
A neural dynamics to organize timed movement:
Demonstration in a robot ball bouncing task

Farid Oubbati, Mathis Richter, and Gregor Schöner
Institut für Neuroinformatik, Ruhr-Universität Bochum,

Universitätsstr. 150, 44780 Bochum, Germany
{farid.oubbati, mathis.richter, gregor.schoener}@ini.rub.de

Abstract—To address how different movement be-
haviors may be timed to sensory events while being
flexibly organized in sequence, we propose a neural
dynamic model of timed movement organization. Two
layers of neural dynamics control the activation and
de-activation of different elementary movements, while
a third layer uses stable limit cycle oscillators to gen-
erate timed movement trajectories. Both the organi-
zation and the generation of the timed movements
are coupled to online sensory information so that the
system can compensate for perturbations by updating
the movement trajectory while recovering the required
movement timing. We formulate and demonstrate the
approach in a robotic ball bouncing task. When the ball
begins to fall, the robot arm moves to the interception
point in a plane and initiates a rotatory motion of
the racket timed such as to hit the ball with maximal
velocity. When the ball is no longer falling or falling
outside the reachable space, the robot moves the racket
back toward baseline. A physics simulation is used to
assess the model and demonstrate its capacity to handle
perturbations of the ball trajectory.

I. Introduction

Although they come naturally to us, activities like table
tennis are complex and challenging. Within split-seconds
we must perform and coordinate multiple tasks that in-
clude detecting the ball, estimating its future trajectory,
preparing an action that will intercept the ball at the right
time with the right orientation of the racket, and getting
ready for the next interception. In addition, we need to
control and update the movement trajectory of the racket
to control the velocity vector at impact. All actions are
continuously chained together and flexibly tuned to the
environment.

Roboticists have studied problems of this kind not so
much because of their practical importance, but because
they exemplify core elements of autonomous action, in
particular, the problem of timing a robot’s action to
external events. Specific robotic solutions to interception
problems [1]–[4] are often very fast and accurate. The
models typically address each catch as an isolated act,
and flexible organization of sequences and their reor-
ganization has not been a topic. Approaches based on
learning movement primitives from human demonstration
are adaptive in the sense that they learn from a given
demonstrator [5]. During production, a learned primitive is

selected or several are blended together [6]–[9]. The models
produce periodic repetitions of timed acts, which may be
updated to changing sensory estimates. Relatedly, peri-
odic timed motor acts may be generated from nonlinear
oscillators into which an effector system is coupled [10],
[11]. Such systems may repeat timed actions that can
be synchronized with sensed events, but are limited with
respect to the complexity and heterogeneity of the timed
actions.

We have previously developed an approach for how
different discrete timed movements can be organized into
sequences that are coordinated flexibly in response to
time-varying perceptual input [12]. That approach was in-
spired by analogies with timed human movement [13], [14]
and based on neural principles [15]. Timed discrete motor
acts were generated from oscillators that are activated
and deactivated based on sensory input [16], so that they
are reliably timed relative to sensed discrete events while
remaining coupled to ongoing, time varying sensory input.
Previous robotic versions [17], [18] used this principle to
organize initiation, updating, and termination of a single
timed action, while our recent work [12] organized two
actions. These were a movement toward an interception
point and a hitting movement with a racket held by a
robot arm that drives a ball up an inclined plane on which
obstacles perturb the ball’s trajectory.

In the present paper we show how the same framework
can accomplish a ball bouncing task that involves a larger
set of task variables. The ball is kept in the air by
repeatedly hitting it with a racket in a way that controls
the two-dimensional racket orientation as well as the three-
dimensional racket location. We address how the approach
handles perturbations to the ball by updating the planned
robotic movements so that the timing of the hitting action
remains correct.

