x)− h(~x)) : a(~x) > 0
τ−1
h− (a(~x)− h(~x)) : a(~x) ≤ 0

(4.16)

The single terms in the activity dynamics have the following meaning. In the absence
of any connections (all terms beside −a(~x) are equal to zero) the activity decays to zero
with the time constant τa. The kernel κ represents the internal connections in the layer in
accordance to equation (4.3). The convolution represents the notion that the connection
strength between two layer neurons depends only on their distance vector, not on their
absolute positions. The treatment of the boundaries in this convolution requires extra
consideration. The constant cg reflects a global inhibition. It models a (linear) cell that
collects the outputs from all layer neurons and inhibits all of them. The constant cc is an
input from an extra cell that has a constant activity. Beside the form of the kernel cg and
cc are the most important parameters to get a desired behavior from the dynamics.
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Figure 4.3: Layer dynamics on level 0. As a visualization of the dynamic activity
on layer zero this figure shows six snapshots of a moving blob spaced by 10 simulation
time steps.

The term chh(~x) models a delayed self-inhibition of the layer neuron, whose dynamics
are described by equation (4.16). It converges to the activity itself with time constants
τh+ for positive activities and τh− for negative activities. These different time constants
must be interpreted keeping in mind that the positive or negative activities are in fact a
simplified description of several cells (see section 2.4 for a closer discussion).

The input s(~x) comes from the activities in a different layer, here denoted by the
variable ~y, and connected by the weight matrix W :

s(~x) =
∫
W (~y, ~x) · ϑ(a(~y)) d2y (4.17)

For all our simulations ϑ(a) will be the function specified in equation (4.5).
ξ is a noise term which is meant to describe spontaneous activities of neurons and

the influence of possible connections from other neurons which are not part of the model.
Technically, it is needed for symmetry breaking between different possible solutions. Its
presence in the model shows the robustness of the dynamics. This is important for a
biologically plausible model, because in the brain the subsystems are certainly not as
nicely separated that other processes do not influence the neurons at all.

Even in the absence of external input cs = 0 these layer dynamics can show a universe
of different behaviors. We will list only some of them that are used in the hierarchical
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Figure 4.4: Layer dynamics on level 1. On the higher levels several blobs move
coherently across the layer to strengthen links that have good feature similarity and are
supported by the links from level zero. The six snapshots are 5 simulation time steps
apart.

model. First we qualitatively describe two important cases which converge to a stationary
state.

One stationary blob If the kernel is chosen to be a Gaussian centered at zero, the
global inhibition cg and the constant input cc take suitable positive values, and self-
inhibition as well as the external input are zero, the system converges to a stationary
blob like already discussed in section 4.3.

Several stationary blobs Replacing the Gaussian kernel (and the global inhibition) by
a difference of Gaussians which has the same form as in equation (4.24) leads to more
complicated patterns. Depending on the parameter settings those include stripes of
positive activity or a multitude of small blobs in a relatively regular arrangement.
It is the latter case that will be of interest to us.

The parameter settings with kernels centered at zero and without self-inhibition con-
verge to steady states and are not useful for a system which actively covers all regions of
image and model in order to establish strong links between corresponding points.
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There are two quite different approaches to make the self-organized patterns move. The
first one is the delayed self-inhibition (ch > 0). Once a blob has formed the self-inhibition
builds up and keeps it from staying in the same position. The layer dynamics, however,
insist on building up the blob. Two different things can happen. The first possibility is
that the blob moves smoothly to a neighboring location. This is the case in the complete
absence of external input to the layer. The direction of the movement is arbitrary, i.e.
influenced only by the noise or the external inputs. If the input is inhomogeneous it
also occurs that the blob decays and immediately builds up in a different location. Both
behaviors will be important. An in-depth discussion of this dynamics can be found in
(Wiskott and von der Malsburg, 1994).

The second possibility uses interaction kernels whose maximum is shifted away from
the zero position. This shift does not influence the shape of the blob pattern. Due to the
fact that an active cell excites its neighbor more than itself, the pattern will move in the
direction of the shift vector. This way of forcing a pattern to move across the layer is
more appropriate in the multiblob case, because it leads to a coherent motion of all blobs.

The first kind of dynamics (one blob driven by delayed self-inhibition) will be used on
level 0 to find the subset of the image that corresponds to the model. The second kind
(several blobs driven by a shifted kernel) governs the higher levels.

4.6 Weight Dynamics Between Two Layers

Local elements of two layers of the same resolution level are interconnected by a pair of
links. These are certainly not simple synapses but sets of synapses that interconnect the
cells constituting the local elements. Nevertheless, they are treated as simple dynamic
variables.

As described in section 4.1.3 their dynamics are a combination of Hebb’s rule and
competition on both source and target cells.

τW
d

dt
W (~x, ~y) = W (~x, ~y) Corr(~x, ~y) , (4.18)∫

W (~x, ~y) d2x ≤ 1 , (4.19)∫
W (~x, ~y) d2y ≤ 1 . (4.20)

The correlation Corr is not a correlation in the mathematical sense but a measure
for the coherent activity of the neurons as well as their attached feature detectors. This
means it incorporates the feature similarity as well as the synchronicity of activities. The
feature vector is the vector of all response amplitudes of units located at the respective
position and having a center frequency belonging to the actual level. We give only the
formula for the feature similarities here, its form will be discussed in detail in section 5.2.1.

S(~f,~g) :=


0 : ~f = ~0 or ~g = ~0(

~fT~g

|~f ||~g|

)4

: otherwise .
(4.21)

This definition differs from the one used in chapters 5 and 6 only in the exponent 4.
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a) b)
�

c) d)

e) f)

Figure 4.5: The location of the layer neurons. The black spots mark the location
of the layer neurons in image and model, respectively. a) and b) show the image rep-
resentations on level 0 and 1. The model representation shown in c) and d) was used
for the simulation with identical pictures, the one in e) and f) for the simulation with
different ones. The layers are rectangular, those neurons without a location in the model
representation are part of the layer dynamics but do not make or receive dynamic links.
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This exponent would not be absolutely necessary here, but it makes the maxima in the
similarity landscape sharper, and the dynamics can converge faster.

4.7 The Complete Model

After having discussed previous models for dynamic link matching for the solution of
the correspondence problem and the qualitative properties of the dynamical systems in-
volved we will now present a complete model that finds correspondences hierarchically, i.e.
starting with low frequency information and low resolution and then refining the found
mapping to higher resolution using the next frequency level. This model can be extended
to several frequency levels — as a proof of concept and given the limitation of computa-
tional resources we restrict ourselves to the initialization and one refinement step for the
actual simulations.

Starting from the representations described in chapter 3 each frequency level is rep-
resented by a pair of model and image layers which are interconnected by a full matrix
of dynamic links in each direction. This means that each feature vector from the levels
of a representation is assigned a layer neuron with the capability to connect via dynamic
links to the respective other layer. If ch 6= 0, which will be the case in the layers be-
longing to the lowest frequency level, this layer neuron comes equipped with a pair of
neurons that mediate the delayed self-inhibition. For simplicity of simulation, the layers
are rectangular, even if some locations in that rectangle do not have a feature vector due
to background suppression or amplitude thresholding. Those locations take part in the
layer dynamics but can not build dynamic links. The layers for the simulations are shown
in figure 4.5.

The coupling of the levels is done in the following way. The link dynamics on level
n + 1 are constrained such that the links can can only grow once some link on level n
exceeds a threshold. Then their growth rates are determined by a combination of the
correlations of their local elements and the correlated activity of the topology cells on
level n.

4.7.1 Rough Mapping with low frequencies

The layer dynamics on the lowest frequency level follow equations (4.15) and (4.16). The
self-inhibition is positive, the kernel a Gaussian centered at zero:

κ0(~x) := exp

(
−~x

T~x

2ρ2

)
(4.22)

The width of the kernel and the global inhibition are adjusted such that a blob results with
an area of roughly one quarter of the size of the model layer. Due to the self-inhibition
these blobs move across model and image layer, respectively. In the absence of strong
dynamic links their movements are not correlated.

The link dynamics are governed by equation (4.18), the correlation on this level takes
the form:

Corr0 (~xn, ~yn) = o (~xn) o (~yn) + cS
1

9

∑
3×3

S
(
~f (~xn) , ~f (~yn)

)
, (4.23)
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where the sum runs over a 3× 3 neighborhood.
In the beginning both blobs move freely and independently on their corresponding

layers. Correlations make some links between the layers grow, others decay. After some
time, the links have become strong enough that the image blob can only exist inside the
region which corresponds to the model. From then on, the blob decays outside this region
after a while and spontaneously reforms inside the region. When the links have grown
even stronger, the image blob does not leave the region any more, and the correct links
grow until a one-one mapping has been reached.

4.7.2 Mapping Refinement

For the layer dynamics on the nth level the interaction kernel is a difference of Gaussians
with a maximum slightly off zero:

κn(~x) = σ− · exp

(
−(~x− ~x0)

2

2σ2
+

)
− σ+ · exp

(
−(~x− ~x0)

2

2σ2
−

)
. (4.24)

This leads to the desired behavior of several blobs moving across the layer. If ~x0 is chosen
appropriately, the blobs reach every point of the layer. This choice is, of course, dependent
on the layer size and, consequently, on the level number n.

The link dynamics are partly the same as on the level n − 1. The difference is that
they are influenced by the links on that level. This is necessary for these links to refine
the mapping built on the lower level. The influence is twofold. The value of the maximal
link on level n−1 must reach a threshold ct to trigger the link dynamics on level n. After
this, the correlation on level n is given by a weighted sum of the correlation of the outputs
on level n, the feature similarities on the same level, and the correlation of the outputs
on the lower level n− 1 of those cell pairs, whose dynamic link exceeds the threshold ct.
The latter is accounted for by the Heaviside function Θ.

Corrn (~xn, ~yn) = o (~xn) o (~yn) + cSS
(
~f (~xn) , ~f (~yn)

)
+clowΘ (W (~xn−1, ~yn−1)− ct) o (~xn−1) o (~yn−1) . (4.25)

From the start of the simulation the blobs wander across the model and image layer.
Once the mapping on level n − 1 has developed far enough for the first link to reach
threshold their links start developing, too. Only the ones that connect neurons with good
feature similarity and good correlated activity on the same locations on level n − 1 are
competitive and eventually reach threshold to trigger the link dynamics on the next level
up.

4.8 Simulations

The complete model has been simulated using an Euler discretization of the dynamical
system on levels 0 and 1. The time discretization has been ∆t = 0.3. The noise term
has been modeled by random numbers with the appropriate prefactor 1/

√
∆t. The link

dynamics, which use most of the simulation time have been updated only every third time
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Figure 4.6: The development of the dynamic links for identical images. In
the beginning (top two figures) the links reflect only the feature similarities, which are
highly ambiguous. After 270 time steps the lower level has sorted out the correct corre-
spondences, and the first links have grown above the threshold where they are allowed to
influence the higher frequency level. In the bottom figures (a snapshot after 1000 time
steps) the links on both frequency levels are restrained to the correct correspondences. See
section 4.8.1 for an explanation of the visualization method used for the link structures.
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step. The product of the outputs of the topology cells, which is the time variant part of
the correlations driving the dynamics have been added up over these three steps.

The simulations started with 100 time steps for the layer dynamics to reach their
behavior from an initialization with random numbers between 0 and cξ. Then the link
dynamics were turned on. The convolutions that model the intralayer connections were
simulated with zero padding on level 0 and with wrap around on the higher levels.

The links were initialized to the feature similarities divided by the number of elements
in the larger layer. Thus, they were already primed a little bit towards supporting the
ones with good similarities. To avoid underflow and the occurrence of links with strength
exactly zero that are unable to grow anymore the links always keep a minimal value of
2−7/N with N the total number of links between the respective layers.

The inequalities (4.19) and (4.20) have been enforced by dividing every link by the
total of incoming (outgoing) links after each update step of the link dynamics, if this total
exceeded the threshold 1.

4.8.1 Visualization of the Link Structures

The distribution of links between two layers is a four-dimensional structure which is hard
to visualize on a screen or on paper. Therefore, they are represented as follows. Both layers
are cut up into horizontal lines, which are then reassembled as a long, one-dimensional
array, starting with the bottom line and ending with the top one. The links between
these arrays form a two-dimensional matrix. Their values can then be represented as grey
values, the minimal value in the matrix corresponding to white, the maximal one to black.

Figures 4.6 and 4.7 show such link matrices. In order to make the evaluation (a little)
easier the single horizontal lines have been separated by black lines. Thus each little
rectangle contains the links between one line of the model layer and one of the image
layer. A one-one mapping between a model line and a contiguous part of an image line
shows up as a diagonal within the rectangle.

4.8.2 Choice of Parameters

Here we present the complete set of parameters that led to the results described in this
chapter. The behavior of the system allows considerable changes before it changes quali-
tatively.

For the layer dynamics on level 0 the interaction kernel was a Gaussian of 0.8 in width
(measured in units of pixels). The other parameters were:

τa = 1 (4.26)

cκ = 3 (4.27)

cg = 0.015 (4.28)

cc = 0.1 (4.29)

ch = 1.2 (4.30)

cs = 0.8 (4.31)

cξ = 0.01 (4.32)
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Figure 4.7: The development of the dynamic links between different images.
For different images the feature ambiguities are, of course, worse than in figure 4.6. As a
consequence, the network takes more time to establish the correct correspondences, and
some erroneous correspondences survive. The link matrices shown are the states at time
steps 0, 390, and 1000. See section 4.8.1 for an explanation of the visualization method
used for the link structures.
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τh+ = 1 (4.33)

τh− = 0.3 . (4.34)

The link dynamics on level zero are influenced by the relative weight of the feature
similarity cS and the learning rate τW . The values for those are:

cS = 1.5 (4.35)

τW = 0.1 . (4.36)

On level 1 the interaction kernel was a difference of Gaussians with σ+ = 1.5 and
σ− = 2.0. The coordinates of the maximum were chosen to be 0.3 and 0.1 in horizontal
and vertical direction, respectively. The delayed self-inhibition was turned off (ch = 0),
thus the constants τh+ and τh+ do not appear in the parameter list:

τa = 1 (4.37)

cκ = 3 (4.38)

cg = 0 (4.39)

cc = 0 (4.40)

ch = 0 (4.41)

cs = 3.5 (4.42)

cξ = 0.01 . (4.43)

The definition of the correlation on level 1 includes the threshold ct for the links on
the lower level and the strength of the influence of the lower level clow. The complete list
of parameters here is:

cS = 1.5 (4.44)

τW = 0.1 (4.45)

ct = 0.5 (4.46)

clow = 1 . (4.47)

4.9 Results

Figures 4.6 and 4.7 demonstrate that the dynamics described above manage to solve the
correspondence problem on the basis of the model and image representations of chap-
ter 3. The results are perfect when model and image are taken from identical pictures
(figure 4.6). Due to the massive feature ambiguities this is not as trivial as it may sound.
For different pictures the refined mapping still contains some erroneous links (figure 4.7).
The reasons for that will be discussed below.

