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Abstract—We present a neuro-dynamic architecture for the
generation of movement of the hand toward a visual target that
integrates movement planning based on visual input, movement
initiation and termination, the generation of the time courses
of virtual trajectories of the hand in Cartesian space, and their
transformation into virtual joint trajectories and muscle forces.
The architecture captures properties of adult goal-directed arm
movements such as bell-shaped velocity profiles and on-line
updating of a movement when the target is shifted. The integrated
and autonomous nature of the architecture makes it possible to
study how motor performance is affected when one of the three
core processes, planning, timing, and transformation from end-
effector to joint space, are decalibrated to reflect earlier stages of
development. We find signatures of the development of reaching
such as multiple movement units and curved movement paths in
the “young” model.

Index Terms—movement generation, onset of reaching, dy-
namic field theory, equilibrium point theory.

I. INTRODUCTION

Understanding how the human nervous system generates
goal-directed arm movements continues to be a challenging
research topic. A central difficulty is that movement generation
is a highly integrated process, in which perception (e.g., of the
movement target or of obstacles), cognition (e.g., planning of
movement, remembering movement targets), and movement
generation (e.g., timing movement and activating muscular
processes) are tightly coupled. One signature of such tight
integration is the phenomenon of on-line updating, in which
a movement aimed at a visual target can be adjusted any time
during movement preparation or execution with a delay of
about 100 ms to a change in target location [33], [8], [7]. On-
line updating does not require awareness of the target change,
which is tested by shifting the target during a saccadic eye
movement [17]. Thus, movement plans are continuously linked
to visual input and continuously steer the movement of the
hand.

The integrated nature of movement generation is not just a
problem for us, the scientist, trying to decompose the systems.
It is also a problem for the nervous system as it learns to
generated goal-oriented movements. Learning to reach is a
critical developmental milestone and infants work very hard at
it. Many processes need to be in place in order to successfully
reach: The mapping from visual space to a body-centered
motor space must work [5]. Body-centered information about
the target or movement plan must be translated into joint

and muscle space. Time courses of motor commands must
be generated that bring about movement of the arm to the
target, which must be reached with low enough speed so
that soft contact is possible [29]. Clearly, these processes
strongly interrelate. Autonomously learning to make targeted
movements requires that these processes be aligned [20]. For
instance, to know if the gain of a motor map is too large or
too small, visual information about the hand in space must
be related back to the representation of the motor command.
How reaching develops is hard to study for the same reason:
many components may change at the same time. Two salient
and robust developmental signatures of the onset of reaching
behavior are, however, the increasing straightness of hand
paths in space [29] and the reduction of the number of
movement units (MUs, number of significant maxima in hand
speed during the movement [34]).

In this paper we study an architecture that generates goal-
directed arm movements and integrates the entire neural pro-
cessing pathway from sensory input to motor output. We use
dynamic field theory (DFT) [23], a theoretical framework for
neural dynamics, throughout the architecture. The model is
based on three commitments. First, we consider movement
planning to take place at the level of the end-effector’s (the
hand’s) movement in space. This is consistent with behavioral
signatures such as the bell-shaped velocity profiles of the hand
in space, or the invariant shape of hand paths at different
movement speeds and loads [16], [1]. The structure of joint
variance is another source of evidence for the special role
of the spatial path of the hand in movement planning. Joint
configurations that leave the hand position in space invariant
fluctuate more from trial to trial than joint configurations that
change the hand position in space [32]. This assumption is also
consistent with neural evidence in which neural populations
in motor and pre-motor cortex represent the direction of the
hand’s movement in space [9] and its amplitude [15].

Our second commitment is to consider the timing of goal-
directed arm movements to originate from neural oscillators
that generate virtual hand trajectories. Coupled oscillators
have emerged as a theoretical framework to understand much
behavioral evidence about the coordination of rhythmic [24]
and discrete [21] movement (reviewed in [12], [22]). That
these oscillators correlate with the spatial representation of
movement trajectories is consistent with much of that evi-
dence, including targeted experiments that realize the same
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spatial pattern of coordinated movements with different effec-
tor combinations [14]. This commitment is also consistent with
the discovery of an oscillatory component of neural population
activity in motor cortex [4].