Ball bouncing and juggling tasks have often been used in
robotics to exemplify principles of timed movement, often
with solutions from control theory [19], [20] or optimal
control [21]. The behavioral organization of such tasks has
been addressed through finite-state machine algorithms [8]
and hierarchically organized dynamical systems [21]. Our
approach is closer to the latter method, but uses contin-
uous time throughout, from which the discrete events at
which actions are initiated and terminated emerge through

4th International Conference on

Development and Learning and on Epigenetic Robotics

October 13-16, 2014. Palazzo Ducale, Genoa, Italy

WePP.1

Copyright ©2014 IEEE 291



Fig. 1: Screenshot from the simulator showing the KUKA
LBR+ arm holding a racket and performing the ball
bouncing task.

dynamical instabilities.

II. Task setting

In our simulation, a ball is bounced by a redundant,
seven degree of freedom robotic arm (KUKA LBR+)
holding a table tennis racket. The simulation is physically
realistic and implemented in Matlab and v-rep1 (see Fig. 1
for a screenshot).

When the ball is falling downward, the robot moves the
racket toward the predicted hitting point with the ball
along the x, y, z axes and orienting the racket at the same
time. The hit is timed so that the racket intercepts the
ball at maximum velocity and at an orientation φ, θ that
will drive the ball toward the middle of the arena, keeping
it in play.

The task highlights the following problems that our
approach is addressing: The process of bouncing the ball
requires timed movements that need to be sequentially
activated and deactivated in time. The repetitive nature
of the task requires that those timed movements be re-
initiated for different trajectories of the ball. By introduc-
ing unpredictable perturbations to the ball, we can show
that the system can quickly react to changes and is open
to update the movement plan at any time.

III. Architecture

The architecture consists of four layers on top of a
sensory-motor system (see Fig. 2 for an overview). All
components within these four layers are dynamical sys-
tems (differential equations). Some are neural dynamics
that have fixed points at an ‘on’ or ‘off’ state, which

1v-rep is an open source simulator (coppeliarobotics.com).

Fig. 2: Architecture that controls the robotic arm and
organizes its behaviors in a ball bouncing task. It consists
of (a) constraint nodes that encode the sequence on the
higher level, (b) abstract ECUs (see Fig. 3) for the behav-
iors ‘hit’ and ‘return/track’, (c) modules of timed move-
ment organization (see Fig. 4) for each movement variable
x, y, z,φ, and θ, (d) timing dynamics (see Section III-C)
for each movement variable, and (e) the sensory-motor
system.

we use to activate and deactivate movements. Others are
neural oscillators that have periodic solutions, which we
use to time movements. These dynamical systems receive
input from the perceptual system that is updated all the
time dependent on input from the camera. The output
of the differential equations is sent to the motor system
and controls joint servo-controllers for the robot arm. All
dynamical systems are time continuous; we solve the differ-
ential equations numerically in real time. Discrete events
like starting to move, hitting, or moving back emerge from
that time continuous set of differential equations through
instabilities that we will explain. Although the architec-
ture is inspired by neural models, it is designed by hand
and has no learning so far. Many of its components are
constructed from a principled approach, however, greatly
reducing the number of parameters that need individual
tuning.

Before we go into detail we will look at the individual
components that make up the architecture.

A. Executive control units

The behavioral organization [22], [23] of the architecture,
that is, the activation and deactivation of different motor
actions, is based on executive control units (ECU). Each
ECU, depicted by the blue boxes in Fig. 2b and shown
individually in Fig. 3, controls the downstream elements
of the architecture that are associated with a motor action.
Two motoric actions are generated: ‘Hit’ moves the end-
effector toward the predicted hitting point of the ball along
the x, y, and z axis and orients the paddle along φ and
θ (see Fig. 1). The second motor action, ‘return/track’,
moves the end-effector back toward a reference plane along

Copyright ©2014 IEEE 292



the z axis while tracking the position of the ball along the
x and y axes.

Each ECU is implemented through two activation vari-
ables, vint, vCoS ∈ R (Fig. 3). A sigmoidal function, f(v),
transforms negative activation levels into zero (i.e., the
variable is ‘off’) and positive activation levels into one (i.e.,
the variable is ‘on’), with a smooth interpolation around
zero levels of activation. The intention node, vint(t), repre-
sents whether the ECU is activated and therefore impacts
on any downstream parts of the architecture. The success-
ful completion of a downstream motor act is represented
by the condition of satisfaction (CoS) node, vCoS.