The system has the following generalizations and improvements compared with other
models for dynamic link matching, which are described in (Konen and Vorbrüggen, 1993;
Rinne, 1994; Wiskott and von der Malsburg, 1994). First it is able to deal with a struc-
tured background. This is very important for a model to work under realistic circum-
stances. The other models only work with layers of equal size and therefore get severe
problems if the backgrounds are different in model and image.
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Secondly, the hierarchical structure leads to shorter convergence times. The dynamics
on the lowest level can converge relatively rapidly because the layer sizes are small. On
the larger layers assigned to the higher levels the longer convergence times are shortened
by parallel sorting out of suboptimal correspondences in the multiple blob dynamics.
Due to the fact that the link dynamics on the higher levels are triggered a considerable
amount of time before convergence on the lower level (i.e., when the first link reaches half
its maximal value) the link dynamics on the different levels run partly in parallel which
reduces the convergence time further. The two intermediate states in figures 4.6 and 4.7
show that the link structure on level 0 still changes substantially when the dynamics on
level 1 have already started.

Thirdly, it has been shown that the information on the lowest frequency level suffices
to obtain a coarse initialization of the model-image correspondences. Consequently, the
model works in accordance to the experiment described in section 4.4 and thus captures
at least some properties of human visual cognition.

It can be concluded that the goal to build a dynamical system which uses dynamic
links on the basis of short-time correlations and does not show the limitations of earlier
systems concerning background influence and convergence time has been reached.

Some minor shortcomings of this system remain to be discussed. In the case of different
images (figure 4.7) some erroneous links remain on level zero. This is mainly a problem of
the layer dynamics, because the multiple blobs on this layer are not suppressed in areas
without correspondence. Some further research will be necessary to find layer dynamics
which produce multiple moving blobs and a possibility to suppress them in areas already
ruled out by the link dynamics on the lower level.

Also the link distribution does not show the desired clear diagonals within all the little
rectangles. This is partly a (desired) consequence of distortions between the pictures. A
major reason for the weaker performance, however, is that excellent correspondences can
not be established because the sampling is too sparse. If the best correspondence to a
model point would lie between four image points weaker links will establish to all of these
points. Nevertheless, the dynamics are able to reduce the initial ambiguities to a relatively
ordered state. In the next chapter we will find an elegant way to circumvent the problem
of the sparse sampling by using the phase information of the feature vectors. However, it
is not clear yet how this phase matching can be carried out by neural dynamics.
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5. Algorithmic Pyramid Matching

Du hast wohl recht; ich finde nicht die Spur
von einem Geist und alles ist Dressur.

Johann Wolfgang von Goethe, Faust

5.1 Matching of Phase Space Molecules

In this chapter we will abstract from the self-organizing machinery and drop the possibility
of keeping several links active from the same model location. This is motivated by the fact
that using sequential workstations the self-organization cannot exhibit its full power and
simulations are too slow to exploit the mappings for recognition out of a large database.

The basic task executed by the combined blob/weight dynamics is to find the location
in the image where the configuration of features is identical (or at least similar) to the
configuration of model features highlighted by the blob. In computer vision this problem
is commonly solved by a procedure called template matching, which will be described in
section 5.2.

Although solving the correspondence problem would mean to find the corresponding
pairs of phase space atoms this cannot be achieved by comparing the atoms alone, because
there is too little information in a single (scalar) response to disambiguate between many
possible pairs. Therefore, matching must rely on suitable phase space molecules. One
possible choice of molecules are the jets described in section 7.1.2. Here we will use smaller
ones that are restricted to center frequencies of a fixed length. The great advantage of
those is that for larger frequencies their spatial extent gets smaller and smaller. Therefore,
moving up gradually with the center frequency, they lead to very good approximations of
spatial one-one mappings.

If we work with a uniform sampling set (which is the case for single frequency levels)
or simple thresholding a small local feature vector describes the texture or the image
structure close to the corresponding point. The matching procedure amounts to finding
corresponding texture elements. This cannot be the most general recognition scheme
because it would completely fail in the absence of texture. Nevertheless, it is sufficient for
human faces, and we will study its performance in detail. For applications with object
classes with little texture, the choice of molecules as well as the local similarity functions
must be modified, but it can be speculated that the dynamic link matching as well as the
matching described here would work equally well. For the dynamic link matching this
has been partly shown in (Rinne, 1994).
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5.2 Template Matching

In this section we will reduce the segmentation and refinement steps of the matching
procedure to the central mechanism of template matching, which can be well formalized
and easily and efficiently implemented. The task is to find a copy of a small pattern (a
template) in a larger function f , which will be referred to as data in the apparent absence
of a better term. A template t(~x) is an arbitrary L2-function with finite support, the
corresponding data any L2-function. What is required is a displacement vector ~y such
that:

t(~x− ~y) 6= 0 =⇒ f(~x) = λt(~x− ~y) (5.1)

Allowing an arbitrary factor λ gives invariance under global changes in contrast.
Two functions are equal up to the constant factor λ if and only if their normed scalar

product is equal to one. This property is applied to the template and the restriction of the
data to the support of the shifted template. To ensure the latter, f must be multiplied
with the characteristic function of the support of t(~x − ~y). This can be omitted in the
scalar product but not in the norm of f in the denominator. Thus, we define the following
function:

S(f, t)(~y) =
〈f(~x) | t(~x− ~y)〉~x

‖t(~x)‖~x ·
∥∥∥f(~x)χsupp(t)(~x− ~y)

∥∥∥
~x

. (5.2)

Now, condition (5.1) is fulfilled if and only if S(f, t)(~y) = 1 for some ~y. In real-world
applications this equality will never be exact. Nevertheless, S(f, t)(~y) can be used as a
similarity function. Its maximum (a value between −1 and 1 and close to 1 in the presence
of a reasonable match) reflects the maximal similarity of the template to a part of the
data. We define as template matching any procedure which delivers the displacement ~y
(or possibly several of them) where S(f, t)(~y) achieves its maximum. All subtleties about
compact domains or the like to guarantee the existence of such a ~y will be disregarded
because finally all this will be applied only to discretized domains.

The use of the scalar product here results from the necessity to derive a global similarity
measure from the local similarities given by the simple product of the function values.
From this point of view the idea of template matching can be easily extended to compare
vector-valued functions by first defining a local similarity function Sloc between the vectors,
extending this to a modified scalar product and then applying the same formula.

5.2.1 Local Similarity Function

For template matching purposes throughout this work the similarity between two vectors,
or the pointwise similarity of vector-valued functions will be defined as follows:

Sloc(~f,~g) =

 0 : ~f = ~0 or ~g = ~0
~fT~g

|~f ||~g| : otherwise .
(5.3)

The scalar product in the numerator is a straightforward extension of the simple
product between real (or complex) numbers. The normalization is motivated by the
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following properties which hold for any vector ~g:

Sloc(~g,~g) =

{
0 : ~g = ~0

1 : ~g 6= ~0
. (5.4)

Furthermore, two nonzero vectors are equal up to a constant factor if and only if their local
similarity is equal to one. Thus, two vector-valued functions are equal up to a spatially
variant factor if and only if the local similarities are equal everywhere on the intersection
of the supports of their moduli. This makes some things a lot easier. The possible factors
allow for local contrast changes and alleviate illumination problems.

5.2.2 Multidimensional Template Matching

In order to transfer equation (5.2) to the multidimensional case the pointwise product
used in the scalar product of two functions must be replaced by Sloc. This means that
the numerator of the right hand side in equation (5.2) takes the form:

∫
Sloc

(
~f(~x),~t(~x− ~y)

)
d2x . (5.5)

Using the fact that the norms in the denominator are the scalar products of the
respective arguments with themselves, the first one turns into:

∫
Sloc

(
~t(~x),~t(~x)

)
d2x (5.6)

=
∫
χsupp(|~t(~x)|) d

2x . (5.7)

This equality is a consequence of property (5.4) and shows that the first norm in the
denominator is the size of the area where ~t(~x) is nonzero.

The second norm in the denominator of equation (5.2) turns into:

∫
Sloc

(
~f(~x)χsupp(|~t|)(~x− ~y), ~f(~x)χsupp(|~t)|(~x− ~y)

)
d2x (5.8)

=
∫
χsupp(|~t(~x−~y)||~f(~x)|) d

2x . (5.9)

This term is identical to the size of the area where the shifted template and the corre-
sponding values of ~f are nonzero.

Assembling the terms (5.5), (5.7), and (5.9) we are ready to define the procedure of
multidimensional template matching, or MTM . It consists of finding the displacement ~y
(or possibly several of them) where the following function achieves its maximum:

S
(
~f,~t
)

(~y) =

∫
Sloc

(
~f(~x),~t(~x− ~y)

)
d2x∫

χsupp(|~t(~x)|) d
2x ·

∫
χsupp(|~t(~x−~y)||~f(~x)|) d

2x
. (5.10)
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5.2.3 Implementation of Multidimensional Template Matching

There are several efficient methods for the implementation of (scalar) template matching,
including FFT-methods and gradient-based methods. In our case, the templates as well
as the corresponding data will be relatively small (see sections 5.3.1 and 5.3.2). As
a consequence, it is sufficient to find the optimal shift vector by exhaustive search, i.e.
the template is positioned at every possible location within the given discretization, the
similarity evaluated and the optimal shift determined.

If (for an application) the initial estimation of the mapping has to be carried out on a
much larger data area, more sophisticated methods for the matching may be considered.
On the other hand, this matching constitutes only one crude cue for the segmentation
task; for recognition procedures supposed to work well in large images under realistic
conditions many segmentation cues must be combined into one powerful segmentation
method to precede any attempt to the solution of the correspondence problem. This is
not our task here, for the description of such a system, which can be easily combined with
the procedure described here, the reader is referred to (Vorbrüggen, 1994).

5.2.4 Choice of Multidimensional Templates

As pointed out at the beginning of this chapter the scalar responses of scale space atoms
do not suffice to disambiguate between the many possible correspondences. Obviously,
the use of phase space molecules with vectors of responses will, at least statistically,
alleviate the problem. This made it necessary to extend the notion of template matching
from scalar-valued functions to vector-valued ones. Here we will define explicitly how the
multidimensional templates are retrieved from representations as defined in chapter 3.
Given a representation R of either an image or a model ~h(~x) shall be the vector of all
complex unit responses located at ~x. This means, that the two frequency components
are, for notational simplicity, mangled into one single component. How this mangling is
done is of no importance, because all our further manipulations will be invariant under
permutation of components. However, it is of course important that it be done in a
consistent way in both image and model representation. This implies that the components
must cover all the center frequencies present in image or model representation, if some of
them should be missing from either one.

As a consequence of this definition there will possibly be undefined components in
~h(~x). Good care has to be taken of the treatment of these missing components. In our
implementation, they will be coded as having a response amplitude which is precisely zero.
This is possible only because the amplitudes are nonnegative and amplitudes close to zero
have been eliminated (see section 3.3), and therefore makes the matching procedures less
general than they ought to be. Nevertheless, special treatment of those components, e.g.
as NaNs (not a number) would have increased the programming effort as well as the
execution times by untenable amounts.

In the following, the complex vectors ~h(~x) will again be separated into amplitude

and phase, these will be referred to as A(~h(~x)) and P(~h(~x)). With all the mentioned
precautions , these are well-defined entities for all representations and for each ~x which is
part of the representation. For other values of ~x A(~h(~x)) and P(~h(~x)) will be zero.
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a) b)
�

c) d)

Figure 5.1: Mappings on the lowest level.
(
|~k| = 0.4

)
a) and b) show the mapping

points from the MTM, in model and image. In c) and d) the phases have been matched
and the points with poor similarity have been discarded from the mapping. The mapping
from c) to d) is used for further refinement.
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The representation of the local feature vectors as amplitude and phase naturally leads
to the introduction of two local similarity functions. The first one SA compares only the
amplitudes and is used for the MTM-procedures. Following equation (5.10) it is defined
as follows:

SA
(
~h(~xM),~h(~xI)

)
:=

〈
A(~h(~xM))

∣∣∣ A(~h(~xI))
〉

∥∥∥A(~h(~xM))
∥∥∥ · ∥∥∥A(~h(~xI))

∥∥∥ . (5.11)

The second one SP compares the amplitudes and the phases and will be used to evaluate
the actual similarities of mapped point pairs. SP will be defined in equation (5.36) in
section 5.4, when it is clear how the phases are matched.

