
Extending Traffic Light Recognition:

Efficient Classification of Phase and Pictogram

Matthias Michael and Marc Schlipsing

Institut für Neuroinformatik

Ruhr-Universität Bochum

Email: firstname.lastname@ini.rub.de

Abstract—While much work in the domain of traffic lights
recognition is invested in the detection of traffic lights, classifi-
cation of their exact state (including color phase and possible
arrow pictogram) is often neglected. In this paper, we propose
a robust approach for efficient video-based classification of said
state with particular attention to the displayed pictogram and
an additional ability to reject false detections. The currently
active lights are identified and used to classify the phase.
The lights are extracted and transformed into a HOG feature
representation that is used to classify the pictogram with the
help of machine learning classifiers. In order to gain optimal
results, we compared the performance of different algorithms,
namely LDA, kNN, and SVM. We provide an evaluation of
our method on individual images and demonstrate that the
classification rate of the phase lies at 96.7 % and at 92.8 %
for the pictogram, with the use of SVMs providing best results.
This leads to an overall classification quality of 89.9 %. With a
runtime of less than 1 ms per image section our algorithm can
easily be integrated in every traffic light recognition pipeline.

I. INTRODUCTION

For applications in the field of assisted and autonomous
driving it is of huge importance to build and maintain a
representation of the environment of the car in order to
execute appropriate actions or – in the case of assisted
driving – to display the currently most relevant information
to the driver. Many parts of this environment are regulated
by traffic law and have a standardized appearance (e. g.,
traffic signs and street markings) which greatly simplifies
automatic recognition.

A considerable amount of effort has been invested in
the detection of traffic lights – however, many methods
concentrate on the detection alone and ignore the actual
state of the traffic light. At the utmost, a coarse classification
in red, green, and possibly yellow traffic lights is made
– either explicitly after, or implicitly during the detection
process. By doing this, a large amount of usable information
is disregarded since traffic lights may also provide the
information to which lane they apply.

This information includes the permission to drive for
green lights and the prompt to stop at red lights, which are
the most simple cases. A yellow light’s informative content
depends on the position of the car relative to the traffic
light. If the car is far away, the breaking process should be
initiated. However, if the car is rather close to the traffic
light this is not necessary. In some countries traffic lights
provide additional information in a fourth phase where the
red and the yellow light are switched on simultaneously.
This phase occurs between the red and the green phase and
cues the driver to start driving.

Additionally, the lights sometimes contain information
on the direction the driver can follow. In particular at
intersections with multiple lanes, the traffic light indicates
the possible turning maneuvers for that lane. This is de-
picted by arrows on the traffic light which are displayed in
black on top of the red and yellow lights while the green
light itself consists of a colored arrow on top of a black
background. The most common directions are left, right,
and top. Figure 1 gives an overview of the different types
of traffic lights we aim to distinguish in this work. To our
knowledge, no previous work has considered extracting this
information from video sequences.

Additionally, the classification provides the opportunity
to evaluate the correctness of the detected traffic lights.
Usually only a small number of detections should occur in
every frame. Therefore, it is possible to apply rather costly
evaluation methods which would require too much time in
an earlier step of the recognition pipeline.

Fig. 1. Examples of the different types of traffic lights we aim to
distinguish. All four different phases and possible pictograms are shown.

As shown in Tab. I, there are four different color phases
a traffic light can enter and four different pictograms it can
display which leads to a total of 16 classes. We chose to
simplify the classification process by dividing it into two
parts. During the first part, the color phase is determined by
finding ROIs (regions of interest) around the active lights.
During the second part we determine the pictogram on
the active light; therefor we evaluate the performance of
the Linear Discriminant Analysis, the k-Nearest Neighbor
classifier and the Support Vector Machine on this problem.

We provide an overview of current techniques which
can be used to detect and (partially) classify traffic lights
in video sequences in Sec. II. The proposed method is
explained in detail in Sec. III. Afterwards, in Sec. IV and V,
we present the conducted experiments and the results that
were achieved. Finally, in Sec. VI, a conclusion is given.



TABLE I. AN OVERVIEW OF THE DIFFERENT ATTRIBUTES A

TRAFFIC LIGHT CAN DISPLAY FOR ITS PHASE AND ITS PICTOGRAM.
THE ACTUAL CLASSES ARE GIVEN BY THE CROSS PRODUCT BETWEEN

PHASE AND PICTOGRAM LEADING TO A TOTAL OF 16 CLASSES.

