
 978-1-4673-7681-5 ©2015 IEEE 2360

2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'15)

A Smartphone-controlled Autonomous Robot
Christian Bodenstein∗, Michael Tremer ∗, Jonathan Overhoff†, and Rolf P. Würtz∗†

∗ Institute for Neural Computation, Ruhr-University Bochum, Germany
† Department of Electrical Engineering and Information Technology, Ruhr-University Bochum, Germany

Abstract—We present a low cost autonomous robot, which is
controlled by a standard android smartphone. We describe the
complete mechanic and electronic setup. Stereo vision is derived
from the smartphone camera using a mirror system. We further
describe a dynamical system controller, which allows the robot to
navigate around a room towards a target while avoiding obstacles
whose position are estimated by the visual system. For heavier
computations, a laptop can be used via wireless LAN. Altogether,
this design is useful for a variety of mobile robot experiments.

Index Terms—android software, stereo vision, robot navigation,
dynamical system, robot hardware

I. INTRODUCTION

Autonomous robot navigation is one of the classical ap-
plication areas for natural computing algorithms. There are
many unsolved problems, which leave it as a very interesting
research field. To make it accessible to many students, robust
and cheap hardware is required. Searching for a low price,
powerful and robust physical vehicle we did not find anything
that fitted our needs. The minimal requirements were that it
should be able to navigate an average student flat with, e.g.,
carpets and door sills by visual control.

Smartphones are omnipresent in our society. We all have
them and taken everywhere we go and we also wonder every
once in a while how fast they are. They are faster by orders
of magnitude than what NASA had when they traveled to the
moon, we often hear. For AI applications, smartphones come
with a lot of useful features like computational power, cameras
and other sensors. In the present study, we built a mobile robot
and added some autonomous mobility features.

Beside the hardware platform we created a software plat-
form that is able to recognize three-dimensional obstacles from
the built-in camera of the smartphone. That data is used to
create a map which is fed into the controller code that steers
the robot. The software is available upon request.

This paper starts with the complete information and instruc-
tions to build the robot hardware using a standard smartphone
for control and vision. Then the software platform is described.
Finally we present some of the implemented behaviors.

II. HARDWARE

The robot hardware includes the chassis, the stereo vision
device and the control electronics, which form the interface
between chassis and smartphone.

A. Chassis

The chassis is responsible for moving around in the real
world. Driving a vehicle to a determined position with a com-
mon d.c. voltage motor requires a controlling signal adapted

Figure 1. A view of the robot with mounted smartphone and the mirrors
enabling stereo vision.

to the dynamic load of the motor. This depends on vehicle
mass, friction, velocity, acceleration, terrain inclination, and
the electrical impedance of the motor coils. Position feedback
of the motor axles is used to optimize the control signal,
allowing controlled regulation of the driving speed. Based on
this data, the actual position of the vehicle can be estimated by
odometry, which is notoriously awkward, because inaccuracies
accumulate over the entire moving distance. So the main
sensor for measuring distances positioning is the camera, but
odometry is used as an extra cue. From these requirements we
decided to use a caterpillar drive in combination with electrical
stepper motors as shown in figure 2.

1) Caterpillar Drive: The caterpillar drive allows great
contact to the ground at any time, so we can rely much better
on the odometry data. It is easy to handle and a robust way to
move the robot. A major drawback of this drive is that rotation
of the vehicle at slow speeds is difficult, because it depends
on a number of conditions like the ground’s friction.

2) Stepper Motors: Stepper motors do not need position
feedback of the axles for a controlled rotation like d.c. voltage
motors do. Instead, one full rotation is divided into a number
of equally sized steps. For each control impulse the motor
rotates by one step of constant size, what makes odometry
easy. Another advantage of stepper motors in comparison to
common d.c. voltage motors is the separation of spinning
control and torque control. For spinning the motor, an electric
current must flow through the coils in a defined sequence.
The speed of this sequence regulates the motor speed. The
amplitude of the current regulates the motor torque. As a

 2361

Figure 2. An internal view of the robot chassis and an exploded view of the
whole robot without the stereo vision device

result, our chassis is very accurate and easy to control. For
example when the robot needs to stand still on a slant, the
sequence just has to be stopped while the coil current remains
at the last sequence position. Now the current amplitude
regulates the robot’s holding torque.