5.3 Creation of Mappings

The matching procedure described so far is concerned with finding a correspondence for a
single point or a template of points. The collection of all correspondences found between
a given pair of image and model are combined into a model-image-mapping or, simply,
mapping. Formally, a mapping is a set of quadruples of coordinates:

M(M, I) :=
{

(~xM
i , ~x

I
i )
∣∣∣ i = 1, . . . , N

}
(5.12)

It will be required that the respective coordinates are part of the respective repre-
sentations, i.e. for each i there must be a unit in M whose first two (out of six) entries
are identical to ~xM

i , and the same must be true when M is replaced by I. For further
evaluation we now define some geometrical characteristics of a mapping M: The number
of correspondences will be called the size of the mapping:

|M| := N , (5.13)

where N is the number from equation (5.12). If |M| = 0 the mapping is called empty .
This is, obviously, not a very interesting case, but it can, in principle, result from our
mapping procedures and must therefore be included in the definitions. Because the spatial
coordinates in the model are fairly arbitrary (a model may have been derived from an
arbitrary location in an image) the average displacement of the mapping describing the
center of the coordinate system is important:

|M| > 0 =⇒ ~A(M) :=
1

|M|

|M|∑
i=0

(
~xI

i − ~xM
i

)
, (5.14)

|M| = 0 =⇒ ~A(M) := ~0 . (5.15)

If a mapping represents a simple shift between model and image its average displace-
ment will be the shift vector. The deviation from a shift, which we will call the distortion
of the mapping is given by the standard deviations in the two directions. The standard
deviations are taken componentwise which makes the following definition a bit awkward
to write down. The index m takes the values 1 and 2 and indicates the directions in image
or model domain, respectively:
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~D(M) :=

(
D1

D2

)
(5.16)

|M| > 1 =⇒ Dm(M) :=
1

|M| − 1

√√√√√|M|∑
i=0

(xI
mi − xM

mi − Am(M))
2

(5.17)

|M| ≤ 1 =⇒ ~D(M) := ~0 (5.18)

This distortion is a two-dimensional vector with nonnegative components and zero if
and only if the mapping is a simple shift or empty.

Including the local similarity functions S from equations (5.11) or (5.36), respectively
we define the global similarity Sglob(M, I,M) of a mapping, together with its standard
deviation D(M, I,M). For empty mappings both of these measures will be defined as
zero, as well as D(M, I,M) for mappings with only one entry.

Sglob(M, I,M) :=
1

|M|

|M|∑
i=0

S
(
~h
(
xI

i

)
,~h
(
~xM

i

))
. (5.19)

D(M, I,M) :=
1

|M| − 1

√√√√√|M|∑
i=0

(
S
(
~h (xI

i ) ,~h (~xM
i )
)
− S(M, I,M)

)2
. (5.20)

In order to distinguish between the similarity functions SA and SP these measures will
attain indices A or P , respectively.

5.3.1 Matching Amplitudes on the Lowest Level

The first part of the mapping procedure consists in finding the part of the image where the
object is located. For this it is sufficient to restrict the model and image representations
to the lowest frequency level. If the image and the model differ in the frequency levels
contained, which may happen due to the background suppression, the lowest level common
to both representations has to be used here. Nevertheless, for simplicity of notation we
will assume that K0 is this lowest level.

The procedure simply consists of choosing the amplitudes at the lowest level of the
image representation as the data for multidimensional template matching and the ampli-
tudes at the lowest level of the model representation as the template. The result is a shift
vector ~y0, which is added to every model point to yield a first estimate of the mapping.

M0(M, I) := {(~x, ~x+ ~y0) | ~x ∈ K0(M)} (5.21)

Although the reconstruction from this lowest level does not yield a recognizable picture
of the model (see figure 3.5) the information contained here suffices to find the location.
Of course, it is possible to artificially construct counterexamples that show an ambiguity
on the lowest level but not on the higher ones, but this was generally not the case in
the pictures we used. For a general discussion of such limitations of our algorithm see
section 7.2.2. In the limited range of natural images this turns into an advantage, because
in the lowest level the image information is spread out so far spatially that the local
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a) b)
�

c) d)

Figure 5.2: Mappings on the middle level.
(
|~k| = 0.775

)
a) and b) show the

mapping points from the MTM, in model and image. In c) and d) the phases have been
matched and the points with poor similarity have been discarded from the mapping. The
mapping from c) to d) is used for further refinement.
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Figure 5.3: Correspondences on the middle level.
(
|~k| = 0.775

)
This figure shows

selected correspondences from the mapping in figure 5.2 in order to illustrate the accuracy
of the mapping.

distortions between model and image (which will be measured in the refinement steps)
do not impede the template matching.

The background suppression will in general produce model representations whose spa-
tial extent is smaller than the one of the image. If this is not the case the MTM cannot
produce reasonable results, and the shift vector ~y0 is defined as ~0.

5.3.2 Mapping Refinement

In this section we present a method to refine a mapping Mn that has been produced using
the frequency levels K0 . . .Kn to a mapping Mn+1 using the information from level Kn+1.
Of course, this will only be a true refinement if the spatial resolution at level Kn+1 is
higher than the one at Kn , which need not necessarily be the case because the resolution
is determined automatically from the center frequency as described in section 2.6.3 and
may be the same if the sampling of the center frequencies is dense. Nevertheless, the
method will also work in this case.

This is achieved by local multidimensional template matching of the response ampli-
tudes in the levels Kn+1(M) and Kn+1(I). We must now specify how the model and image
templates are chosen.

Both levels are arranged into a rectangular matrix of feature vectors. The size of
the matrix is determined by the resolution on this level. If the resolutions happen to be
different for the several directions of center frequencies, the largest resolution is chosen. As
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we have already discussed while describing the recognition procedure in section 3.6.1 this
does not pose any problems for representations that have been constructed as described
in section 3.2. If further manipulations have been applied, again some rounding of the
locations may be necessary.

The matrix of the model level is then divided up into small rectangles in a non-
overlapping way. The size ~sM of the rectangles depends on the level resolution. For all
following operations it will be chosen such that they contain, in general, 2 × 2 feature
vectors. On the model borders or at possible holes in the representation (which may
occur as a result of amplitude thresholding) some of the rectangles may contain no feature
vectors or 1, 2 or 3 of them. In the first case, they are not considered further. In the
other cases, they are filled up with feature values ~0.

Each little square (or more generally rectangle) now serves as a template for a local
MTM. The data field is chosen in the following way. First, the point pair from the
mapping Mn is chosen whose model point lies closest to the center of the template. If
this point happens to be the center of the template, the corresponding image point will
be the center of the data field. In this case, the data field also attains a fixed size ~sI ,
which must be larger than the template size ~sM (in each component). We have chosen
to introduce a fixed ratio sI

M for the sizes of template and data, so in this case we get
~sI = sI

M ·~sM . That means that the data will (in general, like above) contain 3× 3 feature
vectors.

The local density of the mapping is not known, and many model locations will fre-
quently be missing from a mapping. Thus, extra considerations are necessary for the case
that the center of the template is not part of the mapping. At such points the mapping
is not known with good quality, which has two consequences. First, some heuristic must
be applied in order to determine the center of the data field. Second, the data field must
be larger to account for the uncertainty in the correspondence.

Let ~cM be the center of the model template, sM
1 and sM

2 its sizes in both directions, ~xM

the model point closest to ~cM which is part of the mapping Mn, and ~xI the corresponding
image point. Then center ~cIand sizes sI

1 and sI
2 of the data area are defined as follows:

~cI := ~xI + (~cM − ~xM) (5.22)

sI
i := sI

M · sM
i + 2 ·

∣∣∣cMi − xM
i

∣∣∣ , i = 1, 2 (5.23)

The above case that the template center hits a mapping point is, of course, included in
this definition.

Equation (5.22) reflects the idea that if the correspondence is not known at a model
location the best one can do is assume a constant deviation from the closest known
mapping location. Higher levels of sophistication might, of course, be applied here, e.g.
using a combination of several surrounding mapping points. In the important case of the
model boundaries that would not mean much progress, because the mapping will only be
known in a direction perpendicular to the model boundary and pointing to the interior
of the model.

In equation (5.23) the uncertainty in the mapping is accounted for by allowing a data
field of at least twice the size of the deviation of the template center and the known
mapping point in each component. This suffices to justify the simple assumption leading
to equation (5.22), because the actual correspondence is checked over a wide range.
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Now that the rectangle constituting the data field is defined the actual data field
consists of all the feature vectors that fall inside this rectangle. If this is not the case
for any one, no correspondence is assigned to the points in the template. Otherwise,
the existing feature vectors are arranged into a rectangular matrix, missing locations are
assigned zero amplitude and phase.

Then MTM is applied to the pair of template and data, yielding a local shift vector
~y0. This shift is relative to the mapping already known. So for each ~x which is part of
the level Kn+1(M) and inside the current template the pairs(

~x, (~cI + ~y0) + (~x− ~cM)
)

(5.24)

are included in the mapping Mn+1. The first addition in the image components applies
the shift to the center of the data field, the second one corrects for the location of ~x inside
the template.

This procedure is executed for all the templates that make up the level Kn+1(M). It
is worth noting that the single MTMs are completely independent of each other and can
therefore be executed in parallel. This is due to the fact that the templates have been
chosen to be non overlapping. The data fields, however, may overlap. This can lead to
mappings that are unique but not invertible, i.e. several model points may be mapped
to the same image point. Furthermore, the mapping need not be strictly neighborhood
preserving, i.e. local “crossovers” of correspondences may occur. Both problems will be
greatly alleviated by the removal of poor matches in section 5.5

5.4 Treatment of Phases

The matching of wavelet amplitudes alone can already lead to very good recognition per-
formance (see also section 7.1). However, if a good spatial resolution of the mapping is
required, the phases have to be included, because they carry the fine geometrical infor-
mation. In this section we will describe a way to match the phases after the amplitudes
have found their best correspondences. This part of the matching process is the only one
that does not have a counterpart in the self-organizing process from chapter 4.

5.4.1 The Structure of the Wavelet Phases

For a close analysis of the matching process it is necessary to have some idea of the global
properties of the wavelet responses. This is problematic because of the unformalized
notion of a “natural image” (see section 7.2.2). Nevertheless, inspection of the responses
has unraveled some qualitative properties, which have also been studied and verified in
detail in (Fleet, 1992).

Figure 5.4 d) gives examples of the response amplitudes for various values of ~k. It
can be seen that the amplitudes take the form of smooth hills with maxima at edges
perpendicular to ~k. The spatial extent of these hills is mainly dictated by the width of

the Gaussian window in the definition of the Gabor functions, i.e. by
∣∣∣~k∣∣∣−1

. This form
makes it plausible to use MTM for establishing correspondences, because small shifts will
usually produce small variations in the amplitudes.
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Figure 5.4: The structure of the wavelet responses. The image on the left hand
side has been convolved with a kernel of center frequency 0.4 in horizontal direction. The
plots show the amplitudes and the phases of the result on a scanline through the eyes.
The amplitudes have the form of smooth hills, the phases behave like the phases of a plain
wave with roughly the same frequency. The largest deviations are in the neighborhood of
low amplitude values.

For the phases the situation is quite different. As shown in figure 5.4 d) at most
locations they resemble the phases of a plane wave. Fleet (1992) has shown that this
is indeed the case except for locations where the amplitude is close to zero. There, the
phases change arbitrarily with just a little shift in the image plane. As a consequence,
they are numerically extremely unstable and not usable for matching near points of small
amplitude.

The frequency of the (local) waves is given by the gradient in the frequency components
~k of the wavelet space. The computation of this gradient is very costly, because fine
resolution in ~k is required. Fleet also shows that it is close to the center frequency of the
kernel.

5.4.2 Phase Matching

From the preceding section it is clear that the matching procedure for the phases must
be quite different from the one for the amplitudes.

The phases, in the absence of zeros, have the structure of plain waves, i.e. they rotate
with a frequency which is close to the center frequency of the generating kernel. For
the matching task we assume that the phase frequency is equal to the center frequency,
except for points with small amplitude. Fleet (1992) reports that it has proven sufficient
to exclude points with amplitudes smaller than 5% of the maximal amplitude to get
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reliable phases.
As the phases are only known on a coarse grid, this hypothesis can hardly be tested

from the pyramid representation. However, the deviations have been tested on a variety
of images and, after amplitude thresholding, have not been drastic (see figure 5.4).

For matching units more reliably we assume that the phase difference between two
units found to be corresponding by amplitude matching are caused by small local shifts
on the scale of the discretization, which can, of course, not be detected by the MTM.

The phase difference for the matching is defined as follows, already taking into account
the instability of the phases around amplitude zeros (and their resulting uselessness for
matching):

∆
(
~uI , ~uM

)
=

{
P(~uI)− P(~uM) : A(~uI) > ta maxA(~uI) ∧ A(~uM) > ta maxA(~uM)

0 : otherwise
.

(5.25)
Once these assumptions have been made it is clear how the phases of two units have

to be matched. If the phase difference is caused only by a displacement, then it must be
equal to the product of the displacement vector and the center frequency. Yet, our task
is to match a whole feature vector. Each of its ndir units votes for one displacement and
they have to reach an agreement. This is done by choosing the displacement ~X which
gives the least squared deviation from the given phase differences.

E =
ndir−1∑

j=0

[
~X · ~kj −∆

(
~uI , ~uM

)]2 !
= min (5.26)

If the directions of the center frequencies are given by jπ/ndir, j = 0, . . . , ndir − 1 (as

usual) and their length is constant
(
|~kj| = k

)
the minimization can be solved. The single

phase differences ∆
(
~uI

j , ~u
M
j

)
as defined by (5.25) will be abbreviated as ∆j. In order to

keep the terms more compact we will replace ndir by D for the time of the derivation:

E =
D−1∑
j=0

[
~X · ~k −∆j

]2
(5.27)

=
D−1∑
j=0

[
kX1 cos

(
jπ

D

)
+ kX2 sin

(
jπ

D

)
−∆j

]2
(5.28)

∂E

∂X1

= 2k2
D−1∑
j=0

[
X1 cos

(
jπ

D

)
+X2 sin

(
jπ

D

)
− ∆j

k

]
cos

(
jπ

D

)
(5.29)

∂E

∂X2

= 2k2
D−1∑
j=0

[
X1 cos

(
jπ

D

)
+X2 sin

(
jπ

D

)
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So we have to solve the linear system:
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a) b)
�

c) d)

Figure 5.5: Mappings on the highest level.
(
|~k| = 1.5

)
a) and b) show the mapping

points from the MTM, in model and image. In c) and d) the phases have been matched
and the points with poor similarity have been discarded from the mapping. The mapping
from c) to d) is used for further refinement.
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Figure 5.6: Correspondences on the highest level.
(
|~k| = 1.5

)
This figure shows

selected correspondences from the mapping in figure 5.5 in order to illustrate the accuracy
of the mapping.

