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Cognition and Control, Neural Populations Models for

Definition

The insight that cognition is grounded in sensory-motor processing and shares many
properties with motor control, captured by the notion of “embodied cognition”, has
been a starting point for neural process models of cognition. Neural Field models rep-
resent spaces relevant to cognition, including physical space, perceptual feature spaces,
or movement parameters in activation fields that may receive input from the sensory
surfaces and may project onto motor systems. Peaks of activation are units of represen-
tation. Their positive levels of activation indicate the instantiation of a representation,
while their location specifies metric values along the feature dimensions. By ensuring
that peaks are stable states (attractors) of a neural activation dyamics, cognitive pro-
cesses are endowed with the stability properties required when cognition is linked to
sensory and motor processes. Instatiations of cognitive processes arise from instabilities
that may induce peaks and suppress. Such events may represent detection, selection,
or classification decisions. Neural Field models account for classical behavioral signa-
tures of cognition including respose times, error rates, and metric estimation biases,
but also link to neurophysiological correlates of behavior like patterns of population
activation and their temporal evolution. Robotic demonstrations of Neural Field mod-
els are used to establish the capacity of these models to provide process accounts of
cognition that may link to real sensory information and generate real movement in the
physical environments.

Detailed Description

Elementary forms of cognition are the detection and selection decisions that control
attention, eye movements, but are also the basis for object perception. Committing
detected perceptual states into working memory and then long-term memory is a key
element of cognition. Serially organized sequences of cognitive states are the basis
for cognitive processes. Motor actions require that the initiation, termination, and
potentially the online-update of planned movements be autonomous generated. Neural
Field models of cognition and control provide a neural account for such elementary
cognition based on four elements: the spaces that such cognitive processes are about,
the activation fields defined over these spaces within which neural representations can
be created, the neural activation dynamics that drive neural representations forward
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in time, and the instabilities that give rise to the elementary forms of cognition. This
use of Neural Field models to account for cognition and its sensory-motor grounding
has been called Dynamic Field Theory (DFT). DFT is a mathematically formalized
conceptual framework for understanding embodied cognition, that is linked to neural
process modeling, but abstracts from some of the specific anatomical and biophysical
details of neurophysiology to enable a close link to behavior (Schneegans & Schöner,
2008).

Spaces

That cognition is grounded in sensory-motor processes is a central insight that the em-
bodiment perspective on cognition emphasizes (Riegler, 2002). In this view, cognition
is about states of the world, that may become linked to cognition through perception or
action, but are not dictated by perception and action alone. Even mental imagery, for
instance, shares the sensory-motor grounding, though it is decoupled in the moment
from actual sensory-motor processes. Neural accounts for cognition must, therefore,
take into account how sensory information may potentially drive cognition, primarily
through the sensory cortical and subcortical neural structures. Such accounts must
also take into account how motor states are driven from cortical and subcortical struc-
tures. Common to both domains of sensation and movement is the observation that
they are characterized by continuous dimensions: there are continua of possible per-
cepts and continua of possible motor actions. For instance, the possible percepts of a
single moving object forms a continuum that may be spanned by the retinal location of
the object, the direction of motion, perhaps its speed, or motion in depth. The object
may have a color that may vary continuously in hue space, have characteristic texture
that may vary along a spatial frequency dimension, may have a surface curvature that
varies continuously. Figure 1 illustrates three of these dimensions. Movements simi-
larly form continua, spanned by movement parameters such as the movement direction,
extent, and peak velocity of the end-e↵ector in a body-centered reference frame. Much
of cognition is embedded in the physical space that surrounds our body, even when
it takes such flexible form as positioning a thought at a location in space through a
hand-gesture. Categories are embedded in feature spaces. While a dog is categorically
di↵erent form a car, both may be morphed into their many di↵erent instantiations.
Even super-ordinate categories may be embedded in feature spaces by combining the
feature dimensions of hiearchically organized attributes (McClelland & Rogers, 2003).