A disadvantage of stepper motors is that movements tend
to be very abrupt. The resulting vibrations hinder the vision
device by introducing blur to the images. To smoothen the
movement and reduce vibrations we use a concept called
microsteps. In this concept, the coil currents are stepwise
increased as shown on the right in figure 4. We use the
microstepping controller A3979, which offers sequence gen-
eration in full steps, half steps, quarter steps and a sixteenth
of a step (compare section II-B2). We picked the 1/16 steps
setup, because in this mode the current shape is approximately
sinusoidal. This yields maximal smoothness, which is needed
for taking sharp camera pictures.

B. Control Electronics

In this subsection we take a closer look at the electronics
used to connect the software domain with the chassis. First we
shortly present the IOIO-OTG board, which acts mainly as an
interface between software and hardware. Then we introduce
the motor driver A3979. After that we describe the peripheral
electronics, which are required to make the system work.

1) IOIO-OTG board: We use an IOIO-OTG board for
communication between the smartphone and the chassis con-
trol electronics. This interface board can be plugged into an

direction

IOIO-Board

Lowpass

Amp
DC

f

Voltage
controlledF
oscillator

D
ig

ita
lFI

/O
P

W
M

FO
ut

pu
t

Vref

PFD

4Fbit
counter

Home

DMOS
Full-Bridge
Driver

DMOS
Full-Bridge
Driver

MicrosteppingF
MotorFDriverFA3979

StepperFMotor

on/off

Step

Figure 3. The Android-based IOIO-OTG board depicted here extends an
Android-based smartphone with 46 physical I/O pins and forms the interface
between the smartphone and the electronics, shown in the block diagram
below

Android smartphone via USB. Then the smartphone can access
the 46 physical I/O pins of the board. All pins can be used
for 3.3V digital I/O, but most of them have optional functions
like 5V digital I/O, analogue input and pulse-width modulation
(PWM). For more information, see [1]. In the main operational
mode as a host for the smartphone the IOIO-OTG board needs
an external power supply (5-15V) for operation. The board
charges the smartphone and provides a 3.3V/400mA and a
5V/2.5A power supply for external peripherals.

A disadvantage of the board is that the PWM ports can only
change the width of the emitted pulses during operation, but
not their frequency. Changes in PWM frequency cause intense
interruption and generating dynamic frequency signals is not
possible. As a result we are not able to create step impulses for
the motor drivers via PWM. Instead we use voltage controlled
oscillators for step impulse generation, which are controllable
via fixed frequency PWMs.

We use the on-board power supplies for powering the
motor drivers and a dual 4-bit counter chip. Furthermore,
five digital outputs and eight digital inputs are required for
controlling and monitoring these devices. Besides the two
PWMs for step impulse generation, the board generates two

 2362

H
o
m
e
M
ic
ro
st
ep
P
o
si
ti
o
n

H
o
m
e
M
ic
ro
st
ep
P
o
si
ti
o
n

100.00

70.71

–70.71

0.00

–100.00

100.00

70.71

–70.71

0.00

–100.00

Phase 2
IOUT2B

Direction = H
(%)

Phase 1
IOUT1A

Direction = H
(%)

Slow

Mixed

Slow

Mixed

Slow

Mixed

Mixed

Slow

Mixed

Slow

Mixed

SlowSlow

STEP Input

HOME Output

Phase 2
IOUT2A

Direction = H
(%)

Phase 1
IOUT1A

Direction = H
(%)