Elementary trigonometric operations for the matrix yield:
D−1∑
j=0
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and we get the following solution to (5.31):

X1 =
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(5.33)
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)
(5.34)

~X =
2

D

D−1∑
j=0

∆j

k

~kj

k
(5.35)

The single constituents of the sum in (5.35) are the shifts predicted by the single phase
differences multiplied with the unit vectors in the directions of the center frequencies. The
prefactor 1/ndir is just the average of these shifts. The extra factor 2 reflects the dimension
of the image space. If ndir = 2, the displacements are independent of each other and may
add freely.
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For a reasonable local similarity function after the phase correction the remaining
phase difference must become part of SP . We have chosen to do this in the following way:

SP
(
~h(~xM),~h(~xI)

)
:=

∑
iA(~h(~xM

i ))A(~h(~xI
i )) cos

(
∆~h(~xM

i , ~x
I
i )− ~k · ~X

)
∥∥∥A(~h(~xM))

∥∥∥ · ∥∥∥A(~h(~xI))
∥∥∥ (5.36)

This is identical to SA in the ideal case that the phase differences after the applied
local shifts are zero. Remaining phase differences lead to a penalty, because the cosine
becomes smaller than one.

5.5 Exclusion of Erroneous Matches

The mapping procedures described so far still have one serious drawback: They enforce
that every point in the model (on the various levels) must find a correspondence in the
image. If some model point is occluded in the image this is not useful because it will find
some point with structure which is similar by chance. The requirement posed in the def-
inition of the correspondence problem, namely that the non-existence of a corresponding
point must also be detected by the procedure, is still violated.

The mapping procedures described in sections 5.3.1 and 5.3.2 have assured that point
pairs with good similarity are excluded from the mapping if their geometrical arrangement
is incompatible with the mapping in neighboring parts. If the mapping still contains
noncorresponding points this can be due to occlusion or strong distortion. In the case
of occlusion a model point will find a point in the occluding object. In the presence of
strong distortion the local features between the model point and the corresponding image
point will differ significantly, and therefore this part of the mapping is no longer reliable.

The only grounds on which these two cases can be detected is the actual local similarity
between features of the corresponding points. In order to exclude mismatches we introduce
a quality threshold tqn and exclude all points from the mapping M for which the condition

Sloc

(
~h(~xM),~h(xI)

)
≥ tqn (5.37)

is violated. The threshold tqn is defined as follows:

tq0 := αqS (M, I,M0) (5.38)

tq(n+1) := αqS (M, I,Mn) . (5.39)

S (Mn) is the global similarity from equation (5.19), Sloc is the local similarity function
from equation (5.11) or (5.36), respectively. For all levels except the lowest one this
threshold is created using only information from the mappings already known. This
has the advantage that, again, no global information about the mapping currently being
established is necessary.

The choice of the factor αq is dictated by the following tradeoff. If it is small then
most points will be kept in the mapping and the mapping will remain dense. This will
lead to many erroneous correspondences for the reasons mentioned above. If the value is
too high few points with high similarities will survive and the mapping can become very
sparse. Then the refinement steps will eventually become reliable. Experience has shown
that αq = 1 constitutes a reasonable compromise between these two problems.
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5.6 Overall Mapping Procedure

We now have a method to initialize a mapping, a method to refine any mapping using
the information from a higher frequency level and two methods for manipulating a given
mapping, namely phase matching and dropping correspondences with poor similarity.

These are combined in the following way. The initialization yields a mapping MA
0 .

Then the phases are matched leading to MP
0 . The quality threshold tq0 is derived from

MP
0 Then the poor matches are removed fromMP

0 , which leads toMF
0 , the final mapping

on this level.
The mapping MF

0 together with the levels K1(M) and K1(I) is then used for the
refinement step, which results in MA

1 . Phase matching yields MP
1 and with tq1 as derived

from MF
0 this is reduced to MF

1 . The same step is executed one more time, resulting in
the mappings MA

2 , MP
2 , and MF

2 .
There have also been experiments that created a third mapping on each level which,

for every model point, selected the better match of MP
i and MA

i . This has not led to
significant improvements.

The four mapping procedures mentioned at the beginning of this section could, of
course, be combined in many more ways. Some of them have been tested and generally
led to worse results for the mapping quality as well as for the recognition rate.

5.7 Quality of Mappings

The system described above has been tested on many model-image pairs. All results
in this and the following chapter have been obtained with the sparse sampling scheme.
The representation parameters were the ones specified in section 3.4.5. The parameters
specific to the matching were chosen as:

αq = 1.0 , (5.40)

sI
M = 1.5 . (5.41)

Many experiments have shown that the mapping procedure actually finds the cor-
rect correspondences between model and image points. Some examples can be found in
figures 5.3 and 5.6. Complete mappings are shown in figures 5.1, 5.2, and 5.5. Close
inspection of figures 5.2 and 5.5 reveals that not all correspondences are as excellent as
the ones visualized, but in general nearly all of them are acceptable. Unlike for the recog-
nition presented in the next chapter the author was unable to find an objective test for
the quality of the mappings. Entering a complete correspondence mapping by hand was
beyond his patience and would not have been objective, either. So the inspection of the
figures must suffice to convince the reader.

It is important to observe that some model points that did not have a good corre-
spondence on the lowest level may attain one on the higher levels. This indicates that a
multilevel procedure is very adequate for the task.

Another important observation that can be made is the importance of the phase match-
ing. In figure 5.1 it can be seen that many of the points found acceptable correspondences
after phase matching already on this level although most of the correspondences produced
by the MTM were fairly poor.
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Figure 5.6 illustrates that very good correspondences are found from the lowest up to
the third level. It may be concluded that the combination of low-level coarse matching,
phase matching, mapping refinement and dropping poor correspondences constitutes a
powerful method for solving the correspondence problem.

5.8 Extension to Size Invariant Mappings

The mapping methods described so far require that the image and the model be roughly
identical in size and orientation, because otherwise the units must be matched in a different
way. As pointed out in section 3.6.3, a rotation or scaling in the image plane leads to
a relocation of the respective units and to a rotation or inverse scaling of the length of
center frequency.

The most powerful way to deal with such invariances is to estimate the parameters for
scale and orientation and then transform the image, accordingly. These estimates must
come from presegmentation or from the initialization step.

The size invariant matching procedures causes several new problems like the different
samplings in image and frequency space in model and image that we will not discuss in
detail here. In principle, they can be accounted for by a sufficiently high resolution in the
image transform, from which the model can choose the subsets required for the matching.
This has not been attempted here due to the high amount of computing resources required.

Nevertheless, in order to demonstrate this capability we shall describe a modified
initialization that is able to produce acceptable mappings from the model to an image
which contains the image at 50% of its linear size. This is, of course, a well-behaved case,
because the spatial resolutions generally advance by a factor of two when moving up one
level.

The idea is simply the following. Instead of initializing the mapping only from K0(M)
to K0(I) mappings M0i are initialized from K0(M) to all levels Ki(I). Because of the
favorable ratio of resolutions this can be done with a practically unmodified algorithm,
because the matrices which represent the template and the data already have the correct
arrangement of the responses.

The best mapping from M0i can then be refined to a mapping M1(i+1) using the
standard refinement method. That this method works may appear trivial at the first
glance, but it must be kept in mind that the factor of 50% is not at all exact and the
images are real images with much more background. An example of a resulting mapping
is shown in figure 5.7. All experiments conducted have shown that S (M01) is significantly
larger than S (M00) and S (M02).

This is, of course, only a very crude demonstration that basically the same method
may work for objects seen at different distances as well.
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a) b)
�

c) d)

Figure 5.7: Examples of size invariant mappings. a) and b) show the mapping
points from the lowest level in the model to the first level in the image. That image level
has been selected by the quality of the mappings only. In c) and d) that mapping has
been refined as usual. In this procedure the relative quality threshold αq has been set to
0.9.
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6. Hierarchical Object Recognition

For a few seconds he sat in stunned silence as the images
rushed around his mind and tried to find somewhere to
settle down and make sense.
Part of his brain told him that he knew perfectly well
what he was looking at and what the shapes represented
whilst another quite sensibly refused to countenance the
idea and abdicated responsibility for any further thinking
in that direction.
The flash came again, and this time there could be no
doubt.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

We have now presented two different ways of solving the correspondence problem. The
first one gave a detailed neuronal formulation and the second one was a simplified version
designed to run in reasonable time on a workstation. In order to fulfill the final claim that
has been made in the introduction we must now show that an established correspondence
mapping can be used for object recognition independent of the background. For these
recognition experiments we will use only mappings created by the procedure from chap-
ter 5, because the simulation of the dynamics currently requires too much computation
to use them on databases of realistic size.

6.1 Recognition procedure

6.1.1 Image-Model Similarity

Once a correspondence mapping has been established it can be used to define a global
similarity between the model and the image. Applying the mapping procedure to an image
and a whole gallery of models then leads to an object recognition procedure. There is, of
course, a lot of freedom in the definition of such a measure. The simplest possibility would
be the average similarity from equation (5.19). Other possibilities one could imagine would
include detailed evaluation of the local distortions which could be used for a weighting of
the local similarities. This reflects the notion that in the presence of stronger distortion
the similarities are expected to be worse. For future developments beyond the scope of
this work even the single pairs of corresponding points should be weighted according to
their importance for recognition. As it seems very hard to invent such a weighting the
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probably best way to do this is to learn such weights from experience. This research is
currently being started at our institute.

Here we restrict ourselves to a linear combination of the average similarity and (with
negative weight) the length of the distortion vector. This reflects the fact that if the
distortion of a mapping is high the probability for remaining erroneous correspondences
is also high. Therefore, we introduce as the model-image similarity for the recognition
decision:

Srec(M, I,M) = Sglob (M(M, I))− λ
∣∣∣ ~D(M(M, I))

∣∣∣ . (6.1)

The factor λ has been determined experimentally. A value of 1.0 yielded the best
results in all experiments. This shows that the pure similarities are not enough to dis-
criminate well between the models. However, in the mapping procedure itself only those
similarities have been used in order to keep the required information as local as possible.

Evaluating this image-model similarity for a database of models {Mi | i = 0 . . . N}
yields a series of similarities, whose maximum corresponds to the recognized model. The
detailed results will be presented in section 6.2.

6.1.2 Significance of Recognition

The process of comparing an image with all models stored in a database always yields
a best value for the global similarity of one model to the given image, irrespective of
whether or not a corresponding image of the same person is contained in the database.
For a recognition mechanism to be of use, a criterion to evaluate the significance of a match
must be applied. This is an important difference to many other recognition schemes that
can not decide well that an unknown object has been presented.

Our results show that the answer can, with some reliability, be extracted from the
statistics of the series of all global similarities. Let the series Si denote these values ordered
in ascending sequence, i.e. Si < Si+1 ∀i ∈ {0, 1, . . . , N − 1}, and Mi be the model which
gave the result Si. For the recognition to be significant we expect S0, which corresponds
to M0, the “candidate” model, to be clearly distinct from all the other values. This has
been formalized as follows: If s the standard deviation of the series {Si | i = 1, 2, ...N − 1}
(not containing the candidate model), then we define a first criterion for the acceptance
of a match:

κ1 := [r1 > tκ1] , where r1 :=
S1 − S0

s
. (6.2)

This means that the difference of the best similarity and the second best must exceed
a threshold (in units of the standard deviation of the whole series).

This criterion has been developed for the recognition system described in (Lades et al.,
1993). In the current context it has turned out to be crucial to include the absolute value
of the similarity as a second criterion, whereas the second criterion from that system
turned out to be quite useless here.

κ2 := [r2 > tκ2] , where r2 := S0 . (6.3)

Both criteria can be combined in order to keep more significant recognitions while
ruling out all incorrect ones thus improving the performance of the system further:

κ3 := [κ1 ∨ κ2] . (6.4)
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a) b)
�

c) d)

Figure 6.1: Segmentation for model databases. a) shows a segmented model from
database M1, b) from database M2. In c) and d) the corresponding reconstructions are
presented. If a much higher value of σ had been chosen for the transform (which would
mean a wider spatial extent of the Gabor kernels) these reconstructions would be hardly
recognizable. The representation for this model in M1 consists of 8,388 units, the one in
M2 of 3,576.
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Experiment 1.1: Rectangular segmentation, 83 images

Level Criterion C F CA CR FR FA R

κ1 = [r1 > 0.472] 71 29 51 20 29 0 49

Hierarchy level 0 κ2 = [r2 > 0.964] 71 29 20 51 29 0 80

κ3 = κ1 ∨ κ2 71 29 54 17 29 0 46

κ1 = [r1 > 0.768] 43 6 33 11 6 0 17

Hierarchy level 1 κ2 = [r2 > 0.874] 73 6 48 25 6 0 31

κ3 = κ1 ∨ κ2 40 6 29 11 6 0 17

κ1 = [r1 > 0.483] 13 4 11 2 4 0 6

Hierarchy level 2 κ2 = [r2 > 0.816] 25 6 14 11 6 0 17

κ3 = κ1 ∨ κ2 13 4 12 1 4 0 5

κ1 99 1 94 0 1 0 6

Hierarchy total κ2 99 1 83 5 1 0 17

κ3 99 1 95 0 1 0 5

κ1 = [r1 > 0.483] 94 6 87 7 6 0 13

Level 2 only κ2 = [r2 > 0.816] 94 6 83 11 6 0 17

κ3 = κ1 ∨ κ2 94 6 89 5 6 0 11

Table 6.1: Recognition results for rectangularly segmented models and images
of persons looking 15◦ to their left. The numbers are percentages of the whole image
database. Significance criteria and cases are explained in section 6.1.2.

Of course, there is a trade-off between ruling out all false recognitions and accepting all
correct ones. Here we will use a simpler evaluation method than in (Lades et al., 1993),
because the experience has shown that including the extra cases does not make much
difference in the result. The reasons for that are that the databases used are fairly big
and the recognition rates are not too high in the most interesting cases, where structured
background is present. Thus we will only work with databases which contain the correct
person. Then the following cases are possible:

CA The correct model was picked as the best match, and the match was judged signif-
icant.