The time courses of both nodes are generated from
differential equations that receive sensory data as time-
dependent input. For vint we have

τ v̇int(t) = −vint(t) + h + Sint(t) + cvvf(vint(t)), (1)

which describes the rate of change v̇int(t) of the ac-
tivation of the intention node vint(t), given a resting
level h < 0, a time-dependent external input Sint(t), the
self-excitation f(vint(t)) of the node with a strength cvv ∈
R+, and a time constant τ . We use an analogous equation
for vCoS.

Equations of this type are adapted from neural field
models of cortical population activity [24] and form
the mathematical core of the neural dynamics approach
to cognitive robotics. This approach employs a time-
continuous form of recurrent neural networks to model the
evolution of population activity in the higher nervous sys-
tem [25]. In neural dynamics, attractors are the functional
states, and their instabilities induced by changing inputs
bring about state changes.

The neural dynamics of Eq. 1 has an attractor at the
resting level, h < 0, as long as there is no external
input Sint(t). At resting level, the sigmoided activation
variable, f(vint(t)), returns zero. With sufficiently strong
excitatory input, the node becomes activated, generating
positive output, which is stabilized by the self-excitation.
Inhibitory input may destabilize that attractor so that
activation falls back below zero. The stability properties
of the attractors enable such systems to remain linked
to sensory inputs while making detection, selection, or
memory decisions.

The coupling of the two nodes sets up an ECU Fig. 3:
The intention node receives external input from other
ECUs and inhibitory input from its own CoS node, which
in turn receives excitatory input from the intention node
and from the sensory-motor system

Sint = −cicf(vCoS)Sboost(t), (2)

SCoS = ccif(vint)C(t), (3)

where cic, cci ∈ R+ are weights, Sboost(t) is an excitatory
signal which activates the ECU, and C(t) is input from
a perceptual system that signals the state of the motor
action. The idea is that the CoS node is activated when

Fig. 3: Executive control unit (ECU) as part of our
neural dynamic architecture. Excitatory connections are
illustrated by normal arrows, inhibitory connections by
lines ending in circles. See text for details.

sensory information signals that the intended motor action
has been achieved. The CoS node then turns the intention
node off and subsequently goes back to the resting state
itself, as input from the intention node falls away. An ECU
thus executes a motor action once until it is done. It may
be reactivated by new input from other ECUs or the task
level. The ECUs shown in Fig. 2b are directly activated
by task input that comes from perception.

Coupling among ECUs organizes sequences of behavior.
The ECU for ‘hit’ suppresses the ECU for ‘return/track’,
so that they cannot be activated at the same time. Such
competitive constraints are implemented by suppression
nodes (illustrated by nodes marked with ‘s’ in Fig. 2a),
governed by an activation dynamics analogous to Eq. 1,
which receives excitatory input from the intention node
of one ECU (e.g., ‘hit’) and inhibits the intention node
of the other ECU (e.g., ‘return from hit’). Additionally to
suppression between ECUs, we can express precondition
constraints. For instance, the ECU for ‘hit’ should only
be activated if there is perceptual information about the
ball moving downward. The intention node of the ECU
is inhibited by a precondition node (marked with ‘p’ in
Fig. 2a) until that node is in turn turned off by perceptual
information becoming available. Both precondition and
suppression constraints will also show up between ECUs
in the next lower level of the architecture, which we will
explain now.