Our third commitment is to take into account the dynamics
of force generation by muscles. Spinal feedback loops couple
muscle force generation to muscle length. As a result, descend-
ing motor commands, λ, are essentially spatial in nature: they
set the equilibrium muscle length in the presence of a given
level of external force [6]. Forces are generated in response to
the deviation of the current muscle length from the equilibrium
length. The processes of torque generation is characterized
by delays induced by its own dynamics [10], which further
complicate the task of generating the torques required to move
an effector to a target.

What sets our approach apart from related modeling work
is the autonomy of all processes required to generate targeted
movements. Through a system of neural dynamics, the ar-
chitecture autonomously initiates movement when the visual
target is perceived far from where the hand rests. The system
terminates motion autonomously when that is no longer the
case. We share this detection of a distance between current
and target state with the classical neural dynamic model of
Bullock and Grossberg [3]. In that model, however, movement
is triggered by a go signal that comes from the outside. This
makes it difficult to understand how multiple motor units
may emerge autonomously. Optimal control models are also
autonomous only to a limited extent in that they compute the
optimal motor command but do not address how movements
are started or stopped and how the updating of the movement
occurs as a process when the target shifts [31]. The model
closest to ours [28] shares the commitment to a spatial
representation of motor plans and of movement timing, and
is technically in the same language of dynamic field theory.
It differs in the details of the timing mechanism and does not
address the muscular level. Moreover, its autonomy is also
less comprehensive. Rokni and Sompolinsky [19] present a
model that overlaps for the second two commitments. It uses
a bank of neural oscillators with tuneable frequencies and
amplitudes to generate movement timing and uses a simple
muscle model to account for the control of the plant. This
model does not explicitly include the planning level and thus
is not open to understanding on-line updating. It is also limited
in its autonomy.

We implement the architecture for an anthropomorphic
robot arm with seven degrees of freedom that reaches to targets
localized in a two-dimensional plane. We target the CAREN
platform, a stationary robot consisting of a camera mounted
on a two degrees-of-freedom head and a seven degrees-of-
freedom Kuka light-weight robot (LWR 4) [13]. In this paper,
the architecture is evaluated in simulation. We emphasize on-
line updating as a signature of the integrated nature of the
model. We exploit the capacity of the model to autonomously
organize movement even when the hand does not reach the
target to study the role of three key component processes.
According to the spatial precision hypothesis, earlier in de-

velopment, neural interaction is weaker leading to smaller
capacity of working memory [30], [26], [25], [27]. We look at
how this “younger” dynamic regime in the movement planning
system affects movement. We also examine how changes to
the gain of the movement timing system as well as to the
inverse kinematics affect motor performance and compare the
resultant movement patterns to developmental findings [29].

II. METHODS

In dynamic field theory, dynamic neural fields (DNFs) and
dynamic neural nodes are the building blocks of neural ar-
chitectures. The dynamics of a neural activation field, u(x, t),
defined over d dimensions, x = (x1, . . . , xd)

T:

τ u̇(x, t) = −u(x, t) + h+ [wu,u ∗ σ(u)](x, t) (1)

+
∑
i

si(x, t)

has attractor states that are shaped by the homogeneous resting
level, h, by local excitatory and global inhibitory interactions
described by the bell-shaped interaction kernel wu,u(x), and
by the sum of all inputs, si, to the field. Interaction is mediated
by a nonlinear sigmoidal output function,

σ(u(x, t)) = 0.5

(
1 +

βu(x, t)

1 + β|u(x, t)|

)
, (2)

which is convolved with the interaction kernel as indicated
by the symbol ∗. Inputs may originate in other layers of our
architecture or in the sensory surface itself (e.g., the camera
image). For a more detailed analysis of the dynamics of DNFs
and the possible types of couplings between different fields,
see [23], [35].