Phase Pictogram

green none

yellow left

red top

red-green right

II. RELATED WORK

As stated in the previous section, a major part of
research is concerned with the detection of traffic lights
while the further distinction of their phase or other aspects
is often neglected. Examples for this work are Omachi
and Omachi [1], Wang et. al [2], and Gong et. al [3]. In
the following we will briefly describe current methods that
can be used to detect traffic lights while also providing a
minimal amount of classification.

Charette et. al [4] applied a spot light detection approach
based on the Top-hat morphological operator in order to
identify light sources in an image which allows them to
detect suspended as well as supported lights. The operator
extracts hypotheses for possible locations of traffic lights
– here a large number of false positives is allowed. These
hypotheses are filtered and an adaptive template matching
is applied to the remaining locations. A basic classification
has to be made here since different templates have to be
used for green, yellow, and red traffic lights.

John et. al [5] propose the use of deep learning methods
for traffic light recognition. They use GPS information
together with a traffic light location database in order to
limit the regions in the camera images which may contain
the lights. Inside this region, candidate ROIs are identified
using color, intensity, and shape information. These ROIs
are then fed into a convolutional neural network which
provides final detection as well as classification by deciding
for each ROI, if it contains a red, a green, or no traffic light.
In environments with low illumination additional robustness
is provided by the use of a saliency map. While achieving
a good detection result, the presented system is not real-
time capable and only distinguishes between red and green
lights.

An entire recognition pipeline consisting of detection,
tracking, and classification is proposed by Lindner et. al [6].
Different detectors are used depending on the availability
of color or gray scale cameras. For the classification a
feed forward neural network is applied which distinguishes
between red, yellow, and green traffic lights and – similar
to our work – can also reject wrong detections.

Cai et. al [8] are among the few authors that propose
an holistic method for the detection and classification of
traffic lights including color and arrow state. They apply
shape and color constraints for detection and use a kNN-
Classifier on features obtained by a 2D Gabor wavelet
transform and 2DICA for classification. While achieving
a recognition rate of 91 %, their work still leaves room
for improvement. Classification of a single image requires
56 ms processing time which leads to a total framerate
of 6.57 fps, making the method not real-time capable. All

arrow lights in their dataset consist of an illuminated shape
on black background which eliminates the difficulties of
recognizing a black shape on an illuminated background.
Additionally, the authors do not provide information on their
choice of parameter values and the distribution of their data
into training and test set for the kNN-Classifier.

III. METHOD

It is noteworthy that the term “traffic light” is used to
describe the entirety of the three circular, colored lights on a
rectangular plate, while “light” refers to an individual lamp.
As stated in Section I, the proposed method is divided into
two distinct steps – in the first step it is decided which
colored light (or which combination of lights) is displayed
by the traffic light (also denoted as the “phase” of the
traffic light); in the second step it is determined, in which
direction the arrows are pointing if they are present (or
which “pictogram” is displayed by the traffic light).

Images showing only the traffic light (as well as a small
surrounding region) – identical to those shown in Fig. 1
– serve as input to our system. They can be produced by
applying any of the methods described in Sec. II. For further
processing a few assumptions are made about the input
images and the traffic lights, which, however, should be
easily satisfiable:

• The entire traffic light is included in the image and
it is roughly centered.

• Only one traffic light is included in a single image.
• The active light has a diameter of at least 4 pixels.
• From top to bottom the colors red, yellow, and

green are present.
• An arrow – if present – is either black on a red or

yellow background, or green on a black background
and points in one of the directions specified in
Tab. I.

A. Phase Classification
The goal of this first step is to find precise rectangular

ROIs Rg, Ry , and Rr around each of active lights. The
classification decision can be inferred from the presence
(and absence) of a ROI for a certain color. If only a single
ROI can be found, the current phase of the traffic light can
be classified as “green” for the presence of Rg, “yellow”
for the presence of Ry , and “red” for the presence of Rr.

For multiple ROIs only the simultaneous appearance of
Ry and Rr is considered valid. In any other case – no found
ROI or a different combination of ROIs –, the current input
image is regarded as invalid and not processed any further.
As mentioned before, this provides the possibility to validate
the results of the previous traffic light detection. The process
of obtaining the ROIs is described in the following.

Since the colors of the individual lights are clearly
defined, color segmentation is a reasonable approach to
identify candidate pixels which may be part of a light.
The threshold values for the segmentation are defined in
the HSV space. In this color space the intervals describing
the possible colors of a light are coherent, which makes it
possible to perform the color segmentation with only six
comparisons for each pixel and color. The hue primarily
defines the color while value and saturation can be chosen
in such a way that only bright pixels which may be part of
a light emitting source are segmented.