CR The correct model was picked as the best match, but the match was rejected.

FA The wrong model was picked as the best match, and the match was accepted (sig-
nificant).

FR The wrong model was picked as the best match, and the match was rejected (in-
significant).
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Experiment 1.2: Rectangular segmentation, 249 images

Level Criterion C F CA CR FR FA R

κ1 = [r1 > 0.764] 68 32 20 48 32 0 80

Hierarchy level 0 κ2 = [r2 > 0.964] 68 32 13 55 32 0 87

κ3 = κ1 ∨ κ2 68 32 23 45 32 0 77

κ1 = [r1 > 0.768] 65 15 45 20 15 0 35

Hierarchy level 1 κ2 = [r2 > 0.876] 71 15 38 34 15 0 49

κ3 = κ1 ∨ κ2 62 15 45 17 15 0 33

κ1 = [r1 > 0.970] 22 13 6 17 13 0 30

Hierarchy level 2 κ2 = [r2 > 0.816] 36 13 16 20 13 0 33

κ3 = κ1 ∨ κ2 20 12 8 12 12 0 24

κ1 93 7 70 7 7 0 30

Hierarchy total κ2 93 7 67 11 7 0 33

κ3 93 7 76 5 7 0 24

κ1 = [r1 > 0.970] 86 14 63 23 14 0 37

Level 2 only κ2 = [r2 > 0.821] 86 14 62 24 14 0 38

κ3 = κ1 ∨ κ2 86 14 69 17 14 0 31

Table 6.2: Recognition results for rectangularly segmented models and im-
ages of persons in different poses. The numbers are percentages of the whole image
database. Significance criteria and cases are explained in section 6.1.2.

Additionally, we shall consider the simple cases C (correct recognition) and F (false
recognition) and the “rejected” or “no decision yet” case R, which is the union of CR
and FR.

In the ideal recognition algorithm, only the case CA should occur. Any safe recognition
algorithm must rule out case FA, because this is a serious mistake. Case CR shows an
imperfection of the presented image or the algorithm. The quality of the recognition
can thus be judged by counting the number of CA cases once the thresholds have been
adjusted such that no FA cases remain. This choice of thresholds may sound debatable
but it produces the best results that can be expected from the algorithm given that false
positive recognitions are unacceptable. A living system probably would not live up to
this expectation. So the idea about the thresholds is that they have been learned in a
long process of false and correct recognitions using feedback from the environment and
adjusted in a way that suits the respective organism best — anxious individuals may well
have higher thresholds than rather careless ones.
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Experiment 2.1: Segmentation without hair, 83 images

Level Criterion C F CA CR FR FA R

κ1 = [r1 > 0.553] 42 58 10 33 58 0 90

Hierarchy level 0 κ2 = [r2 > 0.970] 42 58 13 29 58 0 87

κ3 = κ1 ∨ κ2 42 58 17 25 58 0 83

κ1 = [r1 > 0.398] 81 10 61 19 10 0 29

Hierarchy level 1 κ2 = [r2 > 0.904] 76 11 23 53 11 0 64

κ3 = κ1 ∨ κ2 73 10 54 19 10 0 29

κ1 = [r1 > 0.330] 24 5 18 6 5 0 11

Hierarchy level 2 κ2 = [r2 > 0.799] 58 6 55 2 6 0 8

κ3 = κ1 ∨ κ2 24 5 23 1 5 0 6

κ1 99 1 89 1 1 0 11

Hierarchy total κ2 99 1 92 1 1 0 8

κ3 99 1 94 0 1 0 6

κ1 = [r1 > 0.330] 94 6 88 6 6 0 12

Level 2 only κ2 = [r2 > 0.799] 94 6 92 2 6 0 8

κ3 = κ1 ∨ κ2 94 6 93 1 6 0 7

Table 6.3: Recognition results for models without their hair and images of
persons looking 15◦ to their left. The numbers are percentages of the whole image
database. Significance criteria and cases are explained in section 6.1.2.

6.1.3 Hierarchical Recognition

With the notion that insignificant recognition reflects the fact that no reliable decision
was possible yet the multilevel structure of our algorithm can be used to improve average
recognition time and recognition quality. First, a recognition is attempted using only the
mapping MF

0 on the lowest level. For all the R cases the next mapping MF
1 is used and

for the cases where this level did not lead to a decision, the recognition is again attempted
using the mapping MF

2 .
Tables 6.1 through 6.5 will show two things. First, correct recognition is indeed possible

from the lowest level on. That means that the average recognition times can be greatly
reduced by the hierarchical approach. Secondly, hierarchical recognition always yields
significantly more significant recognitions than the recognition from MF

2 alone. This
gives interesting insights into the distribution of prominent recognition cues across the
spatial frequency range.

These practical advantages underpin the usefulness of the philosophy of hierarchical
recognition outlined in section 4.4. It is also capable of interpreting the recognition
experiment shown there. On the frequency levels present in the low pass filtered image a
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Experiment 2.2: Segmentation without hair, 249 images

Level Criterion C F CA CR FR FA R

κ1 = [r1 > 0.563] 41 59 8 33 59 0 92

Hierarchy level 0 κ2 = [r2 > 0.972] 41 59 7 34 59 0 93

κ3 = κ1 ∨ κ2 41 59 11 30 59 0 89

κ1 = [r1 > 1.273] 62 30 15 47 30 0 77

Hierarchy level 1 κ2 = [r2 > 0.904] 63 31 10 53 31 0 83

κ3 = κ1 ∨ κ2 59 30 18 41 30 0 71

κ1 = [r1 > 1.252] 56 21 14 42 21 0 63

Hierarchy level 2 κ2 = [r2 > 0.833] 61 22 24 37 22 0 59

κ3 = κ1 ∨ κ2 50 21 23 27 21 0 48

κ1 85 15 37 12 15 0 63

Hierarchy total κ2 85 15 41 14 15 0 59

κ3 85 15 52 6 15 0 48

κ1 = [r1 > 1.252] 78 22 33 46 22 0 67

Level 2 only κ2 = [r2 > 0.833] 78 22 41 37 22 0 59

κ3 = κ1 ∨ κ2 78 22 49 30 22 0 51

Table 6.4: Recognition results for models without their hair and images of
persons in different poses. The numbers are percentages of the whole image database.
Significance criteria and cases are explained in section 6.1.2.

correct recognition is possible but it is not significant enough for the visual system to be
satisfied with it. If no higher frequency information is available, this is the final result of
the recognition attempt. In the presence of faulty high frequency information recognition
is again tried on the next higher level, where it completely fails.

6.2 Tests of the Recognition Performance

In order to evaluate the recognition performance two different model databases and two
different image databases have been set up. In this section we shall present all the results
of the recognition experiments.

Model database M1 consists of all 83 persons looking straight into the camera
(database 1 from section 3.4.4. Their images have been segmented by a simple rect-
angle which has the same size for all models. This has been done to attempt a relatively
fair comparison with the system described in 7.1 and in (Lades et al., 1993). For an
example see figure 6.1 a).

Model database M2 consists of the same 83 persons looking straight into the camera.
Their images have been segmented by hand such that their hair is invisible and only the
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Images Hierarchy total Level 2 only
Experiment

Database # C F CA R C F CA R

1.1 I1 83 99 1 95 5 94 6 89 11

1.2 I1, I2, I3 249 93 7 76 24 86 14 69 31

1.3 I2 83 80 20 58 42 70 30 37 63

1.4 I1, I2 166 89 11 68 32 82 18 62 38

1.5 I3 83 100 0 96 4 95 5 93 7

1.6 I1, I3 166 99 1 95 5 95 5 89 11

1.7 I2, I3 166 90 10 75 25 83 17 61 39

2.1 I1 83 99 1 94 6 94 6 93 7

2.2 I1, I2, I3 249 85 15 52 48 78 22 49 51

2.3 I2 83 71 29 40 60 65 35 36 64

2.4 I1, I2 166 85 15 61 39 80 20 59 41

2.5 I3 83 86 14 57 43 76 24 54 46

2.6 I1, I3 166 92 8 68 32 85 15 65 35

2.7 I2, I3 166 78 22 42 58 70 30 39 61

Table 6.5: Overview of all recognition results. The numbers are percentages of
the whole image database. Experiments in the upper half use models with rectangular
segmentation, in the lower half the models are segmented without their hair. Database
I1 contains persons looking 15◦ to their left, I1 the same persons looking 30◦ to their
left and I3 contains them showing an arbitrary facial expression. Cases are explained in
section 6.1.2.

plain faces remain (See figure 6.1 b)). Generally, this demonstrates the capabilities for
recognition independent of the background. In this special case it evaluates the possibility
to recognize persons independent of their hair, which is a much harder task also for
humans.

Image database I1 is used to test the performance under moderate conditions and
consists of the 83 persons looking 15◦ to their right. Database I123 introduces hard
conditions, namely including image database 1, 2 and 3. Thus it contains 249 images
including the head orientations of 15◦, 30◦ and the arbitrary facial expressions.

In order to allow a closer analysis of the strengths and weaknesses of the algorithm,
the results for the databases I2 and I3 alone are also shown.

For each experiment the thresholds tr1 and tr2 have been adjusted such that false
positive recognitions (FA cases) are reliably excluded. For the factor λ, which weights
the distortion in the definition of the recognition similarity, a value of 1 has been found
to be optimal.

In the hierarchical case there is an extra row for the total of each column over the
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levels. The numbers in these columns have the following interpretations. The C cases
are the ones where the correct model was recognized at some level during the process.
The CA cases were accepted at one (and therefore only one) level. The F, FA, and FR
cases are the ones where false recognition (accepted or rejected) happened on all levels.
Also the number of R cases shows the ones that have been rejected on all levels (and is
therefore identical to the number of R cases in the highest hierarchy level).

Image data base I1 does not pose serious problems for recognition with either model
segmentation. For the other databases the number of correct and significant recognitions
drops sharply from model database M1 to M2. This shows that the feature vectors
inside the face are distorted strongly, and the recognition must rely more on the hairstyle.
This does not sound like a serious restriction. However, the attempted invariance under
changes in hairstyle was not a goal in itself. It has mainly been demonstrated for a method
to reliably exclude background influence. So other methods will probably face the same
problem when being confronted with objects in front of an arbitrary background.



118 CHAPTER 6. HIERARCHICAL OBJECT RECOGNITION



7. Discussion

“All right,” said the Cat; and this time it vanished quite
slowly, beginning with the end of the tail, and ending
with the grin, which remained some time after the rest
of it had gone.
“Well, I’ve often seen a cat without a grin,” thought
Alice; “but a grin without a cat! It’s the most curious
thing I ever saw in my life!”

Lewis Carroll, Alice’s Adventures in Wonderland

7.1 Comparison With Labeled Graph Matching

This section describes a recognition system to the development of which the author con-
tributed before engaging on the topic of this thesis. Enough detail is covered to see
similarities and differences to the system of chapter 6. For a full description including
parameters and detailed performance figures see (Lades et al., 1993).

In this system, database models are represented by labeled graphs . Recognition is
performed by finding an optimal match for the model graphs in the image domain. The
model graphs have a number of points in the model domain as vertex set V. The graph
topology is defined by the edge set E ⊂ V ×V.

Vertices and edges are both labeled by vectors defined below. Labels are compared
with similarity functions which are added up to yield a similarity function between the
graphs.

7.1.1 Vertex labels

The vertices in our graph are simply points in the two-dimensional image domain. Each
point is labeled with the array of the amplitudes of all wavelet responses centered at
that point. This choice requires that the points in V belonging to the graph are sampling
points for the wavelet transform at all frequencies considered. In other words, the sampling
sets in the model domain must be the Cartesian product of V and a space-independent
frequency sampling set:

SM = V × Sf . (7.1)

Sf is the same as in equation (3.9). with different parameters: ndir = 8, nlev = 5,
kmin = 2.356, kmin = 0.589. This difference is due to a different value of σ in the wavelets.
The choice of σ will be discussed in section 7.1.7.
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Images Hierarchy total FACEREC
Experiment

Database # C F CA R C F CA R

1.1 I1 83 99 1 95 5 95 5 93 7

1.2 I1, I2, I3 249 93 7 76 24 92 8 81 19

1.3 I2 83 80 20 58 42 86 14 61 39

1.4 I1, I2 166 89 11 68 32 90 10 77 23

1.5 I3 83 100 0 96 4 94 6 94 6

1.6 I1, I3 166 99 1 95 5 95 5 92 8

1.7 I2, I3 166 90 10 75 25 90 10 77 23

2.1 I1 83 99 1 94 6 19 81 1 99

2.2 I1, I2, I3 249 85 15 52 48 14 86 1 99

2.3 I2 83 71 29 40 60 16 84 4 96

2.4 I1, I2 166 85 15 61 39 17 83 2 98

2.5 I3 83 86 14 57 43 7 93 0 100

2.6 I1, I3 166 92 8 68 32 13 87 1 99

2.7 I2, I3 166 78 22 42 58 11 89 1 99

Table 7.1: Results of the hierarchical and the FACEREC system. Databases
and experiment numbers are the same as in table 6.5. FACEREC performs slightly better
on model database M1 (rectangular segmentation) but fails completely on database M2
(hair removed). This shows that only the hierarchical system is capable of background-
independent recognition.

The vector of all amplitudes at one single image point is called a jet :

~J(~x) = A(~x)
∣∣∣~k∈Sf

(7.2)

In the image domain full sampling is used in order to have a jet attached to every image
location (pixel).