STEP Input

H
o
m
e
M
ic
ro
st
ep
P
o
si
ti
o
n

H
o
m
e
M
ic
ro
st
ep
P
o
si
ti
o
n

100.00

70.71

–70.71

0.00

–100.00

100.00

70.71

–70.71

0.00

–100.00

Slow

Slow

HOME Output

Figure 4. This image shows sequences of the electric currents driven through
the coils of the stepper motors (phase 1 and phase 2) by the microstepping
controller A3979. On the left, the full-step mode is shown; on the right the
half-step mode. The frequency of the incoming step impulses regulates the
motor speed; the more intermediate steps are made, the smoother the motor
is running. (Source: [2])

PWMs with fixed frequency and adjustable pulse width, which
are low-pass-filtered and then used as reference voltages for
the motor drivers. Another PWM is used as clock for a charge
pump. Five analogous inputs monitor every cell of the lithium
polymer battery and the bias voltage of the VCOs. 23 pins
remain for optional peripherals.

2) Microstepping Motor Driver A3979: The A3979 is a
motor driver for bipolar stepper motors with an output drive
capacity of up to 35V and ±2.5A. The driver offers up to
1/16 step microstepping. The A3979 automatically generates
a control signal for the motor coils, based on the following
digital and analogue data:

• step impulses - Every incoming step impulse rotates
the axis of the motor by one (micro-)step. The impulse
frequency defines the turning speed.

• reference voltage Vref - The maximum current amplitude
(at the top of the approximated sine wave in figure 4) and
thus the motor torque is user-defined by this analogous
reference voltage. The maximum value should not be
greater than 8·RS ·Imax, where RS represents the current
sensing resistor and Imax the maximum coil current, to
prevent the coils from overheating.

• analogous voltage VPFD (percent fast decay voltage).
This reference voltage regulates the de-energizing of the
motor coils. Thus the user is able to minimize vibrations,
which occur, when the shape of the coil current is
distorted.

The A3979 provides a feedback signal called home, which
consists of an impulse sequence. Each home impulse indicates
a defined position in the periodic motor control signal and thus
a completed full-step. The home signal is ideally tailored for
odometry. For more information about the A3979, see [2].

3) Peripheral electronics: The most basic peripheral device
is a power source which powers the whole system. We use a
lithium polymer battery with a nominal voltage of 11.1V and a
capacity of 1000mAh. We monitor each battery cell and shut

10µ
1000µ1000µ1000µ

10µ

100

100

VCC5

COM3

IN1

SD2

LO 4

VS 6

VB 8

HO 7 ,

,,,

,

C1

1N4148

IR2184

D2 D3

MUR810 MUR810

B
U

Z
11

B
V

B
U

Z
11

B
V

C2

1MR
3

1MR
5

D1

R6

R4

PWM
ufrommIOIOl

20mVmutommotor
powermsupplyl

11i1V
11i1mVmuLithiummPolymermaccumulatorl

Figure 5. Circuit diagram of the charge pump (circuitry based on [3])

Vcc

CN

Cb

TR

Two

Swo

Vee

Bias

bb--µ

5WNk

5W
Nk

7
5

k
z-

k

N
b
z
d 5

6
7
8

Cz

Rd
RN z

b
N

PCN

R
b

R
z

Cb
z5n

R
5

N-
kN--n

R
6

R
7

R
8

R
9

5W
Nk

bk
bk

StepIImpuls
gtoIAz979r

BiasIvoltageI
monitorIgtoIIOIOr

b-kPWM
gfromIIOIOrI XRMbb-9

TSI9NbIN

NbIVIgstabilizedr

NbIVIgstabilizedr5IVIgfromIIOIOr

Figure 6. This image shows the circuitry for generating an impulse sequence
with variable frequency via a PWM signal with fixed frequency.

the whole system down when a cell voltage drops under a
level of 3V.