Fig. 2. Easily classifiable examples of the intermediate steps during the phase classification. In every image the left part shows the original input
image. The left-to-center part shows the HSV color representation of the image with the channels mapped to the RGB color space; the lights display a
bright greenish-blue color since they have high saturation and value, which is mapped to the green and blue color channels, respectively. The center part
shows the initial color segmentation with the parameters given in Tab. IV. The right-to-center part shows the color segmentation after the morphological
operators. Finally, the rightmost part shows the final ROI hypothesis for the light.

During this initial segmentation we aim to include as
many pixels of a light as possible while accepting erro-
neously segmented pixels which will be removed in subse-
quent processing steps. From the segmentation we receive
three binary images Isg , Isy , and Isr for the green, yellow, and
red color definitions respectively, where candidate pixels are
marked as 1 while the remaining pixels are set to 0.

In order to remove noise and small errors we perform
an opening on Isy and Isr . Because the pictogram on a green
light is inverted, this procedure is not suitable for the seg-
mented green pixels. The illuminated ones are smaller and
not entirely connected since there is a small gap between the
two parts of the arrow. Applying an opening, one would risk
to delete correctly segmented pixels which carry valuable
shape information for the second classification step. Thus,
we perform a closing on Isg in order to close said gap if
an arrow should be present. As structural element, a cross
with the size of 3× 3 pixels is used.

Based on these denoised binary images we want to
determine the position of the actual light. In order to do
this it is necessary to identify the number of connected
segmented regions. If more than one region for a certain
color is present, it has to be decided which one – if any –
is most likely to describe a light. We approach this problem
by performing a clustering on the segmented pixels which
is based on the 8-connected neighborhood of each pixel and
can return several clusters Ci

g , Ci
y , and Ci

r, where i is the
running index for all clusters of a single color.

This clustering is refined by joining clusters that are
particular close to each other. Two clusters of a color are
merged together if the size of the bounding box around
both regions exceeds the summed size of both individual
bounding boxes by less than a certain amount tgrowth ; i. e.,
if

s(Ci
x ∪ Cj

x) <
(

s(Ci
x) + s(Cj

x)
)

· tgrowth , (1)

where x denotes one of the colors and s(·) returns the size of
the bounding box around a cluster. This allows to gather all
pixels of a green light in a single cluster even if the closing
operation was not able to close the gaps. This is especially
important for red and yellow lights with pictograms where
the opening may have split the light in separate regions.

After the clustering, each clustered region is validated
with respect to their size, shape, and location in the image.
We require an active light to have a diameter of at least
4 pixels, which can for convenience be expressed in the
configurable threshold tdiameter . Smaller clusters cannot
represent a valid light and can, thus, be ignored.

A single light is roughly circular; therefore the aspect
ratio of a clustered region should be close to one. In some
cases we observed a failure of the color segmentation to
accurately segment the top half of lights with an arrow
to the top. Therefore, we chose a rather loose threshold
taspect = 2 for the aspect ratio – if the length of one side
of the bounding box amounts to more than double the length
of the other side, the current cluster is discarded.

Due to the strict layout of traffic lights – as stated
in the assumptions at the beginning of this section – we
require that red segmented pixels need to lie in the upper,
yellow segmented pixels in the middle, and green segmented
pixels in the bottom third of the input image in order to
belong to the respective light. We enforce this requirement
by checking the area of the cluster’s bounding box that
overlaps with the respective third of the image an applying
a threshold tintersect . Let It be the top third of the image;
a cluster is discarded if

s
(

It ∩ Ci
r

)

< s(Ci
r) · tintersect . (2)

A rather small value of tintersect allows for less accurate –
and therefore faster – detectors since the traffic lights can
be slightly off-center.

In many cases this filtering process already removes
all clusters except for the correct one around which we
can construct the final ROI Ri. If there should still be
multiple hypotheses for the location of the light, we simply
choose the largest one. After that we end up with at most
one ROI for each color. We observed that in some cases
ROIs are found around objects with similar colors in the
background of the traffic light; e. g., a priority sign that
appears at the same height as the yellow light. These errors
– as well as other wrong detections – share the aspect, that
the ROIs are comparatively small. However, they can not be
eliminated solely on their size since they are still big enough

Fig. 3. In this example the color definitions for red and yellow overlap (as
detailed in Sec. V). This is indicated by orange color in the segmentation
images. The shapes of Rr and Ry are adapted so that they do not intersect.