Similarity of vertex labels is defined as the normed scalar product between two jets
exactly as our similarity of local feature vectors in equation (5.3):

Sv

(
~J1, ~J2

)
=

~J1 · ~J2∥∥∥ ~J1

∥∥∥ · ∥∥∥ ~J2

∥∥∥ (7.3)

7.1.2 Edge Labels

Edge labels are introduced to enforce a weak geometrical similarity in the graphs to be
matched. This is justified by the notion that, although there may be distortions between
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Figure 7.1: Model graphs for the FACEREC system. On the left a model graph
for the standard system is shown (database M1). For a comparison with the hierarchical
system graphs have been produced from the segmented images put on white background
(database M2).

the image graph and the model graph, the graphs are not expected to be arbitrarily
scrambled. In the system described here the edges (i, j) ∈ E with the distance vector of
the vertices they connect:

~∆(i,j) := ~xj − ~xi (7.4)

Those labels are compared by the similarity function:

Se

(
~∆I , ~∆M

)
:= −

(
~∆I − ~∆M

)2
. (7.5)

7.1.3 Graph Similarity

Finally, the comparison functions for both types of labels are added up over the whole
graph and linearly combined into one similarity function between the stored model and
the image graph.

SΓ(ΓI ,ΓM) := λ
∑

(i,j)∈E

Se

(
~∆I

(i,j), ~∆
O
(i,j)

)
+
∑
i∈V

Sv

(
J I

i , J
O
i

)
. (7.6)

The factor λ can be adjusted to make the enforcement of the neighborhood preservation
more or less strict. It is varied during the process.

7.1.4 Graph Dynamics

The function SΓ defined in the previous section can be interpreted as a function on the set
of all possible image graphs. Its maximum over the whole set measures the similarity of the
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stored model to the presented image. It can be approximated by a suitable optimization
procedure described in the next paragraph.

The graphs describing the models are rectangular grids with 7 points horizontally and
10 points vertically. The distance between two neighboring points (in either direction)
is 10 pixels. (The image size is 128×128 pixels). First the given model graph is copied into
the image domain, λ is set to a very high value which enforces that the only variability
in the mapping is the center of gravity of the graph. This is optimized by a random
walk procedure. After this step, the corresponding graph in the image domain is roughly
located on the object.

In the second step λ is relaxed to a suitable finite value and the correspondences of
single points are optimized by a random walk. After some convergence criterion has been
fulfilled, the resulting value of SΓ is taken as similarity of the image and the model.

As usual, this similarity value is calculated for all models, and the best one is the
recognized object. Like in section 6.1.2 a combination of two significance criteria is used to
judge the reliability of the recognition. The first one is the same as κ1 from equation (6.2),
the second one is defined as the difference of the best similarity to the mean of all other
similarities, divided by their standard deviation.

7.1.5 Performance

Here we present the results of the FACEREC matching with the same databases as in
section 6.2. Figure 7.1 shows model graphs from model databases M1 and M2. Table 7.1
compares them with the ones of the hierarchical recognition scheme. The results show
that for model database M1 the graph matching performs slightly better, and significantly
better under more difficult circumstances.

For database M2 FACEREC produces only very poor results. Although the graphs
have already been shrunk in order to account for the smaller regions the results may be
slightly improved by model graphs which are better adapted. Nevertheless, it is obvious
that this system can not deal with the background in a reasonable way.

7.1.6 Advantages of the hierarchical system

Although the FACEREC system has better recognition rates in the absence of structured
background than the hierarchical system the latter has the following advantages.

FACEREC does not produce good correspondence mappings. One of the reasons for
this is that it relies only on the amplitudes of the wavelet responses. Due to the large
variety of spatial frequencies present in a jet it has proven very difficult to include the
phase information in a convincing way. The second reason is that the graph similarity
has a deformation term. This makes the procedure relatively robust in the presence
of strongly deformed jets by placing the vertex where it optimally fits the structure of
the model graph. These points are probably not corresponding well. Furthermore, the
correspondences delivered are restricted to the vertices of the model graph and therefore
very sparse.

The precise and dense mappings delivered by the hierarchical matching system will
probably allow many important extensions. In the scheme described in chapter 6 all the
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geometrical information in the mapping is collapsed into the single number
∣∣∣ ~D∣∣∣ (equa-

tion (6.1)). More advanced versions will possibly be able to estimate the true three-
dimensional geometrical transform from the correspondences. This in itself is an interest-
ing piece of information, which human cognition is also able to extract. Furthermore, it
can be used to modify the representations (or the similarity functions) taking into account
that the geometrical transformation did not only change the position of the units but also
their values. (See section 3.6.3 for simple examples.) This can be turned into an itera-
tive algorithm that optimizes both locations of corresponding points and the similarities
of their representing units and will certainly constitute a much more robust recognition
procedure.

Another possible improvement would be to assign different weights to the different
regions. For face recognition, e.g., the eyes and the mouth will be much more important
than the cheeks. This weighting, however, must rely on good correspondences at least for
the points with high weights.

The jets in the FACEREC system pick up very much background information, espe-
cially the low frequency components. This is shown impressively by the results in table 7.1.
Dealing with this problem the way that has been proposed in this work (section 3.2) is not
possible with the jet representation used in FACEREC, because most of the jets would
have to be discarded.

For a massively parallel implementation the hierarchical system has two great advan-
tages. The pyramidal representation is optimally suited for implementation on a convolver
with a fixed maximal kernel size (such as, e.g., the Datacube system).

The topological costs in the FACEREC system are a global measure that has to be
evaluated at every update step of the matching. This makes it hard to implement the
matching process in a truly parallel manner. In the hierarchical scheme, all refinement
steps, as well as all phase adjustments and the exclusion of the poor matches are com-
pletely independent of each other. That means that they can be carried out on separate
processors, with a need for communication only after the establishment of a complete
mapping on one frequency level.

7.1.7 Which Relative Bandwidth for Gabor Functions?

A difference between the hierarchical matching and the FACEREC system that deserves
special consideration is the relative bandwidth of the Gabor kernels used. In FACEREC,
the value has been σ = 2π with a much higher localization in frequency space. Figure 2.3
shows both kernels.

In this work we have chosen σ = 2, a value which is close to the properties of simple
cells. This leads to a relatively high localization in image space. For good matching this
localization poses a problem because these small areas lead to more ambiguities in the
feature similarity. (The probability that small areas are similar in the image is higher than
for larger ones). In our system this problem has been alleviated by matching templates
of such responses, which again enlarges the area.

A qualitative argument that can lead to a better understanding of the relationship
of feature vectors produced with the different values of σ is the notion that the features
corresponding to the higher values are linear combinations of the ones from the lower val-
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ues. The reason is that for the Gabor kernels before admissibility correction the following
relationship holds:

ψ2σ;~k = ψσ;~k ∗ ψσ;~k (7.7)

The validity of this can be seen immediately from the Fourier transform (equation (2.54)).
It shows that kernels with high values of σ can be reached by successive convolution with
ones with lower σ and the same holds for the actual values of the image representation.
If a higher value is needed, just another convolution with a suitable kernel is necessary.

7.2 Outlook

7.2.1 What has been achieved?

In contrast to earlier and other works the need for a hierarchical scheme has been moti-
vated and two working systems have been proposed. The dynamic link matching has been
extended to finding a coarse match within an image containing background and refining
it.

Previously unsolved issues like the suppression of the background and the inclusion
of phase information have been tackled successfully. The background suppression has led
to a method that can recognize faces independently of the person’s hairstyle, although
with a lower rate of significant recognitions. The FACEREC system is not able to do this
without substantial modifications.

Many attempts to solve the correspondence problem have been lacking the successes
of the FACEREC system described in 7.1 or the matching scheme presented in this thesis.
A major reason for our success seems to be the use of feature vectors instead of scalar
features. In this light the use of orientation selective filters may well be an important step
towards better systems and a better understanding of object recognition.

7.2.2 What is left to do?

For a first answer to this question the reader is invited to look around and enjoy the ease
with which human cognition works. None of the severe limitations of our computer vision
systems poses a problem here. So it looks as if everything is left to do. The gap between
neural dynamics and convincing demonstrations of cognitive capabilities is still awesome.

Nevertheless it can be hoped that this work is at least a step to a closer understanding
of cognition and describe it. In this case some successive steps can be outlined. The
most important problem to solve seems to be a convincing integration of a memory of
known objects into a system. Here we have treated all objects separately without any
interconnections between them. Consequently, the recognition algorithms have a linear
complexity in the number of models. This is certainly not the case for recognition in the
brain. There are already several models of associative memory, but it is currently unclear
how they can cooperate with the matching schemes described here.

A related challenge is the incorporation of more abstract categories. Most probably
face recognition would first recognize that there is a face in the presented image and then
“take a closer look” and decide about the identity of the person. It is currently unclear
how the abstract notion of a “general face” can be represented. Furthermore, categories
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like “female” or “grinning” can be recognized without any knowledge of the identity of
the person. Finding a suitable representation for such categories seems hopeless, but our
brains do it all the time. So somewhere hidden in our brains there must be a code for “a
grin without a cat”.

A different part of the problem is the lack of a classification of “natural images”. It is
difficult enough to invent a good algorithm for object recognition, but it is fairly easy to
construct examples where a given algorithm completely fails. This means that computer
vision algorithms (or the unknown algorithms carried out in the brains of living beings)
are only valid for a very small subclass of light distributions. This subclass can, most
probably, not be defined mathematically but depends on the history of all things this
being has seen. So maybe the definition should be turned around, stating that a natural
image is one where all the algorithms work well. On one hand this view makes the set
of “natural images” depend on the individual. On the other hand it shifts the emphasis
from the actual algorithm to the principles that create this algorithm.

Although the systems described here are only crude caricatures of living brains they
are already very complicated. The neuronal machinery is a complex structure of layers
of different resolution and size and links between them, not to mention the parameters
that must be adjusted in order to keep it within a regime that exhibits useful behavior.
Such sophisticated machinery is probably not present at birth but builds up and adapts
during growth using all the visual experiences made. So the ultimate challenge seems to
be a deeper understanding of the principles that govern the development of the neural
machinery in real brains. Once this will be achieved it may become feasible to let computer
vision algorithms develop from a crude to a truly useful state. The scientific question that
may turn up then is if their internal functioning remains understandable.
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Lades, M., Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz,
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Würtz, R. P. (1992). Gesichtserkennung mit dynamischen neuronalen Netzen. Spektrum
der Wissenschaft, pages 18–22.
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9. Anhang in deutscher Sprache

And the LORD came down to see the city and the tower,
which the children of men builded.
And the LORD said, Behold, the people is one, and they
have all one language; and this they begin to do: and
now nothing will be restrained from them, which they
have imagined to do.
Go to, let us go down, and there confound their lan-
guage, that they may not understand one another’s
speech.
So the LORD scattered them abroad from thence upon
the face of all the earth; and they left off to build the
city.

Genesis 11:5–8

9.1 Zusammenfassung der Dissertation

Dieses Kapitel beinhaltet eine kurze Zusammenfassung der englischsprachigen Disserta-
tion. Wo immer geeignete deutsche Fachbegriffe nicht zur Verfügung stehen, werden die
englischen Bezeichnungen beibehalten. Die Einteilung in Unterkapitel entspricht der Ka-
piteleinteilung der Arbeit, um das Auffinden von Details im Text zu erleichtern. Dem
Promotionsausschuß der Fakultät für Physik und Astronomie gilt mein Dank für die Er-
laubnis, diese Arbeit in englischer Sprache einzureichen.

9.1.1 Einleitung

Diese Arbeit handelt von visueller Objekterkennung, d.h. der Fähigkeit von Lebewesen,
Objekte in ihrer Umwelt wiederzuerkennen. Diese Fähigkeit ist uns so selbstverständlich,
daß es überraschend ist, daß die Computerwissenschaften trotz langjähriger intensiver
Bemühung noch keine Systeme hervorgebracht haben, die menschlichen oder auch tieri-
schen Leistungen auf diesem Gebiet auch nur nahekommen.

Dabei stellt die Aufnahme und das Digitalisieren der visuellen Daten mit moderner Elek-
tronik keinerlei Problem dar. Vielmehr liegt die Schwierigkeit darin, daß das gleiche Objekt
unter verschiedenen Blickwinkeln, Beleuchtungssituationen oder teilweiser Verdeckung
durch andere Objekte völlig verschiedene Helligkeitsverteilungen auf der Netzhaut bzw.
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dem Kamerachip erzeugt (Abbildung 1.1 auf Seite 14). Ein Objekt ist also eine riesige
Äquivalenzklasse von solchen Helligkeitsverteilungen, die wir als Bilder bezeichnen. Diese
Äquivalenzklassen werden vom Gehirn definiert und ein gesehenes Objekt schnell und ef-
fektiv einer Klasse zugeordnet. Auf welche Weise die Repräsentation einer solchen Klasse
im Gehirn stattfindet ist noch weitgehend unbekannt.

Hier werden wir von der Modellvorstellung ausgehen, daß jede Klasse durch einen (oder
mehrere) Repräsentanten definiert ist, den wir Modell nennen werden. Die Aufgabe besteht
dann darin, in einem Bild zunächst den Ausschnitt zu finden, wo ein bekanntes Objekt
vorhanden ist und dann herauszufinden, welches Modell diesem Ausschnitt am ähnlichsten
ist. Der erste Teil wird Segmentation genannt, der zweite Erkennung.

Wegen der zahlreichen Veränderungen, dem das Bild ein und desselben Objektes unter-
worfen ist, hat es sich für die Erkennung als entscheidend herausgestellt zu entscheiden,
welche Punkte im Modell welchen im Bild entsprechen, bzw. Abbilder desselben Objekt-
punktes sind. Diese Frage wird als Korrespondenzproblem bezeichnet. Ein Großteil der
vorliegenden Arbeit beschäftigt sich mit seiner Lösung. Das Auffinden der geeigneten
Punktepaare werden wir auch matching nennen.

Von der Vielzahl möglicher Objektklassen wurden menschliche Gesichter ausgewählt, da
hier die menschliche Erkennung, also die Beurteilung der Leistung von Modellen keine
Probleme aufwirft. Außerdem unterscheiden sich Gesichter von starren Objekten dadurch,
daß auch interne Verzerrungen durch Mienenspiel zu ihren natürlichen Veränderungen
gehören, was das Problem besonders interessant macht. Dafür sind Beleuchtungsprobleme
weniger gravierend als z.B. bei metallischen Gegenständen.