The motor drivers need almost twice as much voltage as the
battery delivers for optimal performance. So we raise the bat-
tery voltage with help of a charge pump up to approximately
20V (see figure 5). The clock frequency determines the capac-
ity and the ripple voltage of the charge pump and therefore
needs to be adjusted to the respective power consumption.
We use low-ESR-type (equivalent series resistance) pumping
capacitors and have arranged them in parallel to minimize
voltage loss and improve heat dissipation.

We generate the step impulse signals with voltage controlled
oscillators (VCOs). As demonstrated in figure 6, the low-pass-
filtered PWM has to be amplified before actuating the VCO
circuitry. For this task we to use rail-to-rail amplifiers because
the voltage level of the control signal can drop to zero. Since
the output frequency of the VCOs depends on the supplied
voltage, they receive their own stabilized 12V power supply.

Caused by our way of generating the step impulse signals,
it is not very accurate to do odometry calculations with the
input signal data. Instead we use the feedback signals of the
motor drivers. But the IOIO-OTG board is not able to detect all
feedback impulses when the robot drives at a medium speed.
So the impulses are counted by two 4-bit counters which
provide an output signal for each bit.

C. Stereo vision device

The main task of our robot is to reconstruct a virtual image
of its environment, so it can move around in it. Precisely
imaging the physical world in three dimensions requires two
(two-dimensional) images of the scene as seen from different

 2363

Virtual
Camera Top

Virtual
Camera Bottom

Smartphone

Common field of view

M
irror 1

Mirror 2

Figure 7. Schematic illustration of the optical system for Stereo Vision with a
single camera; the angle and offset between the two mirrors create two virtual
camera positions; the distance between these virtual camera positions is fix,
so it can be used for three-dimensional reconstruction of the environment.

camera positions. If the distance between the two virtual
cameras is known, three-dimensional reconstruction of the
scene is feasible. So we needed to build a construction that
provided us with the images of two virtual cameras, actually
using only the smartphone camera.

Taking two pictures at different positions and measuring the
distance with help of odometry is possible, but not optimal.
The inaccuracies described above distort the image of the
virtual environment even more. So we arranged two mirrors
in the way figure 7 demonstrates. The distance between
the two virtual camera positions results from the angle and
offset between the two mirrors. The horizontal position of the
smartphone is very stable when the vehicle is in motion.

D. Smartphones as a brain for robots

The job the smartphone has to do in this project is to control
the robot. The robot is able to move itself to where we want
to get it, but it has no idea about in what environment it is
operating. A brain is needed that can see and understand what
it needs to do.

There are plenty of commercial embedded solutions avail-
able. They all are basically capable of sending out signals to
the hardware which then starts or stops a motor or returns
sensory data. That is basically the same what we are doing
here, too.

The difference comes with the software we are running here.
The Android platform offers loads of things other embedded
solutions do not have. Especially in a software project, where
rapid prototyping of ideas is necessary, the hardware interfaces
should be contained in the robot’s software development kit.

Android comes with a very well designed and elaborated
programming environment which is well documented and has
an API with very rich functionality. The smartphones on
which Android is running are fast and cheap. The performance
increases by orders of magnitude with every new release and
and multiple CPU cores can be found in all of them. Another
restriction is the amount of memory available of the phone,
which is also not so much of a worry on recent smartphones
as it is on other embedded robot platforms.

The powerful community around Android, which provides
the world with free libraries for all sorts of tasks, makes the
application running on the robot very versatile so that it can
do almost any task you can imagine. In the end, we should
not forget to mention that smartphones are cheap compared to
embedded computers.

For our test case we used a Samsung Galaxy Nexus,
which was released in October 2011. It comes with a ARM
Cortex-A9 dual-core processor, clocked at 1.2 GHz and 1GB
RAM. The integrated camera takes pictures in a resolution
of 5 megapixels. Additionally, the phone provides a lot of
useful sensors like compass, accelerometer, gyroscope and
light sensor.