Fig. 4. Examples that are more difficult to classify. The structure of each individual image is identical to those in Fig. 2. Left: Here a large part of
the background was segmented as yellow; due to the check for the maximal aspect ratio our algorithm was able to correctly detect only the green light.
Middle: Multiple hypotheses for a yellow light exist; all erroneous ones could be eliminated due to their size and position. Right: The foggy environment
led to a simultaneous segmentation of the light as red and yellow; due to its position, the light could be identified as red.

to resemble a dim light of a traffic light that was not cut out
accurately. If ROIs of different colors were found, we have
the possibility to validate their sizes with respect to each
other. Again we apply a threshold tsize on the maximal size
differences between two ROIs Ri and Rj . Ri is removed if
s(Ri) · tsize < s(Rj).

The appearance of hypotheses Rr and Ry for the red
and the yellow light at the same time gives us additional
opportunities for improvement. Due to the layout of the
lights, Rr and Ry should be vertically centered and should
not intersect. We adapt the horizontal coordinates of the
ROIs to enforce the centering and remove intersections
by shrinking the larger ROI. An example where this is
necessary is given in Fig. 3.

After this step we have obtained the final ROIs which
we can infer the phase classification result from. Figure 2
gives an overview of the intermediate steps described so far.
Table II summarizes the adjustable threshold parameters that
have been applied.

B. Pictogram classification
Besides wanting to obtain the best possible classification

result there is another reason to invest large effort in finding
ROIs around active lights. These ROIs serve as input to the
next step – the classification of the pictograms on the lights.
The process that is described in the following is performed
on the contents of each ROI individually – for each ROI
a classification result is calculated. In the case of multiple
detected ROIs these results are compared afterwards; if they
contradict each other, no final decision regarding the arrow
direction can be made.

TABLE II. THE DIFFERENT PARAMETERS THAT TAKE EFFECT

DURING THE PHASE CLASSIFICATION STEP, THEIR MEANING, AND THE

VALUES WE CHOSE FOR THEM.

Variable Meaning Value

tdiameter
Minimal diameter of a traffic light in
pixels

4

taspeact Maximal aspect ratio of segmented area 2

tgrowth

Maximal factor the joined ROI might be
bigger than both individual ROIs during
the clustering

1.5

tintersect
Minimal amount of a ROI that needs to
lie in its respective third of the image

0.3

tsize
Maximal factor a ROI is allowed to be
smaller than another ROI

2

We applied state-of-the-art machine learning algorithms
for the classification. While classification on the raw image
data might be possible we searched for descriptive image
features which expose the most relevant information for
classification. The arrows on the lights are mainly defined
by their differently oriented edges, which led us to the
decision to use Histogram of Oriented Gradients (HOG)
features [9]. HOG features are invariant against translation
and scaling and have been proven efficient for several other
detection and classification tasks [10], [11].

The HOG features are calculated on cut out regions of
the original input image defined by the ROIs. Following
the recommendation of the original authors, the gradients
themselves are calculated on each RGB color channel indi-
vidually and the maximum is chosen. To ensure consistent
results and to simplify the classification procedure by using
feature vectors of identical length, we scale all ROI images
to 24× 24 pixels before applying the HOG descriptor. This
includes downsampling larger ROIs.

Fig. 5. In some cases the upper part of a yellow arrow to the top is cut
off. A ROI can still be found, however it only includes the bottom part
of the arrow containing the straight line. By using a separate classifier for
the yellow lights we account for this source of errors.

Since the green pictograms are inverted, they should
be fed into a separate classifier. The red and yellow lights
however could be processed by a single classifier. Neverthe-
less we decided to use one distinct classifier for each color.
This decision was made because the classifiers are trained
with the ROI images that are created as described in the
previous section. Depending on the parameter settings, the
ROIs of the red and the yellow lights might have a different
structure; e. g., the head of yellow arrows pointing to the top
is often cut off (see Fig. 5) while this problem did not occur
with red lights. By using separate classifiers for each color
we hope that the classifiers have a better chance to adapt to
the characteristics of the different colors.

In order to solve the problem of classifying large, real-
valued vectors, many efficient algorithms in the field of
machine learning have been established. Since we have to



distinguish between more than two different arrow direc-
tions, only multi-class classifiers are suitable. We tested
classification with three different approaches: Linear Dis-
criminant Analysis (LDA) [12], K-Nearest Neighbor Classi-
fier (kNN) [13], and Support Vector Machines (SVM) [14],
which are briefly presented in the following.

a) Linear Discriminant Analysis: The LDA attempts
to find a linear separation between the classes while mini-
mizing the variance of the samples within each and maxi-
mizing the variance in-between different classes. One of the
main advantages of the LDA is its universal applicability
since it does not depend on parameters that have to be
tuned beforehand. Additionally, classification of a single
sample can be done very fast and efficient which makes it
practicable in environments that require real-time capability.