In der künstlichen Intelligenz wurde und wird versucht, Probleme des Computersehens
durch Aufstellen geeigneter Regeln zu lösen. Diese Versuche hatten wenig Erfolg, da die
Anzahl der Ausnahmen rasch ins unermeßliche wächst, wenn Bilder aus einer natürli-
chen Umwelt zu bearbeiten sind. In neuerer Zeit wird daher versucht, solche Probleme
mit Hilfe von dynamischen Systemen, die aus zahlreichen lokalen einfachen und gleichen
Elementen bestehen und die Komplexität ihres Verhaltens nur aus dem Zusammenspiel
einer sehr großen Zahl dieser Elemente beziehen. Solche Systeme werden in der Physik
seit Jahrhunderten mit Erfolg untersucht. Das Gehirn als eine große Zahl verschalteter
Nervenzellen sollte dieser Art von Beschreibung im Prinzip zugänglich sein.

9.1.2 Waveletvorverarbeitung

Ausgehend von verschiedenen Darstellungen einer Wellenfunktion in der Quantenmecha-
nik werden hier Darstellungen von Bildern diskutiert. Weder die Darstellung als Grau-
wertbild (Ortsraumdarstellung) noch die Fouriertransformation davon (Impulsraumdar-
stellung) sind für das Bildverstehen geeignet. Es wird argumentiert, daß gemischte oder
Phasenraumdarstellungen geeigneter sind. Diese bestehen aus einem Satz von quadratin-
tegrierbaren Funktionalen, die den gesamten Phasenraum abdecken.

Das Volumen dieser Funktionale im Phasenraum ist genau wie in der Quantenmechanik
durch die Unschärferelation nach unten beschränkt. Es wird gezeigt, daß Gaborfunktionen,
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d.h. Produkte aus einer ebenen Welle und einer Gaußglocke die einzigen Funktionen sind,
die dieses Minimalvolumen einnehmen.

Eine elegante Art, Phasenraumdarstellungen zu verwirklichen, stellen die Wavelettransfor-
mationen dar. Diese bestehen aus einer geometrischen Gruppe und einer Mutterfunktion.
Die Transformation ist dann einfach die Faltung der Wellenfunktion (oder des Bildes) mit
allen Funktionen, die bei Anwendung der Gruppe auf die Mutterfunktion entstehen. In
unserem Fall wählen wir die Gruppe aus Skalierung und Rotation der Bildebene und wen-
den sie auf eine Gaborfunktion an, um die Funktionale für die Wavelettransformation zu
erhalten. Vorher muß jedoch die Gaborfunktion noch zulässig gemacht werden, d.h. ihr In-
tegral muß verschwinden. Dies ist nötig, damit das Bild aus seiner Wavelettransformation
auf einfache Weise rekonstruiert werden kann und auch allgemein für die Bildverarbei-
tung sehr nützlich. Schließlich wird die Wavelettransformation aus den gedrehten und
skalierten Versionen einer zulässig gemachten Gaborfunktion aufgebaut, wobei die einzel-
nen Funktionale durch ihre Mittenfrequenz ~k, das ist die Raumfrequenz der zugehörigen
Welle, parametrisiert werden. Das Verhältnis σ aus der Breite der Gaußglocke und der
Wellenlänge bleibt ein Parameter der ganzen Transformation.

Unabhängig von den obigen Überlegungen spricht für diese Art der Vorverarbeitung,
daß sie im Gehirn tatsächlich verwirklicht ist. In der visuellen Großhirnrinde kann man
sog. einfache Zellen finden, die auf Lichtreize genauso reagieren wie ein solches (zulässig
gemachtes) Gaborfunktional.

Nach der Behandlung der wichtigsten Eigenschaften von Wavelettransformationen wer-
den Fragen ihrer geeigneten Diskretisierung diskutiert. Es wird eine elegante Methode
angegeben, um so sparsam wie möglich zu diskretisieren. Da sie auf der schnellen Fou-
riertransformation beruht, ist damit auch eine Möglichkeit gegeben, die Transformation
effizient zu berechnen. Danach wird ein Verfahren beschrieben, das es erlaubt, aus diskre-
tisierten Waveletdaten das ursprüngliche Bild zu rekonstruieren.

9.1.3 Darstellung von Bildern und Modellen

In diesem Kapitel werden die Überlegungen des vorhergehenden zusammengefaßt und ei-
ne geeignete Darstellung von Modellen und Bildern entwickelt. Es enthält die kompletten
Vorschriften für deren Berechnung. Besonderes Augenmerk liegt hier auf der Behandlung
des Bildhintergrunds. Da die einzelnen Funktionale der Transformation immer eine ge-
wisse räumliche Ausdehnung haben, ist die Darstellung am Rand der Modelle gestört.
Da die Erkennung unabhängig vom Hintergrund erfolgen soll, müssen diese Störungen
ausgeschaltet werden. Hier wir dies dadurch erreicht, daß sie völlig aus der Modelldar-
stellung entfernt werden. Eine Konsequenz davon ist, daß die Darstellung auf niedrigen
Frequenzebenen nur an Punkten in der Nähe des Objektzentrums bekannt ist, auf höheren
Frequenzen können die Punkte näher an den Rand rücken.

Weiter werden alle Elemente aus der Darstellung entfernt, die eine sehr kleine Antwortam-
plitude aufweisen. Dies ist einerseits nützlich, um den Speicherbedarf zu verkleinern, an-
dererseits für ein verläßliches Matching notwendig, da die wichtigen komplexen Phasen
der Transformation an Stellen kleiner Amplitude sehr instabil sind.
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Nachdem Modell- und Bilddarstellung vollständig definiert sind, werden erste Experimen-
te damit durchgeführt. Diese bestehen im einzelnen aus Messungen der Qualität der Re-
konstruktion bei verschiedenen Schwellwerten für die Amplituden, aus der Durchführung
von affinen Abbildungen wie Translation, Rotation und Skalierung der Bildebene und
Rekonstruktion aus einzelnen Frequenzebenen. Die Ergebnisse werden in den Abbildun-
gen 3.4 bis 3.7 auf den Seiten 57 bis 62 dargestellt.

Für Objekte, die im Gegensatz zu Gesichtern nur sehr wenig interne Struktur aufweisen,
wird eine weitere Darstellungsform beschrieben, die nur die lokalen Amplitudenmaxima
der oben beschriebenen Transformation enthält. Erstaunlicherweise genügt auch diese
Darstellung, um eine erkennbare Rekonstruktion des Bildes zu erhalten.

9.1.4 Hierarchisches Dynamic Link Matching

Hier werden zunächst die wichtigsten Grundlagen der Theorie neuronaler Netzwerke dar-
gestellt, soweit sie für unser dynamische System, das das Korrespondenzproblem löst,
wichtig sind. Dies sind im einzelnen die Dynamik eines Modellneurons, die Interaktion
über synaptische Verbindungen sowie das unüberwachte Lernen, ein Modell dafür wie Or-
ganismen ihren kognitiven Apparat mit Hilfe der Informationen aus der visuellen Umwelt
organisieren.

Das klassische Modell neuronaler Netzwerke betrachtet die Dynamik einer großen Zahl von
Neuronen, die mit festen Verbindungsstärken vernetzt sind. Das Wissen über die Umwelt,
bzw. der Algorithmus des Netzwerks steckt in diesen Verbindungsstärken. Sie sind nur
langsam veränderlich, d.h. in dem Maße wie das Netzwerk sein Verhalten bzw. seine
Kenntnisse über die Umwelt verändert. Ein Perzept, bzw. die Ausgabe des Netzwerks,
besteht im allgemeinen in der Aktivitätsverteilung in einer spezialisierten Gruppe von
Neuronen.

Dieses Modell scheint aus verschiedenen theoretischen wie experimentellen Gründen zu
kurz zu greifen. Daher schlug Christoph von der Malsburg (1981) vor, daß eine geeignete
Dynamik nicht nur die Aktivitäten der Neuronen sondern über die oben besprochenen
Verbindungsstärken hinaus noch dynamische Verbindungsstärken oder dynamische Links
enthalten muß, deren Dynamik etwa die gleichen Zeitkonstanten hat wie die der Neuro-
nen selbst. Dabei ist die Änderung eines dynamischen Links durch die Korrelation der
Aktivitäten der beiden verbundenen Zellen gegeben, d.h. gleichzeitig oder synchron akti-
ve Zellen verstärken ihre Links, asynchron aktive Zellen schwächen sie ab. Starke Links
wiederum fördern die gleichzeitige Aktivität der beiden Zellen. Damit wird ein Prozeß
schneller Selbstorganisation in Gang gesetzt, der zu hochgeordneten Zuständen aus Zel-
laktivitäten und Linkstärken führt, die dann einem Perzept entsprechen.

Ein System zur Lösung des Korrespondenzproblems auf der Basis dieser Architektur kann
wie folgt aussehen. Bild und Modell sind durch eine dichte zweidimensionale Schicht von
Neuronen repräsentiert, zwischen zwei Neuronen der beiden Schichten besteht eine dyna-
mische Verbindung. Mit jedem Neuron ist ein Satz von Merkmalsdetektoren verbunden,
der die Bild- bzw. Modellinformation kodiert. Diese Kombination wird als lokales Element
bezeichnet. Die Schichten sind intern so verdrahtet, daß ihre Aktivität auf eine Scheibe
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lokalisiert ist, die sich über die Schicht bewegt. Die Wachstumsraten der Links sind be-
stimmt durch die Korrelationen der lokalen Elemente, d.h. eine geeignete Kombination
aus gleichzeitiger Aktivität und Merkmalsähnlichkeit. Elementpaare mit hoher Korrelati-
on verstärken ihre Verbindungen, solche mit niedriger schwächen sie ab. Diese Dynamik
konvergiert aus einem Anfangszustand, in dem die Linkstärken nur von der Merkmalsähn-
lichkeit abhängen, zu einer stationären Linkverteilung, wo nur korrespondierende Punkte
durch starke Links verbunden sind.

Diese Dynamik hat noch zwei Schwächen. Bei für realistische Bilder notwendigen
Auflösungen sind sehr viele Zellen und entsprechend viele Links notwendig. Da die Ak-
tivitätsscheibe jede Zelle mehrmals überstreichen muß, bis sich die korrekten Korrespon-
denzen herausgebildet haben, dauert dies sehr lange. Dies ist nicht nur für Simulationen
unangenehm sondern würde auch in einem biologischen System zu langen Verarbeitungs-
zeiten führen. Die zweite Schwäche besteht darin, daß das Modell nur zu einem Teil des
Bildes korrespondiert und der Hintergrund abgetrennt werden muß.

Daher wird eine Dynamik vorgeschlagen, die das Korrespondenzproblem auf der in Kapi-
tel 3 vorgestellten Darstellungen in hierarchischer Weise löst. Hierzu wird jeder Frequenz-
ebene ein Paar von neuronalen Schichten zugeordnet. Auf der niedrigsten Ebene folgen
diese Schichten der oben beschriebenen Dynamik, wobei die Modellschicht hier kleiner ist
als die Bildschicht. Der Selbstorganisationsprozeß ist dann in der Lage, starke Links zwi-
schen den Modellpunkten und den korrespondierenden Bildpunkten auszubilden. Nach
einiger Zeit verläßt die Aktivitätsscheibe den zum Modell passenden Bildbereich nicht
mehr und bildet hier die Korrespondenzen aus. Da diese Frequenzebene durch wenige
Zellen repräsentiert werden kann, ist dies in relativ kurzer Zeit möglich.

Die Neuronenschichten der nächsthöheren Frequenzebene gehorchen einer Dynamik, die
mehrere kleine Aktivitätsscheiben gleichzeitig über Bild und Modell laufen läßt. Die Link-
dynamik wird hier durch die Korrelation der lokalen Elemente sowie durch die Linkstärken
auf der darunterliegenden Frequenzebene getrieben. Diese Links können sich erst ent-
wickeln, wenn die der niedrigeren Ebene eine bestimmte Schwelle überschreiten. Da-
durch werden die früher gefundenen groben Korrespondenzen verfeinert. Die verschiede-
nen gleichzeitig auftretenden Aktivitätsscheiben können keine falschen Korrespondenzen
verstärken, da sie weiter voneinander entfernt sind als der Einflußbereich der darunterlie-
genden Links reicht. Durch diese parallele Verarbeitung wird das Gesamtsystem deutlich
beschleunigt.

Dieses Modell wurde komplett für zwei Frequenzebenen simuliert und ist in der Lage,
die richtigen Korrespondenzen zwischen zwei Bildern zu finden. Zwischen einem Bild
und einem Ausschnitt aus demselben Bild als Modell sind die Korrespondenzen perfekt.
Für verschiedene Bilder sind sie z.T. nicht besonders genau, was erstens an Schwächen
der Verfeinerungsdynamik liegt, aber auch daran, daß nur die Amplitudeninformation
der Darstellungen verwendet wird. Für genaue Korrespondenzen sind jedoch die Phasen
unverzichtbar, was in Abschnitt 5.4 berücksichtigt wird. Jedenfalls ist es gelungen, ein
dynamisches System zu entwerfen, das auf der Basis dynamischer Links das Korrespon-
denzproblem hintergrundunabhängig und schneller als frühere Systeme löst.
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9.1.5 Algorithmisches Matching von Bildpyramiden

Um die komplizierte Selbstorganisationsmaschine aus dem vorangegangenen Kapitel effi-
zient auf einem sequentiellen Computer implementieren zu können, sind einige Vereinfa-
chungen notwendig.

Die zentrale Aufgabe sowohl des Grobmatchings als auch der Verfeinerungsschritte ist es,
zusammenhängende Teile der Modelldarstellung in der Bilddarstellung wiederzufinden.
Für skalare Funktionen wird diese Aufgabe gemeinhin durch Template Matching gelöst,
d.h. eine Funktion mit kleinem Träger das Template wird so lange verschoben, bis ihr
normiertes Skalarprodukt mit einer Funktion größeren Trägers ihr Maximum annimmt.

Dieses Verfahren läßt sich auf vektorwertige Templates ausdehnen, wie in Abschnitt 5.2.2
gezeigt wird. Dieses Verfahren bezeichnen wir als MTM oder multidimensional template
matching.