B. Timed movement organization

Layer (c) of the architecture (green boxes in Fig. 2c)
organizes the actual phases of timed movements. It does
so separately for the five movement variables, the x-, y-
and z-coordinates of the end-effector and the orientation φ
and θ of the racket. For each movement variable, three
ECUs control the resetting of the motor coordinate frame
to the initial state of the effector (preparatory ECU ), the
generation of a timed trajectory (movement ECU ), and
the maintenance of a fixation position that may move
with moving input (fixation ECU ). This is illustrated in
Fig. 4. Each of these ECUs consists of the two activation
variables illustrated in Fig. 3, except for the fixation ECU.
It does not turn itself off but stays on until suppressed

Copyright ©2014 IEEE 293



Fig. 4: A module for the timed movement organization
consists of and organizes three ECUs that are part of a
timed movement. Precondition constraints are illustrated
as circles labeled ‘p’, suppression nodes as circles la-
beled ‘s’. Excitatory connections are illustrated by normal
arrows, inhibitory connections by lines ending in circles.
See text for details.

by the movement ECU via a suppression node. Because
the coordinate frame needs to be reset before a movement
takes place, a precondition node inhibits the intention
node of the movement ECU.

The outputs of all intention nodes within this layer
are used as weights that enable different contributions
to another type of dynamical system, which we will now
explain.

C. Timing

Layer (d) of the architecture (illustrated as larger circles
in Fig. 2d) builds on neural oscillators to generate trajec-
tories for the five movement variables, x, y, z,φ, and θ.
That oscillators may drive timed movement is consistent
with what we know about movement generation in nervous
systems [26]. If the oscillators have stable limit cycles, then
coupling among such oscillators or coupling to timed sig-
nals helps coordinates movements without perturbing the
spatial paths of the movement much [27]. We use the Hopf
normal form [28] as a mathematical formalization because
it has a limit cycle attractor that is perfectly harmonic and
can be analytically computed, so that all parameters have
direct meaning. We write down the timing model for one
movement variable, the x-component of the end-effector
position, the other two being analogous:

H(x, k) =

(

λ −ω
ω λ

) (

x − r − xinit

k

)

−
(

(x − r − xinit)
2 + k2

)

(

x − r − xinit

k

)

. (4)

Because two variables are needed in a first order differen-
tial equation to make an oscillation, this equation includes
an auxiliary variable, k, that has no other role. τ is the
same time scale parameter mentioned before. The Hopf
equation has a limit cycle attractor that is a harmonic
function of amplitude, r =

√
λ and frequency, ω. We

choose λ so that r = (xtarget − xinit)/2 and have shifted
the coordinate frame so that the limit cycle moves between

xinit and xtarget. The frequency, ω, is chosen so that the
desired duration, T , of the movement emerges as half the
cycle time, T = π/ω.

The movement is continuously updated from online
sensory information. Such updates are induced when the
target location, xtarget, shifts. In order for the system
to reach the updated target location in the remaining
time to impact, the movement speed of the end-effector
must be adjusted. This demand is based on an analogy
with human movement timing in which acceleration or
deceleration is used to actively restore appropriate timing
after perturbations [29], [30]. We implement the update
mechanism by coupling into the Hopf oscillator a function
that attracts the oscillator to the solution with the desired
timing

C(x, k) = cw

(

x′ − x
k′ − k

)

, (5)

x′ = r(t)(1 − cos(ωt)), (6)

k′ = −r(t) sin(ωt) (7)

(an alternative on-line updating rule is used in [12]).
Herein, the primed variables are solutions to the Hopf
equation that are initialized at the onset of the movement
and take time varying sensory input about target location,
xtarget(t) as a time varying parameter, r(t) = (xtarget(t) −
xinit)/2. The parameter, cw, is the coupling strength.

Typically, we want the oscillator to be active only for a
single half-cycle in order to move the movement variable,
x, from xinit and xtarget. This is achieved by activating
the Hopf oscillator through the movement ECU and then
deactivating it once x has reached the target. Whenever
the oscillator is not active, the fixation ECU activates
a second contribution to the dynamics of the movement
variable, creating a stable fixed point, xfix, that is set to
xinit initially and to xtarget at the end of the movement.
This second contribution makes sure that the movement
variable is at the right start value before the movement
begins, and remains at the final value after the movement
has ended. In fact, for the movement in the x, y-plane, the
fixed point is continuously computed from perception to
be the position of the ball, so this fixation contribution
essentially does tracking as well. In the complete equation

τ

(

ẋ
k̇

)

= −af(vint,fix,x)

(

x − xfix

k

)

+ f(vint,mov,x) (H(x, k) + C(x, k)), (8)

the intention nodes for the fixation and movement ECU
of the movement variable x are denoted by vint,fix,x and
vint,mov,x. Since the movement ECU suppresses the fixa-
tion ECU as illustrated in Fig. 4, the two contributions
are not simultaneously active except for a short transi-
tion phase. a is a parameter that determines the relative
strength of attraction to the fixed point.