b) K-Nearest Neighbor Classifier: During the train-
ing phase, the feature representation of all training examples
and their labels are simply stored – for a shorter processing
time in an efficient tree structure. The kNN classifier then
assigns a label to a new example based on the labels of the
k nearest neighbors of that example in the feature space.
The performance of this classifier strongly depends on the
parameter k which determines the number of neighbors
that should be taken into account. Classification of a single
example is more time consuming compared to the other
methods since it is necessary to find relevant adjacent
examples in the feature space. However, real-time capability
can usually be ensured.

c) Support Vector Machines: A few training exam-
ples are selected as the eponymous Support Vectors that
define the class separation. They are chosen such that the
margin to the separating hyperplane is maximized. SVMs
have the possibility to allow wrong classifications during
the training phase to avoid overfitting. The parameter C
determines how strong such a misclassification is penalized.
For small C it is more important to maximize the margin
than the adaption to the examples of the training dataset.
We use non-linear SVMs with a Gaussian RBF kernel. They
introduce an additional parameter γ, which determines the
flexibility of the separating hyperplane. A small γ leads to
a greater flexibility but also increases the risk of overfitting
during training. Originally, SVMs are designed for binary
classifications; by using a certain combination of binary
SVMs and sophisticated training methods however, they can
also be applied to multi-class classification. In the available
Shark implementation, classification with an SVM is only
marginally slower than with an LDA.

An evaluation of the quality and efficiency of these three
methods for the problem at hand is given in Sect. V.

The final classification result is produced as a combina-
tion of the labels for the phase and the pictogram. In case of
contradictions in either classification step we decided in our
implementation to return a label belonging to an additional
error class. Depending on the desired field of use it might
also be suitable to return the most plausible label.

IV. EXPERIMENTAL SETUP

For our experiments we acquired a dataset consisting of
1802 single cut out image sections of german traffic lights
containing 946 green traffic, lights 230 yellow traffic lights,
509 red traffic lights, and 117 red and yellow traffic lights.
The pictograms are distributed such that 1180 display no

TABLE III. THE TOTAL AMOUNT OF DATA AVAILABLE FOR EACH

CLASS. THIS DATA IS SPLIT INTO TRAINING (70 %) AND TESTING

(30 %) DATASETS.

None Top Left Right

Green 668 167 81 30

Yellow 161 48 6 15

Red 254 49 190 16

Yellow-Red 97 8 12 0

Empty 125

arrow, display an arrow to the left, display an arrow to the
top, and 61 display an arrow to the right. Furthermore we
added 125 images that do not contain a traffic light but were
nevertheless selected by a Viola-Jones detector [15]. The
distribution of available images is detailed in Tab. III. It can
be seen, that some classes are underrepresented; e. g., we
had only six images of a yellow traffic light with an arrow to
the left. Therefore, some results may not be representative
and would benefit from additional data.

We also considered using a publicly available bench-
mark – the only relevant being the LARA traffic lights
recognition benchmark1. However, the lights in this bench-
mark do not display pictograms and the overall variety is
rather low since a majority of the images were taken waiting
in front of red traffic lights. Therefore it was unsuitable for
our demands and we decided against using it.

One possible approach to this problem might follow the
idea of Salmen et. al [16], who used Google Street View
to gather large amounts of training and testing data for
traffic sign recognition applications in very little time. They
accessed the image via the Street View API and applied
a Viola-Jones detector trained on traffic signs to extract
hypotheses. For our needs, the same approach could be
taken with a detector for traffic lights.

For further experiments we randomly divided all images
into a training and a test set with the former containing
1355 (roughly 70 %) and the latter containing 572 (roughly
30 %) samples. We only used the images contained in the
training dataset for developing the method for the phase
classification described in Section III-A as well as training
the classifiers described in Section III-B.

The overall training and testing procedure was divided
into two parts according to the two parts of our method.
No explicit training is necessary for the phase classification
since all relevant parameters were already adjusted by hand
during the development according to the training dataset.

TABLE IV. THRESHOLD DEFINITIONS IN THE HSV SPACE THAT

WERE USED FOR EACH INDIVIDUAL TRAFFIC LIGHT COLOR. THESE

MIGHT HAVE TO BE ADAPTED DEPENDING ON THE ATTRIBUTES OF THE

CAMERA.

Green Yellow Red

Min Max Min Max Min Max

Hue 85 149 10 45 250 12

Value 75 255 120 255 120 255

Sat. 70 255 65 255 120 255

1http://www.lara.prd.fr/benchmarks/trafficlightsrecognition



TABLE V. CONFUSION MATRIX FOR THE COLOR CLASSIFICATION.
THE ROWS INDICATE THE GROUND-TRUTH LABEL WHILE THE

COLUMNS INDICATE THE OUTPUT OF OUR CLASSIFIER. FOR BETTER

READABILITY THE LABELS IN THE HEADER ARE ABBREVIATED.