Die Templates und Datenfelder, auf die das MTM angewandt wird, werden aus den
Modell- bzw. Bilddarstellungen gewonnen, indem nur die Beiträge der Filter mit Mit-
tenfrequenzen einer festen Länge ausgewählt werden. Die verschiedenen Richtungen der
Filter bilden dann die Komponenten der Vektoren, aus denen sich die Templates zusam-
mensetzen.

9.1.5.1 Grobes Auffinden des Objektes

Ungeachtet der Tatsache, daß realistische Segmentierung sehr viel größeren Aufwand er-
fordert, ist es für unsere hiesige Aufgabe ausreichend, die Korrespondenzen zwischen den
Punkten zuerst auf der niedrigsten Frequenzebene durch MTM zu schätzen. Da im Mo-
dell der Hintergrund unterdrückt wurde, ist die Modellebene kleiner als die Bildebene und
kann als ganzes ins Bild gematcht werden. Es hat sich gezeigt, daß dies in den meisten
Fällen ausreicht, um das Gesicht im Bild grob zu lokalisieren, selbst beim Vorliegen eines
kompliziert strukturierten Hintergrundes (s. Abb. 5.1). Da auf der niedrigsten Frequenze-
bene auch die Ortsauflösung gering ist, erfordert dieses Verfahren relativ wenig Aufwand.

9.1.5.2 Verfeinerung auf der nächsthöheren Frequenzebene

Jede gegebene Korrespondenzabbildung kann auf die nächsthöhere Frequenzebene verfei-
nert werden, wo im allgemeinen die Ortsauflösung höher ist. Hier wäre es nicht angebracht,
ein MTM auf die ganze Frequenzebene von Modell bzw. Bild anzuwenden, da das erstens
keine lokalen Verzerrungen zulassen, zweitens die schon gewonnene Information aus den
niedrigeren Frequenzebenen nicht ausnutzen und drittens einen relativ großen Aufwand
darstellen würde.

Daher wird die Modellebene in kleine Templates eingeteilt, die im allgemeinen 2×2 Punkte
enthalten. Jedes Template erhält ein Datenfeld in der Bildebene zugeordnet. Dessen Ort
richtet sich nach der nächsten aus der tieferen Frequenzebene bekannten Korrespondenz.
Es hat eine Größe von mindestens 3 × 3 Punkten und um so mehr je weiter die nächste
Korrespondenz vom Zentrum des Templates entfernt war (an solchen Stellen gibt diese
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Korrespondenz nur eine sehr grobe Schätzung der gesuchten wieder.) All diese Templates
suchen nun in ihren Datenbereichen nach dem am besten passenden Ort. Die einzelnen
MTMs sind völlig unabhängig voneinander, was bedeutet, daß sie massiv parallel imple-
mentiert werden können. Auf der anderen Seite hat es zur Folge, daß durchaus mehrere
Modellpunkte zum gleichen Bildpunkt korrespondieren können (aber nicht umgekehrt).

9.1.5.3 Phasenanpassung

Für die beiden bisher besprochenen Schritte zum Erzeugen einer Korrespondenzkarte
wurden nur die Amplituden der (komplexwertigen) Gaborantworten verwendet. Für eine
genaue räumliche Auflösung der Korrespondenzen sind jedoch deren Phasen von beson-
derer Bedeutung. Die Analyse dieser Phasen ergibt folgende Eigenschaften.

In der Nähe von Nullstellen der Amplitude sind die Phasen nicht definiert, bzw. numerisch
sehr instabil. Dies gilt sowohl für isolierte Nullstellen als auch für ganze Gebiete, in denen
die Amplitude sehr klein ist. Wo die Amplitude eine signifikante Größe hat (z.B. größer
als 5% ihres Maximalwerts ist) verhalten sich die Phasen in etwa wie die Phasen der
Mittenfrequenz selbst. D.h. lokal ändern sich die Phasen etwa mit dieser Mittenfrequenz.

Damit bietet sich folgendes Verfahren zur Phasenanpassung an. Sobald klar ist, daß zwei
Phasenraumatome aufgrund ihrer Amplituden und derer der Umgebung eine ungefähre
Korrespondenz haben, ergibt der Quotient aus ihrer Phasendifferenz und dem Betrag
der Mittenfrequenz des zugrundeliegenden Funktionals eine Verschiebung in Richtung der
Mittenfrequenz. Wird der Punkt im Bild um diesen Vektor verschoben, so passen die
Phasen perfekt zusammen. Für solche Antworten, deren Amplitude klein ist, so daß ihre
Phasen keine Information enthalten, wird die Phasendifferenz künstlich auf null gesetzt,
diese bewirken also keine Verschiebung.

Da jedoch nicht Atome sondern ganze Merkmalsvektoren einander angepaßt werden,
müssen sich die Mittenfrequenzen verschiedener Orientierung noch auf einen gemeinsa-
men Verschiebungsvektor einigen. Dieser Vektor wird so ermittelt, daß die Summe der
quadratischen Abweichungen von perfekter Phasenanpassung über die verschiedenen Ori-
entierungen minimal wird. Dafür kann eine geschlossene Formel angegeben werden, mit
deren Hilfe diese Anpassung schnell und effektiv durchzuführen ist. Mit Hilfe der Pha-
senanpassung ergeben sich schon auf der tiefsten Frequenzebene erstaunlich genaue Kor-
respondenzen, wie man in Abbildung 5.1 sehen kann.

9.1.5.4 Ausschluß von fehlerhaften Korrespondenzen

Die bisher beschriebenen Schritte zur Herstellung einer Korrespondenzkarte haben noch
einen Nachteil. Bei teilweisen Verdeckungen des Objektes gibt es zwangsläufig Punkte im
Modell, deren korrespondierende im Bild nicht sichtbar sind. Solche Punkte können nur
aufgrund der tatsächlichen Ähnlichkeiten der als korrespondierend erkannten Merkmals-
vektoren ausgeschieden werden. Dazu wird eine Schwelle für die Ähnlichkeit eingeführt
und alle Korrespondenzen, deren lokale Ähnlichkeit unter dieser Schwelle liegt, aus der
Karte eliminiert. Wird diese Schwelle zu hoch angesetzt, so bleiben zuwenig Korrespon-
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denzen übrig, ist sie zu niedrig, so sind die Korrespondenzen nicht verläßlich.

Die Wahl dieser Schwelle ist unterschiedlich für die Karten auf der niedrigsten Frequen-
zebene und die durch Verfeinerung entstandenen. Auf der niedrigsten Ebene hat sich der
Mittelwert der lokalen Ähnlichkeiten als brauchbar erwiesen. Beim Verfeinerungsschritt
ist dies ein ungünstiges Maß, da es lokal an den Stellen, wo verfeinert wird, nicht be-
kannt ist. Hier dient der Mittelwert der Ähnlichkeiten auf der vorhergehenden Ebene als
Schwelle.

Zahlreiche Experimente haben ergeben, daß diese Art der Bewertung von Korresponden-
zen geeignet ist, einerseits eine relativ dichte Karte zu erhalten und andererseits zuverlässig
Punkte auszuschließen, die keine Korrespondenz im Bild haben.

9.1.5.5 Das vollständige Verfahren

Wir haben nun vier Teilaspekte eines Verfahrens zur Erstellung einer Korrespondenzkarte
vorgestellt, nämlich Templatematching auf der niedrigsten Frequenzebene, Verfeinerung
einer gegebenen Karte mit Hilfe der Information auf der nächsthöheren Ebene, Anpassung
der Phasen sowie Ausschluß der fehlerhaften Korrespondenzen. Diese werden folgender-
maßen zu einem Gesamtverfahren kombiniert.

Um die grobe Position des Objektes im Bild zu finden, wird die entsprechende Frequen-
zebene aus dem Modell extrahiert und der am besten passende Ort durch Template Mat-
ching gefunden. Daraus ergeben sich erste grobe Korrespondenzen. Diese werden durch
Phasenanpassung verbessert, danach werden die Punktpaare mit schlechter Ähnlichkeit
eliminiert. Der Mittelwert der verbleibenden Ähnlichkeiten liefert eine Schwelle für die
Ähnlichkeiten der nächsten Ebene.

Diese Karte wird dann durch lokales Template Matching verfeinert, die Phasen werden
wieder angepaßt und die Paare mit unterschwelliger Ähnlichkeit eliminiert. Dasselbe Ver-
fahren wird wiederholt, um eine Karte auf der dritten Ebene zu erhalten.

Für jede dieser Karten stehen nun die Punktpaare sowie die lokalen Ähnlichkeiten zur
Verfügung. Als globale Bewertungsgrößen einer Karte werden die mittlere Ähnlichkeit,
deren Standardabweichung, der mittlere Verschiebungsvektor sowie die Standardabwei-
chungen seiner Komponenten definiert.

Eine wichtige Beobachtung ist, daß Punkte, die auf einer bestimmten Frequenzebene
keine Korrespondenz finden konnten, dies teilweise auf höheren bzw. tieferen Ebenen tun.
Dies gibt interessante Einblicke in die Verteilung der relevanten Bildinformation über die
Frequenzebenen.

9.1.6 Hierarchische Objekterkennung

Nachdem zwei Verfahren zur Lösung des Korrespondenzproblems vorgeschlagen wurden,
kann nun das Problem der Objekterkennung bearbeitet werden. Dazu werden die Karten
auf den verschiedenen Ebenen nicht nur zwischen einem Modell und einem gegebenen
Bild sondern zwischen einer ganzen Datenbank von Modellen und dem Bild hergestellt.
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Eine Linearkombination zwischen mittlerer Ähnlichkeit und dem Betrag der (vektoriel-
len) Standardabweichung der Verschiebungsvektoren dient als globales Ähnlichkeitsmaß
zwischen dem jeweiligen Modell und dem Bild. Das Modell mit maximaler Ähnlichkeit
zum Bild ist dann das erkannte Objekt. Dies liefert für jede Frequenzebene einen Erken-
nungsmechanismus.

Da nicht sicher ist, ob für ein gegebenes Bild das richtige Objekt überhaupt in der Mo-
delldatenbank vorhanden ist, muß die Qualität dieser Erkennung noch überprüft werden.
Dazu werden zwei Kriterien definiert, die eine verläßliche Erkennung garantieren sollen.
Das erste fordert, daß die Differenz der besten Ähnlichkeit zur zweitbesten (in Einheiten
der Standardabweichung aller Ähnlichkeiten außer der besten) eine Schwelle überschrei-
tet. Das zweite setzt eine Schwelle für die Ähnlichkeit selbst. Beide Kriterien können mit
einem logischen

”
oder“ zu einem noch mächtigeren Kriterium verbunden werden. D.h. für

eine verläßliche Erkennung muß entweder die Ähnlichkeit des erkannten Modells signifi-
kant über der nächsten Ähnlichkeit liegen oder diese Ähnlichkeit selbst muß sehr hoch
sein. Die Schwellen für diese Kriterien können so eingestellt werden, daß keine falsche Er-
kennung signifikant möglich ist. Die Qualität des Erkennungsverfahrens ergibt sich dann
aus der Anzahl der signifikant richtig erkannten Modelle (bei Experimenten mit vielen
Bildern).

Mit diesen Signifikanzkriterien kann nun ein hierarchischer Erkennungsprozeß durch-
geführt werden. Die Erkennung wird zunächst auf niedriger Frequenzebene versucht. Ist sie
dort signifikant, so gilt das entsprechende Modell als erkannt. Für die nicht signifikanten
Erkennungen wird die Korrespondenzkarte auf der nächsten Frequenzebene verwendet.
Die hier signifikant erkannten gelten ebenfalls als erkannt. Für die übrigen wird die dritte
Frequenzebene herangezogen.

Dieses Verfahren hat den Vorteil, daß eine Erkennung im Durchschnitt schneller abläuft.
Weiter hat sich gezeigt, daß es eine etwa 10% größere Ausbeute an signifikant richtigen
Erkennungen liefert als etwa die Erkennung auf der höchsten Ebene allein.

9.1.7 Diskussion

Hier werden zunächst die hier vorgestellte Matchingverfahren mit der Methode des Mat-
chens bewerteter Graphen, einer früheren Arbeit unter Beteiligung des Autors, verglichen
und die neuen Möglichkeiten beschrieben. Es stellt sich heraus, daß die beiden Verfahren
bei homogenem Hintergrund in Bild und Modell etwa gleich gut abschneiden. Bei struktu-
riertem Hintergrund im Bild, der anhand einer frisurinvarianten Modelldarstellung erprobt
wurde, bricht das Graphmatchingverfahren völlig zusammen, während die hierarchische
Erkennung noch respektable Ergebnisse liefert. Es wird diskutiert, welcher Wert von σ,
d.h. des Verhältnisses von Breite zu Wellenlänge, für die Erkennung besonders geeignet
sind. In der vorliegenden Arbeit wie auch im visuellen Cortex ist ein Wert von etwa σ = 2
verwirklicht, beim Matchen bewerteter Graphen wurden die besten Ergebnisse mit σ = 2π
erzielt. Die Gründe dieser Diskrepanz werden diskutiert, und es wird gezeigt, daß das hier
vorgestellte Verfahren allgemeiner ist.

Eine große Schwäche des ganzen Computersehens ist das Fehlen einer klaren Formalisie-
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rung von
”
natürlichen“ Bildern. Es ist sicher leicht, Bilder zu konstruieren, für die die hier

vorgestellten Verfahren völlig versagen müssen, diese würde aber ein Betrachter nicht als
Abbilder von natürlichen Objekten akzeptieren.

Abschließend bleibt zu sagen, daß die hier vorgestellten Verfahren einen Schritt auf dem
Weg zum Verständnis kognitiver Funktionen als dynamischer Systeme darstellen. Die
Vorteile sind relativ einfache formale Behandelbarkeit und vor allem die Möglichkeit,
solche Systeme in Hardware zu realisieren, womit die hohen Rechenzeiten ihrer Simulation
auf realistische Werte zusammenschrumpfen werden, da die massive Parallelität dann voll
ausgenutzt werden kann.
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06/92, 06/93 Lehraufträge an der Technischen Hochschule Ilmenau
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