III. SOFTWARE

A. Objective

One of the goals of this project was to create a versatile
platform for robots, which can easily be enhanced with new
functionality. It became quite clear that an embedded solution
was not a suitable solution, because the high costs of the
hardware and the high amount of hours we had to put into
developing some sort of operating system that was able to
talk to the hardware and to run the robot.

The search went on with the following in mind:
• The platform should have interfaces for communicating

with basic hardware like the camera.
• There should be a user interface, which shows the robot’s

status in real-time.
• Prototyping ideas should be very easy.
• As we were going to run some heavy computation, there

should be enough performance available.

B. Design

Eventually it became clear, that at the current state of the art
smartphones were not able to perform all tasks we demanded
from them. Lots of modern libraries are able to use the GPU
to speed up calculations, but being limited by the power of
the used smartphone was not an idea we liked.

Hence we created an architecture that was able to connect
to a system with much more power in order to do the
most complicated calculations there. In our experiments, we
discovered that most of our concerns regarding the inefficiency
and lack of performance of the smartphones were false, but due
to the design we chose, we can cope with much more complex
calculations, even with cheap hardware. Figure 8 shows the
distribution of software modules on the smartphone and an
optional laptop.

1) App & Client: Dividing the whole application into two
parts comes with a long list of benefits. Most importantly, we
were able to focus on the task that should be done in the
individual parts of the software.

The task of the app, which is the part running on the
smartphone, is to control the robot. That is reading and
processing sensor data to be used for calculations and also
sending control data to the motors. It is realized as an Android

 2364

Client

Server

CarController

Dynamics

IOIOCController

TCPServerTCPClientGUI Activity

MapVehicle

ObjectFollowerObjectRecognizer Structure From Motion

Portable Modules

Computer Modules Smartphone Modules

communication

signals to/from robot

Figure 8. This figure shows the main software modules. Hardware controllers run directly on the smartphone, for interaction a GUI on the laptop is used.
Portable modules can run on the smartphone but may also be moved to the laptop if more computational resources are required.

App that is running a server demon, the Client (figure 9) can
t to in order to receive the sensor data and send control data.

To be able to move parts of the application from the App to
the Client and vice versa, we chose Java as the programming
language for both App and Client.

C. Implementation

A modular concept of the application is very important to
be able to change things very easily in the future. Therefore
we created a class concept where individual classes can be
replaced by others, so that other robots can be controlled or
the brain can be changed to make the robot behave differently.

1) Class Model:
a) Vehicle (Client): The Vehicle class is the repre-

sentation of the physical robot in the software. It implements
the most basic operations like sending control data to the robot
via its control connection. It is also responsible for getting
sensor data and camera images from the robot and stores them,
so that the rest of the application can easily access the data
and make calculations with it.

This class does not contain any high-level operations like
steering the robot to a certain position, but is only able to set
the speed of the motors.

b) CarController (App): The CarController
class is the equivalent of Vehicle in the App. It receives
motor commands from Vehicle and sends them to the
hardware as well as collecting sensor data.

c) Map (Client): All knowledge about the robot’s envi-
ronment is stored in a map. This map is shown in the Client
application and used to safely steer the robot around obstacles
and towards the target.

Because of the huge size of the map and the small amount
of obstacles in the environment Map is realized as a linked
list, in which each point is represented by a unique index and
a probability of how likely it is that there is an obstacle at
a certain coordinate in the map. Additionally, the trail of the
robot is stored, so that one can trace the path the robot has
chosen on the map.

d) Helper Classes: The Coordinate class is used
to make calculations with geometrical data more easy. It
implements functions to compute the distance to an other
Coordinate, to normalize and compute the length. To get
data from the camera of the robot, an extra class which is
called VehicleCamera has been created to take care of
this.

2) Control Connections: For a seamless link between the
Client and App software parts, a transparent and fast connec-
tion which is able to transport any sort of data is required. For
the start this was sensor data which gives us information about
the state the robot is in. After that, we required to send control
information, so we could instruct the robot to do certain
actions like moving somewhere. All modern smartphones
come with a wireless LAN interface, which is suitable for
this need. There is enough bandwidth available to transport
a huge amount of data per second and it has a much better
range than other PAN technology like Bluetooth, which also
offers much less bandwidth.