Because the Hopf oscillator requires the initial position,
xinit, of the movement variable to be known, the initial po-

Copyright ©2014 IEEE 294



sition must be stored before the movement is started. This
purely internal operation is controlled by the ‘preparatory
ECU’ through its intention node, vint,pre,x:

ẋinit = f(vint,pre,x) (−xinit + xreal), (9)

through which xinit is updated to the current value of xreal

when the preparatory ECU is ‘on’.

D. Perceptual system

The neural dynamics of behavioral organization receive
time varying input from the perceptual system (left box
in Fig. 2e). Here, we trivialize the perception and use
the known position of the ball from the simulator. In a
previous and similar architecture, we have used a color-
based segmentation to extract the position of a ball from a
camera image [12]. The position of the ball provides input
to a Kalman filter, which serves to extract time-varying
estimates of the time-to-impact to a hitting plane at which
interception is planned, as well as the velocity vector at the
predicted interception point. That point is continuously
updated whenever the ball is moving downward. It is
stored in a neural activation field, which serves as a low-
pass filter and is used to control the ‘hit’ ECU. The
time-to-impact is used to control the ‘hit’ ECU as well,
activating it whenever the time-to-impact falls below a
threshold.

To keep the ball within range of the arm, we direct the
ball toward the center of the hitting region with every hit.
We derive the necessary normal vector n̂ = [nx , ny, nz]T

of the racket from the predicted incoming velocity vector
v̂i of the ball at the hitting point and its optimal outgoing
velocity vector v̂o after the hit

n̂ =
v̂o − v̂i

√

2 (1 − v̂T
i v̂o)

. (10)

From the racket’s normal vector n̂ we compute the desired
orientation of the racket along the two axes that we
control:

φdes = − arctan(
ny

nz

), (11)

θdes = arctan(
nx

nz

). (12)

We control the arm such that the racket is at maximum
velocity upon impact. In simulation, we implement the
impact and hit of the ball by reversing its relative velocity
with respect to the racket and adding the current racket
velocity, factoring in energy loss.

E. Motor system

The motor system (right box in Fig. 2e) receives input
from the dynamical systems that control the robotic arm.
The dynamical systems described in Eq. 8 generate trajec-
tories for the racket movement variables x, y, z,φ, and θ in
task space that are defined in the coordinate system at the

base of the robot. They are converted into joint angles q

using the damped least squares (DLS) inverse method [31]

q̇ = JT (JJT + λ2 I)−1ṗ, (13)

where p = [x, y, z,φ, θ,ψ]T is the end-effector state vector
in task space, J is the Jacobian matrix, I is the identity
matrix, and λ ∈ R+ is a damping factor. The solution
vector q̇ minimizes ∥Jq̇ − ṗ∥2 + λ2∥q̇∥2. For appropriate
values of λ, the solution behaves well near singularities
while providing a sufficiently fast convergence rate.

The joint angles q are then used to drive the joint servo-
controllers of the robot arm.

IV. Evaluation & Results

We used the simulation environment to evaluate the
performance of the system qualitatively in a number of
situations that demonstrate core properties of the ap-
proach. The performance of the system is also presented
in a supplementary video accompanying this paper.