Neural Fields

Neural Field models of embodied cognition represent the state outside the nervous
system by neural activation patterns that are inside the nervous system. Neural ac-
tivation, as used in Dynamic Field Theory, is a real number, u, that may both be
positive or negative. The link to biophysically detailed accounts of neural activity can
be established in multiple di↵erent ways (see entries Neural Field Model, Continuum;
Neural Population Models and Cortical Field Theory: Overview). Critical for the link
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Figure 1: Left: The possible percepts of a single moving object (filled circle moving
as indicated by the arrow) may be spanned by continuous dimensions such as the
location of the moving object in the visual array and the direction of motion. Right: A
neural activation field defined over these dimensions (only two shown here) represents
a motion percept as a peak of activation positioned over the location that specifies the
seen motion.

to behavior is the assumption that only su�ciently positive levels of activation impact
on down-stream structures and ultimately on motor systems. This is expressed mathe-
matically through a sigmoidal function, g(u), often chosen as 1/(1+exp(��u)), where
� is the steepness of this non-linearity.

A Neural Field is a continuum of such activation variables, one for each location
of the represented space. For instance, in Figure 1, a level of activation represents
each possible horizontal position and motion direction of a moving object. The field
notion is thus analogous to how fields are used in physics. Peaks of activation are
units of representation. Their positive levels of activation imply that they impact on
down-stream processes. Their location specifies the represented state.

How does a location in a Neural Field acquire the meaning ascribed to it in this
interpretation? It is ultimately the connectivity to the sensory or the motor surfaces
that determines what a field location “stands for”. In perceptual representations such
as the one illustrated in Figure 1, this would be, for instance, the connectivity from the
retina, through simple and complex cells to motion detectors, anatomically probably
located in area MT of the cortex. Field locations thus have a “tuning curve”. Simi-
larly, the forward projection onto the motor system implies a specificity that could be
interpreted as a tuning curve for movement parameters. We know that in the cortex
as well as in such subcortical structures as the colliculus and thalamus, tuning curves
tend to be broad and overlapping, an indication that broad populations of neurons are
activated for any individual perceptual or motor state represented. This fact together
with detailed analysis of how strongly all activated neurons contribute to a percept or
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motor action has given rise to the hypothesis that the activity of small populations
of neurons is the best neural correlate of behavior (Cohen & Newsome, 2009). DFT
is based on the further hypothesis that Neural Fields represent the activity of such
small populations of neurons in the higher nervous system that are tuned to particular
sensory or motor states. In fact, it is possible to estimate Neural Fields from recorded
population activity (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999). This link to
population activity frees Neural Fields from the more literal interpretation prevalent in
some neural modeling, in which the activation fields are directly defined over the corti-
cal surface. Instead, the Neural Fields on which DFT is based, are organized in terms
of the topology of the outer space that is being represented. The two interpretations
are aligned where cortical maps are topographic. In other cases, however, topography
is violated, such as for the the tuning of neurons in motor cortex to the direction of a
planned hand movement. The Neural Fields of DFT e↵ectively rearrange neurons so
that neighboring sites always represent neighboring states. In fact, strictly speaking
neurons are smeared out aross the field dimensions by contributing their entire tuning
curve to the representation (Erlhagen et al., 1999).

Neural Dynamics

Neural Field models construe time as continuous to approximate at the population
level the discrete, but asynchronous spiking events that individual neurons contribute.
Mathematically, the evolution in time of the activation state of a Neural Field is de-
scribed, therefore, by a di↵erential equation (an integro-di↵erential equation in the
specific formulation reviewed here). DFT postulates that peaks of activation, the mean-
ingful macro-states of Neural Fields, are stable states, fixed point attrators of the neural
dynamics. This constraints the class of admissable dynamical models. Qualitatively,
the neural interactions illustrated in Figure 2 express these constraints. Excitatory
neural coupling among neighboring field sites stabilizes peaks against decay, inhibitory
coupling among field sites at longer ranges stabilize peaks against unlimited growth. In
cortex, similarly tuned neurons are typically excitatorily coupled. Inhibitory coupling,
mediated by interneurons, is also prevalent (Jancke et al., 1999).