Through the wireless link, we created a TCP connection
across which serialized Java objects can be transmitted. The
App has the role of the server, the Client part of the software
is also the TCP client which connects to the server.

To create a proper standard of the messages that

 2365

Figure 9. This is the main window of the Client application that is used to
show the path and map data of the robot. It is also possible to manually send
control commands to the robot to let it move.

are transferred between both communication partners, the
TCPMessage class has been created. It is able to wrap itself
around sensory data and more information and takes care of
encoding and decoding all data. For any kind of action the
client has to make a request and the server only replies to that
with an other TCPMessage object. The server is not able to
initiate any transfer of information by itself.

a) Video Streaming Connection: A more difficult matter
was the fast transfer of camera images in high resolution. This
data is not only needed to show a preview in the Client GUI,
but all computation is made on the image data as well.

The camera data is encoded in JPEG format, which already
provides a high level of compression. The compression is lossy
and the more the data is compressed, the more information is
dropped from the image. If the compression level is so high
that there are compression artifacts which interfere with the
analysis of the image even when they not visible to the human
eye.

On the other hand, the wireless link is blocked for a long
time if an image in high resolution is transferred to the client
and no control data can be sent to or sensor data can be
requested by the App. To overcome this inconvenience, we
added a second TCP connection, which essentially works like
the first one, but is dedicated to only transfer image data.

Two different kinds of data are transferred to the client.
The first one is image data in high resolution which is used
for computation. The metadata of such an image is also very
important, because for learning the environment, the software
must know where the snapshot was taken. A second kind of
image data the Client may request is a much more compressed
snapshot from the camera which is only used to render the
preview in the Client GUI. There is no additional metadata
about the robot’s position included.

The two-connection architecture enables us to keep the
control connection very responsive, even if we ask for high-

resolution image data. The final bottleneck is the wireless
connection, for which better hardware can compensate.

IV. BEHAVIOR

For the robot to be autonomous rather than just a remotely
controlled vehicle, it is necessary to use the provided sensor
data and transform them into motor control commands. No
other built-in smartphone sensors, e.g. ultrasound sensors, laser
distance meters or infra-red sensors but the camera of the
Android device have been used.

As image processing has very high computational costs, we
decided to use the image stream we already implemented and
did the image processing on a laptop computer. In future, it
is likely that smartphones will have enough power to perform
this calculation themselves. All written code is highly portable,
so that it would run on the smartphone as well.

A. Wheel Odometry

For map building and obstacle avoidance it is important
to know how far the robot has moved over time. This kind of
movement tracking is done by wheel odometry. Every time the
robot’s wheel is moving by one tick, a counter is increased.
From that the robot’s movements are calculated as follows:

Let dl and dr be the distances driven by the left and right
wheel, respectively and r the distance between the left and the
right wheel. Now the change of the angle can be calculated
by ∆φ = dr−dl

r . ∆s = dr+dl
2 is the moved distance since the

last measurement.
The change of the x and z coordinates can be calculated

by:

∆z =

{
dl cos(φ) if dl = dr
∆s
∆φ cos (π2 + φ− ∆φ) + cos (φ− π

2) else
(1)

∆x =

{
dl sin(φ) if dl = dr
∆s
∆φ sin (π2 + φ− ∆φ) + sin (φ− π

2) else
(2)

Wheel odometry is acceptable for short distances. But for
longer distances, the errors generated by lost ticks, bad grip
and friction will accumulate and the odometry becomes very
inaccurate.

B. OpenCV

The Open Computer Vision Library (OpenCV) [4] is a
widely used tool for image processing. It provides lots of
functions for stereo vision, feature matching, optical flow, face
and object recognition, etc. It has traditionally been developed
in C++, but newer versions of the library provide wrappers for
Java and Android as well. Especially the latter make it a good
choice for this project.