G Y R YR E

Green 0.98 0 0 0 0.02

Yellow 0 1 0 0 0

Red 0 0 0.99 0 0.01

Yellow-Red 0 0 0.18 0.79 0.03

Empty 0.03 0.13 0 0 0.84

The color thresholds we chose for our data are displayed in
Tab. IV.

It is noteworthy that the hue is defined circularly which
explains the minimum of 250 and the maximum of 12 for
red lights. Additionally the definitions for red and yellow
lights partly overlap for hues of 10–12. This is due to our
training data in which – depending on the environmental
conditions – rather dark yellow lights can fall into the
regime of a bright red light as displayed in Fig. 6.

In an application scenario, the pictogram classifiers
will receive the ROIs produced by this first step as their
input. We also want this relation to exist during training;
therefore we run the phase classification on the original
training dataset and build a new training datatset for the
pictogram classification from only those ROIs that were
segmented correctly. Thus, the training dataset for the
pictogram classification consists of images of single colored
lights subdivided by their arrow direction. Since we use a
different classifier for each color, we also divide the new
training set by color, so that each classifier is trained only
on examples of a single color.

The kNN classifier and the SVM provide tunable pa-
rameters that affect the overall classification quality. All of
these parameters were adjusted by the means of a 3-fold
cross-validation. The number of neighbors k is an integer;
therefore we simply compared the performance of the kNN
classifier on the validation set for all k ∈ [1, 10]. Figure 7
gives an overview of this performance for different k. The
parameters C and γ of the SVMs were adjusted using a
grid search with the Jaakkola Heuristic [17]. For the LDA
no parameter tuning is necessary.

For our implementation we used the Shark Machine
Learning Library2 [18], which provides a wide range of
state-of-the-art algorithms for classification as well as other

Fig. 6. The color of red and yellow lights might be nearly identical which
explains the overlap in the thresholds for the hue in Tab. IV.

2http://image.diku.dk/shark

1 2 3 4 5 6

0.05

0.1

0.15

Number of Neighbors k

V
al

id
at

io
n

E
rr

o
r

Green kNN Yellow kNN Red kNN

Fig. 7. The error of each kNN classifiers on the validation set for different
values of k ∈ [1, 6]. Minimal values are found at k = 1 for green and
yellow kNNs and at k = 5 for the red kNN. For better readability we
omitted values between 7 and 10 – here the performance on the validation
set is worse.

machine learning problems like supervised or unsupervised
learning, optimization, or regression. All experiments were
conducted on an Intel Core i7-2630QM CPU with 8 GB
ram.

V. RESULTS

Following the two-part training routine, the evaluation
will also be divided into two parts. At first we present the
quality of the phase classification in Subsec. V-A followed
by a comparison of the different classifiers in Subsec. V-B.
Conclusively we give an overview of the combined perfor-
mance.

A. Phase Classification
The phase classification achieves an overall classifica-

tion quality of 96.7 %. Figure 8 shows precision and recall
for all classes. In Tab. V the confusion matrix for the phase
classification is displayed. It can be seen that there exist
mainly three causes of error. Firstly, it can happen, that
an existing light is not found – e. g., 5 green traffic lights
have been labeled as “Empty”. Secondly, in some cases the
yellow light of a traffic light that is simultaneously red and
yellow could not be found. Furthermore, our algorithm is
not able to identify all erroneous detections since it labels
6 images containing no traffic light as “green” or “yellow”.

For such errors, traffic light recognition pipelines usually
contain a tracking module, which is able to smooth small
inconsistencies in the detection and ensures a stable detec-
tion over several frames before it is considered for further
processing.

Green Yellow Red Yellow-Red Empty

0.6

0.8

1

Precision Recall

Fig. 8. Precision and recall for the phase classification step.



TABLE VI. CONFUSION MATRIX FOR THE PICTOGRAM

CLASSIFICATION WITH THE SVM.

None Top Left Right

None 0.98 0.01 0.01 0

Top 0.14 0.85 0.01 0

Left 0.16 0.03 0.81 0

Right 0.25 0 0 0.75

B. Pictogram Classification
For the pictogram classification step we evaluated 9

classifiers in total. An overview of their classification qual-
ity – on each color individually as well as the overall
performance – is given in Fig. 9. It can be seen that the
LDA systematically performs worst, although still showing
89.7 % correct classifications. The kNN classifier exhibits
slightly better results with 90.3 % correct classifications.
SVMs perform best with an overall quality of 92.8 %.
These results suggest to consider only SVMs for our further
studies.