Amari (Amari, 1977) analyzed a generic Neural Field model in the limit case in
which these neural interactions are dominant, and showed that peaks of activation
may be attractor solutions under appropriate conditions. This is why that particular
model has been used in many Neural Field models of embodied cognition, becoming
the workhorse of DFT. For a one-dimensionsal field, u(x, t), defined over a space, x,
the dynamics reads:

⌧ u̇(x, t) = �u(x, t) + h+ s(x, t) +
Z

c(x � x

0)g(u(x0), t)dx0

The parameter, ⌧ , determines the overall time scale of the evolution of u(x, t). The
“�u” term provides stabilty to the dynamics and is a reflection of the intrinsic dynamics
of neural populations. The parameter, h < 0, is the resting level of the field, stable
in the absence of input, s(x, t). Interaction integrates over all field sites, x0. Each site
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Figure 2: Left: A sigmoidal function, g(u), approaches zero for su�ciently negative
values, and a positive constant for su�ciently positive values of activation, u. Right:
Su�ciently activated sites interact excitatorily with nearby locations (green arrow),
stabilizing peaks against decay, and inhibitorily with locations that are further removed
(red arrow), stabilizing peaks against unlimited growth.

contributes to the extent to which activation exceeds the threshold of the sigmoidal
function g(u(x0

, t)) with a coupling strength, c(x�x

0), that is a function of the distance
between interacting feld sites. For close distances, coupling is excitatory (c(small) > 0),
for larger distances, inhibitory (c(large) < 0). The Amari model is a simplifcation
over biophysically more detailed models that, among other approximations, neglects
the time delays involved in synaptic transmission and lumps together excitatory and
inhibitory neural populations (see entry Neural Field Model, Continuum).

Instabilities

There are two qualitatively di↵erent attractor solutions of this equation, which are
separated by instabilities. In the sub-threshold state, the field activation is below zero
everywhere, so that interaction is not engaged. If we neglect small values of the sigmoid
and assume that inputs vary only very slowly in time, this attractor solution is given
by

u0(x, t) = h+ s(x, t) < 0,

which tracks slowly varying input, s(x, t), apart from a downward shift by h. When
input is zero, s(x, t) = 0, this is the resting state of the field.

The other solution is a self-stabilized peak of activation, up(x), whose activation
level is lifted above the level specified by input, h + s(x, t), through excitatory neural
interaction, while outside the peak the field is suppressed below the resting level, h,
through inhibitory interaction (Figure 3). For small levels of input, s(x, t), the sub-
threshold solution is mono-stable (top panel of Figure 3), and for su�ciently large levels
of input, the self-excited peak solution is monostable (bottom panel of Figure 3). When
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Figure 3: A Neural Field, u(x), over dimension, x, illustrated for three levels of input,
s(x) (dashed green line) that increase from the top to the bottom panel. The sub-
threshold solution, u0(x) (dashed blue line) is stable for the two lowest levels of input,
the self-excited peak solution, up(x) (blue solid line) is stable for the two highest levels
of input. The bistable regime is delimited at high levels of input by the detection
instability and at low levels of input by the reverse detection instability.

input levels are increased, the sub-threshold solutions becomes unstable in the detection
instability. When input levels are again lowered, the self-stabilized solutions becomes
unstable in the reverse detection instability. Because the reverse detection instability
occurs at lower levels of input than the detection instability, the sub-threshold and the
self-excitatory solutions co-exist bistably in a regime of intermediate levels of input
strength. This bistable regime stabilizes detection decisions hysteretically. This is
critical, when perceptual states represented by peaks are continuously linked to sensory
inputs. In the presence of noise, detection decisions must be stabilized againt varying
input levels to create coherent perceptual experience. Analogously, movement plans
must persist when the input from perceptual or cognitive processes, that induces motor
intentions, fluctuates.