1) Feature Matching: Feature matching is the task to find
the same groups of pixels in two or more different images.
Several feature matching algorithms are available in OpenCV.
SURF [5] or SIFT [6] features are commonly used because
they are very robust, meaning they often find the corresponding

 2366

Figure 10. Visualization of the matched features.

Figure 11. An object found in the image.

features in both images. Their disadvantage is that they are
very slow in comparison to other algorithms. ORB [7] is
a rotation invariant version of the BRIEF algorithm, which
performs much faster than SURF or SIFT. While SURF or
SIFT are scale invariant, ORB is not and has a limitation in
the number of features that can be found. We decided to pick
the best matching method depending on the task we want to
do with the found features.

2) Moving towards a given object: The first computer
vision example that has been implemented in this project was
object recognition. The user shows an object to the robot, and
the robot will try to find this object in future images and once it
has been found, it will drive towards the object. The algorithm
first stores the features of the shown object and matches them
with all other future images from the camera. SURF is a good
feature matching algorithm for this task, because the features
vary much in scale. If enough features are found, the exact
position and scale of the object can be calculated.

The robot then uses a simple dynamical system to calculate
its forward velocity (v = (1 − s)kv

ticks
s) and rotation velocity

(φ̇ = (cx − dx)kφ
ticks

s) where s is the scale of the object, cx
the x coordinate of the image center and dx the x position of
the object in the image. kv and kφ are constant. The motors
are then simply set to v+ φ̇ as the velocity for the left motor
and v − φ̇ for the right motor.

3) Stereo Vision: The robot has got two mirrors installed
in the front to split the smartphone camera image into a stereo
image. With help of stereo vision, the robot is able to build
a three-dimensional visualization of the objects in front of it.
OpenCV provides many algorithms for stereo vision like stereo
camera calibration, feature matching and triangulation.

Figure 12. The calibration chessboard.

For calibration, a small chessboard with known pattern size
is used. The OpenCV algorithm is able to find this pattern
in several images (see figure 12) and estimates the distances
between the two virtual cameras. For feature matching, the
ORB algorithm is used because of its speed. Wrong features
can be easily eliminated on the basis of the epipolar constraint
([8]). The OpenCV function for triangulation uses the rotation
and transition matrix of the cameras, which was found in
the calibration process and the matched features to find the
projection of the points in the three-dimensional space.

4) Structure from Motion: This function is not ready for
use, yet, but it does not need any more algorithms than the
stereo vision. Structure from Motion is the task to find the
movement (rotation and translation) of the camera in two
different images. With this information one can threat two
images taken over time as stereo pair and triangulate more
points. The advantage is that the distance between both camera
positions can be greater than the distance between the two
virtual cameras generated by the mirrors. This can lead to
more accurate 3D points, especially for objects farther away.

The calculated camera movement is also useful to track
the motion of the robot. Hence wheel odometry is not very
accurate, this method can result in much better trajectories.

C. Movement Dynamics

The user is able to let the robot drive to a certain target
coordinate by clicking on the map in the graphical user
interface. When approaching the goal, the robot has to avoid
obstacles, which can be created by the user by clicking on
the map with the right mouse button or they are automatically
detected by the robot with help of a stereo vision algorithm.
In order to process the large amount of obstacles in the
environment (stereo vision can generate several hundreds of
them), the robot uses a dynamical system proposed by [9]
to calculate the rotation velocity. If where φ is the heading
direction of the robot and ψg is the direction of the target
(see figure 13): φ̇ is the change in the heading direction (i.e.
rotation velocity) of the robot. With this equation the robot

 2367

ψg φ

World axis

Target

heading direction

Figure 13. The robot, its heading direction and the angles.

Figure 14. This image shows the internal representation of the robot’s
trajectory (red dots at equal time intervals), the identified target (green) and
the found obstacle points (blue), once the target was reached.

will always turn towards the target.