We first demonstrate that the robot arm is able to
bounce the ball. Fig. 5 shows trajectories of the ball
and racket over time for an exemplary sequence of six
consecutive hits. The model organizes all behaviors in
time, generating a sequence of timed movements, and
controls the racket to drive the ball toward the center of
the hitting region. Fig. 6 shows more detailed time courses
of elements of the model. The top panel shows whether a
prediction for the hitting point is available, signaled by
a activation peak in the perceptual field. Whenever such
a prediction is available, the intention node of the ‘hit’
behavior (abbreviated by ‘hit’) is activated (second panel
from the top). The bottom five panels show the movement
variables x, y, z,φ, and θ over time. You can make out the
six consecutive hits from the plot of the movement variable
z. After each hit, the ‘return/track’ behavior is activated
(abbreviated with ‘r/t’), returning the end-effector to a
fixed reference plane along the z-axis and to fixed reference
orientations along φ and θ, but keeps tracking the position
of the ball in x and y.

We now demonstrate that our model can flexibly react
to unforeseen perturbations of the ball’s trajectory. The
initial pose of the robot arm and the initial position and
velocity of the ball are the same as in the last experiment.
Fig. 7 shows the trajectory of the ball and racket when
we change the course of the ball while the arm is already
moving toward the predicted hitting point. You can see
that the robot moves toward the initially predicted hitting
point but moves to the new prediction as soon as it
is available. The model handles situations like this by
adapting the sequence of timed movements and updating
the movement parameters on the fly. Fig. 8 shows how
this adaptation changes the movement of the racket. The
speed profiles shown in Fig. 8 (right side) show sharp
changes after the ball has been perturbed. The model is
compensating for the perturbation and reaches the ball in
time to perform the hit.

Copyright ©2014 IEEE 295



500550600650

0

50

100

150500

1000

1500

y−axis (mm)

 

x−axis (mm)

x − y − z positions of ball and racket

 

z−
ax

is
 (m

m
)

racket
ball

center of the 
hitting region

ball introduced 
in the scene

juggling toward 
the center of the 
hitting region

(a)

500

550

600

650

x−
ax

is
 (m

m
)

x positions of ball and racket

 

 
racket
ball

0

50

100

150

y−
ax

is
 (m

m
)

y positions of ball and racket

0 1 2 3 4
500

1000

1500
z positions of ball and racket

time (s)

z−
ax

is
 (m

m
)

hitting moments

(b)

Fig. 5: Trajectories of the racket and the ball (a) in world
coordinates and (b) separated into individual movement
components over time. Plots show the first six consecutive
hits of an exemplary trial. The racket is initially at the
center of the hitting region.

V. Conclusions

Movement planning and control are typically based on
the mathematical frameworks of optimal control and con-
trol theory, while the sequential organization of different
movements is most commonly organized algorithmically.
Our approach, in part neurally inspired, addresses both
the generation and the organization of timed movements
through dynamical systems. Timing signals are generated
by stable limit cycle oscillators, which are coupled to a
neural attractor dynamics that performs executive control.
Both dynamics are linked to online sensory information.
As a result, the system is capable of responding to changes
in the environment at any time.

We demonstrated the approach in a ball bouncing task

−0.5
0

0.5
1

1.5

ac
tiv

at
io

n

ball prediction

−10
−5

0
5

ac
tiv

at
io

n

intention nodes of higher level EBs

 

 hit
r/t

500

600

700

x−
ax

is
 (m

m
)

xeef

−200

0

200

y−
ax

is
 (m

m
)

yeef

500

550

600

650

z−
ax

is
 (m

m
)

zeef

−5
0
5

10
15

or
ie

nt
.

(◦
)

φeef

0 1 2 3 4
−5

0
5

10
15

θeef

time (s)

or
ie

nt
.

(◦
)

prediction available 1st hitting occurs

Fig. 6: Time courses of relevant variables and parameters
of the architecture during the first six consecutive hits.

400

600

800

1000

−100

0

100

200
400

600

800

1000

1200

1400

 

x−axis (mm)

x − y − z positions of ball and racket

y−axis (mm)
 

z−
ax

is
 (m

m
)

racket
ball

ball perturbed

Fig. 7: Trajectories of the ball and the racket as the ball
is perturbed during the first hitting movement.