Peaks of supra-threshold activation represent estimates of
the state vector, x, determined by the peak’s position along
the field’s dimensions. Such peaks may arise as attractor states
from instabilities of the sub-threshold patterns of activation,
for instance, in response to localized input (detection insta-
bility). Peaks may become unstable when localized input is
removed or when inhibition impacts that may originate from
competing peaks or from inhibitory inputs. DNFs may thus
make selection decisions. When lateral excitation is suffi-
ciently strong, peaks may become sustained so that they re-
main stable when inducing localized input is removed. Match
detection can be implemented by projecting two DNFs onto
a third DNF, which generates a peak where inputs overlap.
Mismatch detection can be implemented in the same way by
making one of the projections inhibitory [11].

The second type of building block of DFT architectures are
dynamic neural nodes (that can be thought of as DNFs with
homogeneous activation patterns):

τ u̇(t) = −u(t) + h+ cu,uσ(u(t)) +
∑
i

si(t). (3)

The interaction kernel is replaced by a scalar connection
weight, cu,u, the strength of self-excitation. The output func-
tion, σ(·), is the same as defined previously in Equation 2.
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A node is considered active when its activation is above the
threshold of the sigmoid function. This state arises as a fixed
point attractor from a detection instability analogously to that
of DNFs. In DFT architectures, nodes are used to represent
intentional states and their conditions of satisfaction [18].
Intention nodes project onto DNFs as global boosts of field
activation that drive fields through the detection instability,
leading to the creation of a peak. Intention nodes may also
project locally (through a forward kernel) to provide a com-
petitive advantage to particular regions in a field. In either
case, intention nodes promote the creation of peaks that then
specificy the intended behavior (e.g., a particular movement
direction in a motor plan). Condition of satisfaction (CoS)
nodes receive input both from an intention node and from a
CoS field. Given input from the intention node, a peak in CoS
field drives the CoS node above threshold. CoS nodes thus
act as peak detectors. CoS fields detect the match between the
intended behavior (represented in a DNF) and sensory input
that signals the outcome of the intended action (represented
in another DNF). A condition of dissatisfaction (CoD) can be
defined analogously through mis-match detection. It marks the
failure of a behavior and induces error recovery behaviors or a
restart of the current behavior. These are issues of behavioral
organization discussed in more detail elsewhere [18].

III. ARCHITECTURE

We give a short overview of the DFT architecture for
movement generation and then step through the components.
A movement target is visually perceived and represented in
a DNF (Figure 1, A). Using the initial state of the end-
effector represented in a DNF (Figure 1, B), a movement
plan is generated by transforming the target representation into
coordinates centered on the initial position of the end-effector.
This movement plan activates a particular neural oscillator
within a two-layer field of neural activation (Figure 1, C).
The oscillator generates a virtual end-effector velocity vector,
v(t), that is transformed to a virtual joint velocity vector,
λ̇(t), of the seven degrees-of-freedom robot arm by applying
an inverse kinematics. An integrator (Figure 1, D) passes
the virtual joint trajectory, λ(t), on to the muscle model
(Figure 1, E), which in turn drives the robot arm if the current
state of the actuator differs from the equilibrium configuration
of all muscles. In a form of corollary discharge, a second
pathway generates a virtual end-effector trajectory from the
virtual joint trajectory by forward kinematics, and transforms
this into input to a DNF that represents the current state of
the virtual end-effector (Figure 1, F). That field updates the
neural representation of the initial position of the end-effector
(Figure 1, B) whenever a CoS signals the end of a movement
unit (CoS and CoD projections show in red in Figure 1). The
entire architecture is a continuous time dynamical system,
from which the discrete events that activate and deactivate
components emerge autonomously.

A. Generation of a movement plan

The pathway from the visual sensor (an RGB camera) to
a representation of the movement target is done in the style
of [35]. A saliency operation transforms the image into an ac-
tivation field, highlighting potential target candidates selected
by a color cue. A reference frame transformation expresses the
perceived retinal locations of objects in a reference frame that
is linked to the two-dimensional coordinate system of the table
in front of the robot. Note that any allocentric or body-centered
reference frame is suitable as long as both the target and the
end-effector can be expressed in the same reference frame
and a transformation to motor commands is known. Only a
subregion of the table plane is represented in the following
DNFs (see Figure 1, top). Movement can only take place
to targets inside this region. The target object is represented
in a single-peak two-dimensional DNF, utar, (see Figure 1,
A), following Equation 1, its dimensions matching the two-
dimensional reference frame, x = (x1, x2)

T, of the table
surface. Its sole input, star(x, t), originates in the bottom-
up processing of the camera input. utar contains a peak if a
region with strong activation exists in star. The DNF’s lateral
interaction kernel assures through global inhibition that there
is at most one peak at any time, preventing the architecture
from pursuing multiple movement goals at the same time. This
DNF tracks changes in the target’s position.