φ̇ = −(ψg − φ) . (3)

The equation
φ̇ = (ψg − φ) (4)

makes the robot avoid the target. A visualization is shown in
figure 14. We slightly modified this equation to generate the
following dynamic system

φ̇g = −kg sin(ψg − φ)(e−c1dg + c2) , (5)

where kg , c1 and c2 are constants and dg is the Euclidean
distance to the target. The angle between heading direction and
target (ψg − φ) is surrounded by a sine function to generate
a smooth turning rate, even if the angle jumps between 0°
and 360°, which are in fact the same angle. The smaller the
distance to the target dg , the greater is the turning rate, so that
the goal won’t be missed. For this, dg is passed into a negative
exponential equation. The constant c1 is used to adjust the
linearity of this equation and c2 is used to create a minimal
rotation velocity towards the target, even while far away.

The obstacles are represented as hundreds of individual
points found by the stereo vision algorithm. With the help
of the sum of dynamical equations, the robot can calculate a
’mean’ obstacle that it tries to avoid as computed by

φ̇o = ko
1

N + τ︸ ︷︷ ︸
Normalization

N∑
i=0

(sign(ψoi − φ)e−(ψoi
−φ)2︸ ︷︷ ︸

Gaussian dynamics

e−doic3︸ ︷︷ ︸
Distance term

)

(6)

with the following parameters:
• ko: constant
• N : number of obstacle points
• τ : threshold value. If few obstacle points were found, the

function output will be reduced.
• ψoi : the angle to the i’th obstacle point.
• φ: the heading direction of the robot.
• doi : the distance to the i’th obstacle point.
• c3: constant.
The rotation velocity will be calculated by φ̇ = φ̇o + φ̇g .

With help of these dynamics, the robot is able to avoid
complex configurations of obstacles on its way towards the
target without hitting any obstacle coordinates.

V. CONCLUSION

We have constructed an autonomous robot from readily
available hardware and a smartphone, implemented a control
infrastructure and some behavior components. The mirror-
aided stereo vision system offers much potential to let the
robot view the environment that surrounds it. Our tests show
that even with low resolution images close objects can be
reconstructed. With higher resolution images and with help
of the structure from motion approach, the robot is be able to
map its environment.

The IOIO board makes it easy to add more components like
sensors or actuators (e.g., a small robot arm) to the robot. The
constantly increasing performance of the newest smartphone
generates, will enable more complex behaviors in the future.
Speech recognition (which has already been implemented in
newer Android releases) and the ability to be connected to the
Internet all the time are significant features of the system that
may become more important over time. For example, imagine
an autonomous robot cloud where each robot can upload items
that it has learned to share them with other robotics.

We are confident that a system with the features and
advantages presented here can help to build cost efficient
robots, which are used by scientists to further the progress
of autonomous robots.

REFERENCES

[1] : IOIO-OGT documentation https://www.sparkfun.com/tutorials/ 280.
[2] Allegro MicroSystems, I.: Allegro A3979 - Microstepping DMOS Driver

with Translator – Datasheet
[3] Teuteberg, H.D.: 22V 5 Ampere aus 12V http://www.atx-netzteil.de/

22v_5_ampere_aus_12v.html.
[4] : OpenCV http://opencv.org/.
[5] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features

(surf). Computer vision and image understanding 110(3) (2008) 346–359
[6] Lowe, D.G.: Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision 60(2) (2004) 91–110
[7] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient

alternative to SIFT or SURF. In: Proc. ICCV, IEEE (2011) 2564–2571
[8] Xu, G., Zhang, Z.: Epipolar Geometry in Stereo, Motion and Object

Recognition: A Unified Approach. Springer (1996)
[9] Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: Theory

and applications for autonomous robot architectures. Robotics and
Autonomous Systems 16(2) (1995) 213–245

	Return to Main Menu
	Return to Proceedings