Copyright ©2014 IEEE 296



400

600

800

1000
x−

ax
is

 (m
m

)
x positions of ball and racket

 

 
racket
ball

−100

0

100

200

y−
ax

is
 (m

m
)

y positions of ball and racket

0 1 2 3
500

1000

1500
z positions of ball and racket

time (s)

z−
ax

is
 (m

m
)

ball perturbed

(a)

−5000

0

5000

x−
ax

is
 (m

m
/s

)

x speed of the racket

 

 
racket

−1

0

1
x 10

4

y−
ax

is
 (m

m
/s

)

y speed of the racket

0 1 2 3
−500

0

500
z speed of the racket

time (s)

z−
ax

is
 (m

m
/s

)

ball perturbed

(b)

Fig. 8: Trajectories of the racket and the ball over time
for five consecutive hits after a perturbation of the ball.
(a) Trajectories of the racket and ball over time, separated
into individual movement components. (b) Speed profiles
of the racket, showing an acceleration along x and y and
a deceleration along z to compensate for the perturbation
of the ball.

in which the robot moves a racket toward a predicted
interception point and initiates a hitting motion of the
racket just in time to hit the ball with maximal velocity.
When the ball is perturbed, the time of initiation and the
movement plan are updated to preserve the timing of the
hitting motion relative to predicted time of impact.

Because the model is built from exactly solvable dy-
namic components, a Hopf normal form for the oscillator,
and an Amari neural dynamics for behavioral organiza-
tion, setting parameter values is easy. The neural dynamics
is open to learning.

Acknowledgment

The authors acknowledge the financial support of
the European Union Seventh Framework Programme
FP7-ICT-2009-6 under Grant Agreement no. 270247—
NeuralDynamics.

References

[1] W. Hong and J.-J. E. Slotine, “Experiments in hand-eye coor-
dination using active vision,” in Experimental Robotics IV, vol.
223. Springer, 1997, pp. 130–139.

[2] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-
speed batting motion using hybrid trajectory generator,” in
IEEE International Conference on Robotics and Automation.
IEEE Press, 2006, pp. 1762–1767.

[3] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically
optimal catching a flying ball with a hand-arm-system,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 2592–2599.

[4] H. Li, H. Wu, L. Lou, K. Kühnlenz, and O. Ravn, “Ping-pong
robotics with high-speed vision system,” in 12th International
Conference on Control Automation Robotics & Vision, 2012.

[5] S. Schaal, A. Ijspeert, and A. Billard, “Computational ap-
proaches to motor learning by imitation,” Philosophical Trans-
actions of the Royal Society (London) Series B, vol. 358, pp.
537–547, 2003.

[6] S. Kim, E. Gribovskaya, and A. G. Billard, “Learning motion
dynamics to catch a moving object,” in 10th IEEE-RAS Inter-
national Conference on Humanoid Robots. IEEE Press, 2010,
pp. 106–111.

[7] K. Mülling, J. Kober, and J. Peters, “A biomimetic approach to
robot table tennis,” in International Conference on Intelligent
Robots and Systems. IEEE Press, 2010, pp. 1921–1926.

[8] J. Kober, M. Glisson, and M. Mistry, “Playing catch and
juggling with a humanoid robot,” in IEEE-RAS International
Conference on Humanoid Robots. IEEE Press, 2012.

[9] S. Degallier, L. Righetti, S. Gay, and A. Ijspeert, “Toward simple
control for complex, autonomous robotic applications: com-
bining discrete and rhythmic motor primitives,” Autonomous
Robots, vol. 31, no. 2-3, pp. 155–181, May 2011.

[10] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning
and control of robotic juggling and catching tasks,” The Interna-
tional Journal of Robotics Research, vol. 13, no. 2, pp. 101–118,
1994.

[11] A. Nakashima, Y. Sugiyama, and Y. Hayakawa, “Paddle jug-
gling of one ball by robot manipulator with visual servo,” in
Proceedings of the International Conference on Robotics and
Automation. IEEE Press, 2006.

[12] F. Oubbati, M. Richter, and G. Schöner, “Autonomous robot
hitting task using dynamical system approach,” in IEEE Trans-
actions on Systems, Man and Cybernetics (SMC), 2013, pp.
4042–4047.