The end-effector position is represented in two DNFs. One
is a working memory of the end-effector position at the
beginning of each movement, uini, a two-dimensional, single-
peak DNF (Figure 1, B) The other is a neural representation,
ucur, of the current prediction of the end-effector position
obtained from the outflowing motor command, λ, using for-
ward kinematics. The current prediction is used to update the
initiation position whenever the virtual end-effector is resting
by providing input to uini:

sini(x, t) = [wini,cur ∗ σ(ucur)](x, t). (4)

Both fields are expressed in a two-dimensional reference frame
spanning the same table surface over which utar is defined.
The lateral interaction kernel and resting level of uini are set up
to keep a single sustained activation peak as long as there is no
significant level of activation in ucur. ucur is inhibited during
movement, so that uini is updated only after a movement has
finished.

A movement plan is calculated by transforming the target
representation to a coordinate frame centered in the end-
effector. The transformation is performed by convolving the
output of the target field with the output of uini,

spla(x, t) = [σ(utar) ∗ σ(u′ini)](x, t), (5)

where the prime indicates that the dimensions are inverted.
Such a transformation is a neural implementation of the sub-
traction of the end-effector position from the object position
proposed by Bullock and Grossberg [3].
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Fig. 1. This figure shows the full movement generation architecture. Some details are hidden in connections for clarity’s sake, but are marked with text
stating “including . . . ”. See text for more details.

B. Generation of virtual trajectory

The movement plan feeds into a two-layer DNF, consisting
of upex and upin (see Figure 1, C),

τpexu̇pex(x, t) = −upex(x, t) + h+ spex(x, t) (6)
−[wpex,pin ∗ ρ(upin)](x, t)

τpinu̇pin(x, t) = −upin(x, t) + h+ spin(x, t), (7)

with spex(x, t) = spin(x, t) = spla(x, t) + cmovσ(u
int
mov(t))

and τpex < τpin. The two-layer structure of upex and upin
serves as a neural oscillator. Transient activation is created in
the excitatory layer, which the more slowly evolving inhibitory
layer suppresses over time. This dynamics thus performs a
one-shot active transient in response to input. The oscillation
is parameterized by the movement plan spla and is switched
on by the activation of a dynamic neural node uintmov, which

expresses the intention to generate movement. Both layers use
a semi-linear output function ρ(·) instead of σ(·),

ρ(x, t) =

{
u(x, t) for u(x, t) > 0
0 else.

(8)

This assures that no movement is created as long as upex is
below threshold. Note that upex and upin cover a larger spatial
area than utar and uini, as their coordinate system expresses
relative distance to the end-effector. Consequently, if the end-
effector is at the target, the target appears in the center of upex
and upin with a distance of zero to the end-effector.

From the relative position of the target in upex, a velocity
vector v is extracted by integrating over the represented
domain X = {(x1, x2) ∈ R2 : −50 ≤ x1, x2 ≤ 50}:

v(t) =

∫∫
X

ρ(upex(x, t))ω(x) dx1dx2. (9)
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ω(·) is a weight function learned with gradient descent. These
weights are a linear function of x1 and x2. They can be
interpreted as tuning curves of the oscillator field’s sites,
with each site being sensitive to both the orientation and the
distance (and thus peak velocity) of the movement.