Both sub-threshold and self-stabilized peak solutions are continuously linked to
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sensory input. The peak may track, for instance, continuously shifting local input
patterns. Moreover, if input strength increases in a graded, time continuous way, the
Neural Field autonomously creates a discrete detection event when it goes through the
detection instability. Similarly, if input that supports a self-stabilized peak is gradually
reduced in strength, the peak collapses at a critical point through the reverse detection
instability. Such discrete events emerge from continuous-time neural dynamics through
the dynamic instabilities. This provides a mechanism that is critical for understanding
how sequential processes may arise in neural dynamics (Sandamirskaya & Schöner,
2010).

With su�ciently strong interaction or when broad inputs or a high resting level
push activation close enough to threshold, the reverse detection instability may not be
reached when the strength of a local input is reduced. In this case, a self-stabilized
peak induced by local input remains stable, is sustained, even after any trace of the
local input has disappeared. Such self-sustained activation peaks are the standard
model of working memory (Fuster, 2005). Mathematically, self-sustained peaks are
marginally stable. They resist change in their shape, but are not stable against shifts
of the peak along the field dimensions. This leads to drift under the influence of noise
or broad inputs. Such drift is psychophysically real: memory for metric information
develops metric bias and increases variance over the time scale of tens of seconds
(Spencer, Perone, & Johnson, 2009). Moreover, sustained peaks may be destabilized
by competing inputs at other field locations. Again, this limitation of the stability of
sustained peaks matches properties of working memory, which is subject to interference
from new items entered into working memory.

If the inhibitory component of neural interaction is su�ciently strong and broad, the
Neural Field may enact selection decisions as illustrated in Figure 4. A self-stabilized
activation peak may e↵ectively select one of a number of locations in the underlying
space that receive localized input. Typically, the most strongly stimulated site will be
selected, because after input is provided, activation at that site will reach threshold
earliest and begins to suppress activation at other locations before these may reach
threshold and, in turn, suppress other locations. Inhibitory interaction thus translates
a temporal advantage into a competitive advantage. This is the general feature of deci-
sion making in Neural Field models (Trappenberg, 2008). In the limit case illustrated
in Figure 4, in which two local inputs have the exact same strength, stochastic fluctu-
ations may bias the competition one way or the other by chance. Once a decision has
been made, it is stabilized by the neural interaction within the field. As for detection
decisions, this is critical when selection decisions are made while a system is contin-
uously linked to the sensory surface. Which site receives maximal stimulation may
fluctuate in time and a simple “winner takes all” rule would lead to random switching
among the selection choices.

The resistance to change is also a reason while selection decisions are typically made
in response to a transient in the input stream. Once locked into a decision, a Neural
Field is not open to change, unless the di↵erences in input strength become very large
and the selection instability moves the system from a bistable or multi-stable regime to
a mono-stable regime in which only on selection decision is stable. Such resistence to
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Figure 4: The attractor states, up(x), of an activation field are shown in blue, a bimodal
input, s(x), is shown in red. There are two attractor states (solid vs. dashed line),
which co-exist bistably. Each has a single self-stabilized peak positioned over one of
the maxima of input, while activation at the other stimulated site is strongly suppessed
by inhibitory interaction. The field states were obtained from simulations of the neural
dynamics in which independent gaussian white noise was added at each field location
to probe the stability of the stationary states.

change can be observed as change blindness in which observers fail to detect a change in
an image (Simons & Levin, 1997). Normally, when an image changes in some location,
the visual transients in the sensory input atttract visual attention and help detecting
the change. That transient signal may be masked by turning the entire image o↵ and
then turning the locally changed image back on. Observers are blind to change when
transients are masked this way, unless they happen to attend to the changed location.
Because sensory inputs in the nervous system are typically transient in nature, the
mechanism for making selection decisions in DFT is normally engaged by change, so
that change detection in the absence of a masking stimulus may also be understood
within DFT (Johnson, Spencer, Luck, & Schöner, 2009).