In Tab. VI, the confusion matrix for the arrow classifi-
cation is displayed. The matrix shows that most errors are
made by classifying lights with an arrow as a plain light
without a pictogram. We investigated the images which
were classified erroneously by the SVM and found that
predominantly small images that were captured further away
from the traffic light were affected – e. g., those shown in
Fig. 11.

For more accurate results we divided the training data
for the arrow classifiers into three parts based on the
diameter of the active light. This can also be understood as
dividing them with respect to the distance between camera
and traffic light. Lights with a diameter of 8 pixels or
fewer were denoted as “Far”, lights with a diameter of
more than 14 pixels were denoted as “Close”, and all lights
between were labeled “Medium”. The classification errors
with respect to this diameter are shown in Fig. 12.

This demonstrates that classification of nearby traffic
lights is more robust and less error prone than the clas-
sification of distant traffic lights. While the phase of distant
traffic lights can still be identified with rather high accuracy,
the classification of the pictogram is more difficult. For the
final application scenario of traffic lights recognition this
implies, that the initial guess after first observing a traffic
light from a distance might not be correct. However, when

Green Yellow Red Overall

0.05

0.1

0.15

T
es

t
E

rr
o
r

LDA kNN SVM

Fig. 9. The amount of error on the test dataset for all classifiers. Since
individual classifiers are used for each color, one bar represents a single
of these classifiers. The rightmost group shows the combined performance
of all classifiers of a single type (LDA, kNN, or SVM).

None Top Left Right

0.6

0.8

1

Precision Recall

Fig. 10. Precision and recall for all classes in the pictogram classification
step.

Fig. 11. Examples of traffic lights that were captured from further away.
Their lights have only a very small diameter and it is therefore rather
difficult to recognize a pictogram – even for the human eye.

the traffic light is approached, the classification gets more
stable – especially when applying one of the aforementioned
trackers.

Another important observation that can be deduced from
Fig. 7 and 9 is that pictograms on red lights are considerably
harder to classify than their counterparts on yellow lights.
A possible explanation is that red lights are darker than
yellow ones in general, which leads to a less prominent
gradient between light and arrow. Figure 13 shows some
examples of those red traffic lights with a pictogram that is
hard to recognize – even for the human eye. It is subject to
further research to determine if this difficulty is an inherent
property of the traffic lights recognition problem or if it can
be countered by the use of different cameras.

C. Combined Performance
When evaluating the phase and the pictogram classifica-

tion steps at the same time, the overall quality is worse than
the individual amounts of correct classifications (96.7 % and
92.7 %). Here we achieve an error of 10.1 % with 89.9 %

Close Medium Far Overall

0

0.05

0.1

0.15

T
es

t
E

rr
o
r

Phase Classif. Pictogram Classif.

Fig. 12. The error on the test dataset with respect to the distance between
camera and traffic light. This distance has direct implications on the size of
the observed lights. “Close” represents lights with a diameter of more than
14 pixels. “Far” represents lights with a diameters of 8 pixels or fewer.
Lights with a diameter between 8 and 14 fall into the category “Medium”.



of correctly classified images.
When integrating an algorithm in a larger pipeline, the

runtime is always an important aspect. Even algorithms that
are real-time capable when executed alone might not be
fast enough when sharing resources with other applications.
Depending on the used machine-learning classifier, the fol-
lowing amounts of time are needed by our implementation
to classify a single image from the testing dataset:

• LDA: 0.24 ms
• kNN: 4.69 ms
• SVM: 0.51 ms,

where the speed of the kNN classifier is tied to the number
of neighbors that need to be considered.

As stated above, the qualitative results suggest using the
SVM for pictogram classification. Even though it requires
the double amount of time compared to the LDA, with a
runtime of less then one millisecond it should still be fast
enough even for highest demands.

Fig. 13. Examples of pictograms on red lights. It can be seen, that even
on lights of medium size the arrow is very blurry and hard to recognize.
The two left images show arrows to the left, the two middle images to the
top, and the two images on the right to the right.

VI. CONCLUSIONS

In this paper we presented a method for efficiently
classifying the color phase and the arrow pictogram of a
traffic light for video-based driver assistance. A tailored
segmentation pipeline, state-of-the-art image features, and
supervised learning methods were applied successfully.
With a correct classification rate of 96.7 % and 92.7 %, both
sub-tasks exhibit a very good individual performance, as
well as a considerable quality of 89.9 % when combined. All
results presented here were achieved on individual images,
while most errors occur on small images that were captured
from a far distance to the traffic light.