[13] G. Schöner and J. A. S. Kelso, “Dynamic pattern generation
in behavioral and neural systems,” Science, vol. 239, pp. 1513–
1520, 1988.

[14] W. H. Warren, “The dynamics of perception and action,” Psy-
chological Review, vol. 113, no. 1, pp. 358–389, 2006.

[15] S. K. U. Zibner, C. Faubel, I. Iossifidis, and G. Schöner, “Dy-
namic neural fields as building blocks of a cortex-inspired archi-
tecture for robotic scene representation,” IEEE Transactions on
Autononous Mental Development, vol. 3, no. 1, pp. 74–91, 2011.

[16] G. Schöner, “Dynamic theory of action-perception patterns:
The time-before-contact paradigm,” Human Movement Science,
vol. 3, pp. 415–439, 1994.

[17] G. Schöner and C. Santos, “Control of movement time and
sequential action through attractor dynamics: A simulation
study demonstrating object interception and coordination,” in
Proceedings of the 9th Intelligent Symposium On Intelligent
Robotic Systems, 2001, pp. 15–24.

[18] M. Tuma, I. Iossifidis, and G. Schöner, “Temporal stabilization
of discrete movement in variable environments: an attractor
dynamics approach,” in IEEE International Conference on
Robotics and Automation. IEEE Press, 2009, pp. 863–868.

Copyright ©2014 IEEE 297



[19] R. Ronsse, P. Lefevre, and R. Sepulchre, “Rhythmic feed-
back control of a blind planar juggler,” IEEE Transactions on
Robotics, vol. 23, no. 4, pp. 790–802, 2007.

[20] H. H. Rapp, “A ping-pong ball catching and juggling robot:
a real-time framework for vision guided acting of an indus-
trial robot arm,” in International Conference on Automation,
Robotics and Applications (ICARA), 2011, pp. 430–435.

[21] R. Ronsse, K. Wei, and D. Sternad, “Optimal control of a hybrid
rhythmic-discrete task: the bouncing ball revisited,” Journal of
Neurophysiology, vol. 103, no. 5, pp. 2482–2493, May 2010.

[22] Y. Sandamirskaya, M. Richter, and G. Schöner, “A neural-
dynamic architecture for behavioral organization of an embod-
ied agent,” in IEEE International Conference on Development
and Learning (ICDL), 2011, pp. 1–7.

[23] M. Richter, Y. Sandamirskaya, and G. Schöner, “A robotic
architecture for action selection and behavioral organization
inspired by human cognition,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE Press, 2012,
pp. 2457–2464.

[24] S.-i. Amari, “Dynamics of pattern formation in lateral-inhibition
type neural fields,” Biological Cybernetics, vol. 27, no. 2, pp. 77–
87, 1977.

[25] G. Schöner, Dynamical Systems Approaches to Cognition.
Cambridge, UK: Cambridge University Press, 2008, ch. Dynam-
ical, pp. 101–126.

[26] U. Rokni and H. Sompolinsky, “How the brain generates move-
ment,” Neural Computation, vol. 24, no. 2, pp. 289–331, Feb.
2012.

[27] G. Schöner, “Timing, clocks and dynamical systems,” Brain and
Cognition, vol. 48, no. 1, pp. 31–51, 2002.

[28] L. Perko, Differential Equations and Dynamical Systems. New
York, USA: Springer-Verlag, 2001.

[29] M. Jeannerod, “The timing of natural prehension movements,”
Journal of Motor Behavior, vol. 16, pp. 235–254, 1984.

[30] R. Bootsma and P. Van Wieringen, “Timing an attacking fore-
hand drive in table tennis,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 16, pp. 21–29, 1990.

[31] C. W. Wampler, “Manipulator inverse kinematic solutions based
on vector formulations and damped least-squares methods,” in
IEEE Transactions on Systems, Man and Cybernetics (SMC),
1986, pp. 93–101.

Copyright ©2014 IEEE 298