The interplay between detection and selection instabilities brings to light a fur-
ther facet of Neural Fields, that provides a bridge to the emergence of categories from
the underlying continuous representations. The limit case of a completely homoge-
neous field, in which all sites have the same dynamic properties, is an idealiziation, of
course. It is easy to break such homogeneity, for instance, by learning processes. In the
simplest case, locations at which activation peaks have frequently been induced may
acquire higher resting levels, a learning mechanism sometimes used in connectionist
models that invoke a bias term, and termed the “memory trace” in DFT (Schneegans
& Schöner, 2008). Hebbian learning may similarly reshape the connections from a
cortical surface and induce inhomogeneous levels of activation (Sandamirskaya, 2014).
Such inhomogeneities may be amplified in Neural Fields by the detection instabil-
ity into macroscopic decisions! In the extreme case, an inhomogeneous sub-threshold
solution may be made unstable by a perfectly homogeneous input, which may be con-
strued as an increase of the resting level, h, that pushes the field over the threshold.
The location that first reaches threshold self-excites, while at the same time supressing
activation everywhere else. As a result, a self-stablized peak will arise at that location,
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Figure 5: A Neural Field with a pre-shaped sub-threshold solution, u0(x) (blue dashed
line), is driven through the detection instability by an input, s(x) (red solid line), that
contains a homogenous boost across the entire field and a small localized contribution.
A self-stablized peak solution, up(x) (blue solid line) is induced. Its peak is positioned
at the closest location that has prior activation, not the stimulated location.

in a sense, out of nowhere, because there was no localized input that specified the state
that the Neural Field should instantiate. The input that induces a detection instabil-
ity will not typically be completely homogeneous. It may favor particular locations in
the field. Figure 5 illustrates a field that has a pre-shaped sub-threshold state, u0(x).
The pre-shape may have arisen from a learning processes in which two field locations
were frequently activated. An input, s(x), that drives the field through the detection
instability, provides a broad boost, but also contains a small localized component. The
self-stabilized peak that emerges is positioned over the pre-activated location that is
closest to the localized input. If the location that receives local input was varied con-
tinously, the self-stabilized peak would continue to be positioned close to one of the
two pre-activated locations. In this sense, the field responds categorically to spatially
continuous input.

Neural Field models of embodied cognition

Neural Field models have been used within the framework of DFT to account for
a large and broad set of experimental signatures of the neural mechanisms underly-
ing embodied cognition. Sensory-motor selection decisions were modelled for saccadic
eye movements (Kopecz & Schöner, 1995) and infant perserverative reaching (Thelen,
Schöner, Scheier, & Smith, 2001). Influences of non-stimulus factors were accounted
for both for saccades (Trappenberg, Dorris, Munoz, & Klein, 2001) and in the infant
model. The capacity of Neural Field models to account for the confluence of multiple
factors is, in fact, a major strength of the approach. An exhaustive account of the
influence of many di↵erent task and intrinsic factors on motoric response times was
foundational for DFT (Erlhagen & Schöner, 2002). That model also accounted for the
time course of movement preparation as observed in the timed movement initiation
paradigm. The same model was linked to neural population data from motor and pre-
motor cortex (Bastian, Riehle, Erlhagen, & Schöner, 1998) and related ideas were used
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to account at a much more neurall detailed level for spatial decision making (Cisek,
2006). The temporal evoluation of population activity in the visual cortex has been
modeled using Neural Fields (Jancke et al., 1999), including recent data that assessed
cortical activity through voltage-sensitive dye imaging (Markounikau, Igel, Grinvald,
& Jancke, 2010).