Compared to the work of [8], our results seem worse.
However, Cai et. al require a traffic light to occupy at least
300, and an individual light at least 50 pixels before they
attempt classification. Our approach in contrast is able to
process even smaller lights. Ignoring samples from the “Far”
category, our method surpasses their classification rate of
91 % while using significantly less processing time.

By means of the developed method one is able to easily
complete an existing real-time capable traffic light recog-
nition module and, thus, offer detailed state information to
the driver or autonomous or guided driving systems.

Nevertheless, some further improvements are targeted. A
first step is the development of better means to reject wrong
detections during the phase classification step. It also needs
to be investigated if the error of the pictogram classifiers
can be reduced by employing a larger dataset or if further
measures are necessary.

Another promising approach is the introduction of tem-
poral integration of the classified state and, therewith, the
track-based evaluation on video sequences. Thus, the sig-
nificance of single misclassifications will be reduced, which
might boost the overall performance of our system.

REFERENCES

[1] M. Omachi and S. Omachi, “Traffic light detection with color and
edge information,” in Proceedings of the IEEE International Con-

ference on Computer Science and Information Technology, 2009,
pp. 284–287.

[2] C. Wang, T. Jin, M. Yang, and B. Wang, “Robust and real-time traffic
lights recognition in complex urban environments,” International

Journal of Computational Intelligence Systems, vol. 4, no. 6, pp.
1383–1390, 2011.

[3] J. Gong, Y. Jiang, G. Xiong, C. Guan, G. Tao, and H. Chen, “The
recognition and tracking of traffic lights based on color segmentation
and camshift for intelligent vehicles,” in Proceedings of the IEEE

Intelligent Vehicles Symposium, 2010, pp. 431–435.

[4] R. de Charette and F. Nashashibi, “Real time visual traffic lights
recognition based on spot light detection and adaptive traffic lights
templates,” in Proceedings of the IEEE Intelligent Vehicles Sympo-

sium, 2009, pp. 358–363.

[5] V. John, K. Yoneda, B. Qi, Z. Liu, and S. Mita, “Traffic light
recognition in varying illumination using deep learning and saliency
map,” in Proceedings of the IEEE International Conference on

Intelligent Transportation Systems, 2014, pp. 2286–2291.

[6] F. Lindner, U. Kressel, and S. Kaelberer, “Robust recognition of
traffic signals,” in Proceedings of the IEEE Intelligent Vehicles

Symposium, 2004, pp. 49–53.

[7] N. Fairfield and C. Urmson, “Traffic light mapping and detection,”
in Proceedings of the IEEE International Conference on Robotics

and Automation, 2011, pp. 5421–5426.

[8] Z. Cai, M. Gu, and Y. Li, “Real-time arrow traffic light recognition
system for intelligent vehicle,” in Proceedings of the IEEE Interna-

tional Conference on Image Processing, Computer Vision, & Pattern

Recognition, 2012, pp. 848–854.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2005, pp. 886–893.

[10] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human
detection using a cascade of histograms of oriented gradients,” in
Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2006, pp. 1491–1498.

[11] M. Dahmane and J. Meunier, “Emotion recognition using dynamic
grid-based HoG features,” in Proceedings of the IEEE International

Conference on Automatic Face Gesture Recognition and Workshops,
2011, pp. 884–888.

[12] T. Li, S. Zhu, and M. Ogihara, “Using discriminant analysis for
multi-class classification: an experimental investigation,” Knowledge

and Information Systems, vol. 10, no. 4, pp. 453–472, 2006.

[13] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,”
Multiple Classifier Systems, pp. 1–17, 2007.

[14] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass
SVM method? an empirical study,” in Multiple Classifier Systems.
Springer, 2005, pp. 278–285.

[15] P. Viola and M. Jones, “Robust real-time object detection,” Inter-

national Journal of Computer Vision, vol. 57, no. 2, pp. 137–154,
2001.

[16] J. Salmen, S. Houben, and M. Schlipsing, “Google street view
images support the development of vision-based driver assistance
systems,” in Proceedings of the IEEE Intelligent Vehicles Sympo-

sium, 2012, pp. 891–895.

[17] T. Jaakkola, M. Diekhans, and D. Haussler, “Using the Fisher kernel
method to detect remote protein homologies.” in Proceedings of

the International Conference on Intelligent Systems for Molecular

Biology, 1999, pp. 149–158.

[18] C. Igel, T. Glasmachers, and V. Heidrich-Meisner, “Shark,” Journal

of Machine Learning Research, vol. 9, pp. 993–996, 2008.