C. Generation of muscle activation and arm movement

The virtual velocity vector, v, is transformed into a virtual
joint velocity vector, λ̇, using the pseudo-inverse of the
manipulator Jacobian, J , that depends on the current joint
configuration θ(t):

λ̇ = J+(θ(t))v(t), (10)

from which the virtual joint configuration, λ(t), is obtained
by integrating over time (Figure 1, D). λ(t) is subsequently
passed to a linear second order muscle model, which combines
agonist and antagonist muscles around each joint (Figure 1,
E),

θ̈ = −K(θ − λ)−Bθ̇, (11)

with θ being the seven-dimensional joint configuration of the
robot arm. K and B are matrices determining the stiffness
and viscosity of the muscles. θ̇ is sent to the robot controller
using velocity control.

D. Corollary discharge

The virtual joint configuration, λ, is transformed into input
for the DNF ucur (Figure 1, F):

scur(x, t) = sfwk(x, t)− ccur,movσ(u
int
mov(t)). (12)

sfwk is created by applying the forward kinematics to λ,
obtaining a predicted end-effector position, x∗ = (x∗1, x

∗
2)

T,

sfwk(x, t) = c exp

(
−
(
(x1 − x∗1)2

2σ2
x1

+
(x2 − x∗2)2

2σ2
x2

))
(13)

where, x = (x1, x2)
T. The contribution σ(uintmov(t)) is used

to de-boost ucur, which puts uini from input-driven to self-
sustained mode. ucur can be interpreted as a forward model
of the end-effector position so that a peak in ucur represents
the location to which the end-effector will move over time,
delayed by the muscle model.

E. Behavioral organization

Behavioral organization takes care of initiating the genera-
tion of a virtual trajectory, v, and of updating the initial end-
effector position represented in uini. It does so by boosting
upex and upin and de-boosting ucur at the start of each virtual
movement and taking away these boosts at the end of the
virtual movement. An intention node, uintmov, is connected to
these three fields. It receives input from three nodes,

sintmov(t) = cmov,reaσ(u
int
rea(t)) (14)

−cint,CoSσ(u
CoS
mov(t))− cint,CoDσ(u

CoD
mov (t)).

It is activated by an intention node on a higher hierarchical
level (uintrea(t), see below) and inhibited by either a CoS or
a CoD node. A CoS node uCoS

mov monitors the field activity

in both upex and upin, signaling the end of the movement
if upex is below threshold, represented through an inhibiting
peak detector updpex(t), and upin is above threshold, expressed
with an excitatory peak detector updpin(t). This results in the
input

sCoS
mov(t) = −cCoS,pexσ(u

pd
pex(t)) + cCoS,pinσ(u

pd
pin(t)). (15)

The CoS node turns off the intention, which boosts ucur,
leading to an update of initial end-effector position in uini.
Changing the initial position also alters the movement plan,
which allows for corrective movements once the CoS is below
threshold and the intention node reactivates. A CoD node
monitors conditions through which the current internal move-
ment fails. It listens to a mismatch detector field uCoD

mov (x, t)
comparing the current target position from the sensory stream
with a working memory representation of target position at the
start of the internal movement. In addition, it is also activated
if uini(x, t) does not contain a peak.

An outer loop of intention and CoS nodes uintrea and uCoS
rea

is activated through an external task input stskrea(t) to reach to
the target (see Figure 1, bottom). This can be compared to
the go signal in Bullock, Cisek, and Grossberg [2]. In our
architecture, however, this signal does not contribute to the
shape of the velocity profile. Putting stskrea(t) below threshold
is the only way to suppress the otherwise fully autonomous
movement generation. The CoS node compares initial end-
effector position and the target position. Once these positions
overlap, which is detected by a match detector field uCoS

rea (x, t)
receiving additive inputs from both utar and uini, the CoS
of the reaching movement is fulfilled and the inner loop of
λ movements and updates of initial positions is turned off.
Note that the CoS node might deactivate once the target
is moved, thus reactivating the inner loop and executing
corrective movements.