DFT has been the basis of a neural processing approach to the development of cog-
nition (Spencer & Schöner, 2003) that emphasizes the sensory-motor basis of cognitive
development, but has reached to an understanding of how spatial and metric mem-
ory develops (Spencer, Simmering, & Schutte, 2006) and how infants build memories
through their looking behavior (Schöner & Thelen, 2006; Perone & Spencer, 2013). A
Neural Field model of metric working memory has led to predictions that have been
confirmed experimentally (Johnson et al., 2009) and included an account for change
detection (Johnson, Spencer, & Schöner, 2008). Neural Field models of motion pat-
tern perception (Hock, Schöner, & Giese, 2003), attention (Fix, Rougier, & Alexandre,
2011), imitation (Erlhagen, Mukovskiy, & Bicho, 2006), and the perceptual grounding
of spatial language (Lipinski, Schneegans, Sandamirskaya, Spencer, & Schöner, 2012)
illustrate the breadth of phenomena accessible to Neural Field modeling.

Neural Fields can also be used to endow autonomous robots with simple forms of
cognition (Bicho, Mallet, & Schöner, 2000). This work has shown how peaks of ac-
tivation may couple into motor control systems, an issue first addressed in (Kopecz
& Schöner, 1995). Robotic implementations of the concepts of DFT have generally
been useful demonstrations of the capacity of Neural Fields to work directly with re-
alistic on-line sensory inputs and to control motor behavior in closed loop. Robotic
settings have also been useful to develop new theoretical methods that solve concep-
tual problems. A notable example is the generation of serially ordered sequences of
actions (Sandamirskaya & Schöner, 2010). Because the inner states of Neural Fields
are stable, they resist change. Advancing from one step in a sequence to a next re-
quires, therefore, the controlled generation of instabilities, the release a previous state
from stability and enable the activation of the subsequent state. The innovative step
in (Sandamirskaya & Schöner, 2010) was to use a representation of a “condition of
satisfaction”, that compares current sensory input to the sensory input predicted at
the conclusion of an action. This concept has since been used in a variety of mod-
els that generate autonomously sequences of mental events. A robotic example is the
autonomous acquisition of a scene representation from sequences of covert shifts of
attention (Zibner, Faubel, Iossifidis, & Schöner, 2011).

Ongoing work in Neural Field modeling of embodied cognition advances on three
fronts. On the one hand, the elementary forms of cognition must be integrated into
the more complex dynamics of movement generation, coordination, and motor control
(Martin, Scholz, & Schöner, 2009). This entails dynamically more complex attractor
states including limit cycles, as well as understanding how motor control in closed loop
may interface with the population representations modeled by Neural Fields. On the
other hand, a systematic push from embodied toward higher cognition (Sandamirskaya,
Zibner, Schneegans, & Schöner, 2013) ultimately aims at an understanding of all cog-
nition in neural processing terms. Such an account faces the challenge of how to reach

10



the power of symbol manipulation while maintaining the grounding in sensory and
motor processes. Finally, Neural Field modeling needs to interface more closely with
neural mechanisms of learning (Sandamirskaya, 2014).

Cross-References/Related Terms

Amari model
Bifurcations, Neural Population Models and
Cognition, Bayesian models of
Dynamical Systems: Overview
Perception, Bayesian models of
Decision Making, Models
Decision Making, Motor Planning
Perceptual Decision Making
Cortical Maps, Activity Dependent Development
Multistability in Motor Control
Multistability in Neurodynamics: Overview
Multistability in Perception Dynamics
Neural Field Model, Continuum
Neural Population Models and Cortical Field Theory: Overview
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tribution of neuronal population activation (DPA) as a tool to study interaction
and integration in cortical representations. Journal of Neuroscience Methods , 94 ,
53–66.

11



Erlhagen, W., Mukovskiy, A., & Bicho, E. (2006). A dynamic model for action under-
standing and goal-directed imitation. Brain research, 1083 (1), 174–188.
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