F. The developmental stage of reaching

Three components of the architecture are probed for devel-
opmental effects by generating an “infant” version of each.
Firstly, the lateral interactions in the DNF representing the
initial end-effector position are assumed to be too weak to
keep working memory of that position alive throughout the
whole virtual movement, leading to a loss of the movement
plan and thus a premature termination of the virtual movement.
Secondly, the oscillatory layers may not include regions (and
associated weights) large enough to generate large movement
amplitudes. In other words, these fields are assumed to missing
the weights necessary to reach the target in one cycle. The
movement plan is thus mapped onto a region containing
semi-random weights or to the outermost region that contains
valid weights. Thirdly, the relation between planned Cartesian
movement and muscle equilibrium points may not be fully
known to the system (e.g., because stiffness and resting length
control is not perfect). This is plausible for a growing body
and developing muscle strength. This distorts the virtual end-
effector movement, but also affects the corollary discharge
pathway that estimates the internal end-effector position.
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Impairing one or multiple of the components of the ar-
chitecture listed above should have a significant influence on
reaching behavior, leading to movements that feature multiple
distinct movement units and a longer, less straight trajectory.
Nevertheless, the autonomy of the architecture may bring the
end-effector to the target location at some point. Sensory
feedback about the achieved end-state may drive the learning
process that reduces movement units and increase movement
straightness over time. In this paper, we do not yet model this
process of autonomous learning, however.

IV. EXPERIMENTS

In this section, we will first evaluate a fully developed state
of our architecture in which the mappings and weights have
converged. Movement takes place in a 50 cm by 50 cm plane
placed 20 cm in front of the robot and to the left of the robot’s
body center (see also Figure 1).

For all experiments, we use artificial visual inputs in form of
fields of localized peaks of activation instead of real camera
input to have full control of stimulus strength and position
for reproducibility. We use the simulation solution Webots
(http://www.cyberbotics.com) to execute the movements with
the seven degrees-of-freedom arm. This ensures that the robot
does not damage itself during execution of the movement
commands using an impaired configuration of our architecture
(generated movement might be jerky and unpredictable). The
fully developed architecture was tested on hardware as well
(RGB camera, Kuka arm), but this will not be discussed here.

A. Reaching movements and on-line updating

We first let the “adult” architecture reach for static targets
in front of the robot. We vary starting position of the end-
effector and target position, resulting in reaching movements
in different directions and distances. The target positions
are reached with a single virtual movement and subsequent
movement of the end-effector. The velocity profiles of both
virtual and external trajectories are bell-shaped (see Figure 2),
with the virtual movement ending roughly at reaching peak
velocity of the end-effector. Movement time is constant and
does not depend on movement distance, which leads to a linear
dependency between distance to target and peak velocity. Due
to the transformation from Cartesian movement plan to joint
space, the resulting trajectories are not perfectly straight.

We conduct the following experiment to test on-line updat-
ing in the “adult” architecture. We choose a two-step paradigm
(see [33]) in which the end-effector starts in the center of an
imaginary cross and the first target is placed on one of the
four ends of the cross’ equally long arms. During movement
towards the first target, the target position switches, at varying
inter-stimulus intervals (ISI), to the end of a neighboring
cross arm. Sample trajectories for four different ISIs (600 ms,
700 ms, 800 ms, 900 ms) for this layout and one combination
of targets are shown on the top left in Figure 3. Inspired by
another experimental study of human on-line updating [8], we
position the first target again on one of the arms of a cross, but
then move the target perpendicular to the cross arm bearing
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Fig. 2. Exemplary trajectories (top left) and profiles of tangential velocity
for virtual movements (top right) and end-effector movements (bottom right)
for different movement targets. The bottom left plot shows a combination of
virtual and external profiles to show that the virtual movement ends roughly
at peak velocity of the end-effector movement.

the target. The distance between first and second target is
equal to the length of a cross arm. Sample trajectories of this
second layout for the same four ISIs and for one combination
of targets are shown on the top right in Figure 3. The resulting
tangential velocity profiles feature two distinct movement units
(see Figure 3, bottom row).
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Fig. 3. Top row: Trajectories for different on-line updating setups (see text
for details) and ISIs. The starting position of the hand is marked with the
letter H, the first target position with T and the final target position with
X. Bottom row: velocity profiles for the trajectories shown in the top row,
displaying two movement units with varying peak velocities.
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TABLE I
MEAN AND VARIANCE OF AMOUNT OF MOVEMENT UNITS AND

STRAIGHTNESS FOR DIFFERENT IMPAIRMENT CONDITIONS

Conditions A B C A+B+C N

Mean # of MUs 3.00 4.00 1.89 7.56 1.00

Variance 0.00 0.00 0.61 7.53 0.00

Mean straightness 0.998 0.983 0.845 0.941 0.989

Variance < 0.001 < 0.001 0.017 0.002 < 0.001

B. Reaching during the developmental stage

For the remaining experiments, we use the following setup.
We define three starting positions S1, S2, S3 for the robotic
end-effector, which are placed on a line 30 cm in front of
the robot along x2 and 12, 25, and 38 cm to the left of the
robot along x1. Three targets T1, T2, T3 are placed at the same
position along x1, but 30 cm further away in x2.

We define three conditions of impairment: condition A
is a lack of working memory sustain; condition B exhibits
an underdeveloped movement timing system realized through
incorrect oscillator weights for longer distances; condition C
makes errors in translating the movement plan into joint space,
due to a randomized offset added to the inverse kinematics.
We let our architecture execute movements from the three
starting positions to the three target positions under conditions
A, B, C, and a combination of all of them (A+B+C). We
record trajectories and velocity profiles. We then analyze the
mean number of movement units (MUs) and straightness and
compare these means with the fully developed architecture
(which we call condition N). For each condition, we record
two movements for each combination of start and target
positions, summing up to 18 movements per condition.

Figure 4 shows sample trajectories and velocity profiles for
movements from starting point S1 to the three targets. For
condition A, the resulting trajectories are straighter than for a
fully developed architecture (see Figure 2). The velocity pro-
files are less smooth and feature multiple MUs. Condition B’s
trajectories are slightly less straight than condition N’s. The
velocity profiles show distinct MUs. Trajectories for condition
C are less straight and exhibit overshoot. The velocity profiles
contain few MUs with decreasing peak velocity. The combina-
tion of all three conditions shows the same characteristics of
multiple MUs and a decrease in straightness. Mean amount
of MUs and straightness over all combinations of starting
positions and targets is listed in Table I. All impairment
conditions show an increase in MUs. The straightness of
Conditions A and B are comparable to the fully developed
architecture, while Conditions C and A+B+C show a clear
decrease in straightness. All impairment conditions exhibit
an increase in movement time. Nevertheless, the target is
successfully reached for all conditions despite the serious
impairment of components.

V. CONCLUSION

We have presented a neuro-dynamic architecture for move-
ment generation that captures both characteristics of adult

goal-directed movement as well as infant movements around
the onset of reaching. Autonomy is a key feature of the archi-
tecture as it ensures that movement to the target is achieved
even when the target shifts during movement preparation or
execution. We examined reaching movements generated by the
architecture when three components were put into an earlier
developmental stage (unstable working memory of initial
position of the arm, gain of neural oscillator insufficient to
reach target in single motion, inverse kinematics not correctly
learned). We found two signatures of immature reaching, a
larger number of movement units and curved end-effector
paths.

A more complete picture of the development of reaching
surely requires additional probes into the overall connectivity
and autonomy of the movement generation architecture. We
did not discuss here how the architecture produces different
movement speeds at the same movement amplitude. The
treatment of muscular control is also still rudimentary, lacking
an account for co-contraction and the concomitant modulation
of stiffness. The autonomous organization of the movement
generation system may make it possible to produce more
complex virtual trajectories, that may drive weak muscles more
effectively.
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Hotchkiss. Effect of accuracy constraint on joint coordination during
pointing movements. Experimental Brain Research, 149(3):276–288,
2003.

[33] JF Van Sonderen, JJ Denier Van der Gon, and CCAM Gielen. Conditions
determining early modification of motor programmes in response to
changes in target location. Experimental Brain Research, 71(2):320–
328, 1988.

[34] Claes von Hofsten. Development of visually directed reaching: The
approach phase. Department of psychology, University of Uppsala
[Psykologiska inst., Uppsala univ.], 1979.

[35] Stephan K U Zibner, Christian Faubel, Ioannis Iossifidis, and Gregor
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