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Abstract. Oligo kernels for biological sequence classification have a high
discriminative power. A new parameterization for the K-mer oligo kernel is pre-
sented, where all oligomers of length K are weighted individually. The task spe-
cific choice of these parameters increases the classification performance and
reveals information about discriminative features. For adapting the multiple ker-
nel parameters based on cross-validation the covariance matrix adaptation evolu-
tion strategy is proposed. It is applied to optimize the trimer oligo kernel for the
detection of prokaryotic translation initiation sites. The resulting kernel leads to
higher classification rates, and the adapted parameters reveal the importance for
classification of particular triplets, for example of those occurring in the Shine-
Dalgarno sequence.

1 Introduction

Kernel-based learning algorithms have been successfully applied to a variety of se-
quence classification tasks within the field of bioinformatics [1]. Recently, oligo kernels
were proposed [2] for the analysis of biological sequences. Here the term oligo (-mer)
refers to short, single stranded DNA/RNA fragments. Oligo kernels compare sequences
by looking for matching fragments. They allow for gradually controlling the level of
position-dependency of the representation, that is, how important the exact position of
an oligomer is. In addition, decision functions based on oligo kernels are easy to inter-
pret and to visualize and can therefore be used to infer characteristic sequence features.

In the standard oligo kernel, all oligomers are weighted equally. Thus, all oligomers
are considered to have the same importance for classification. In general this assump-
tion is not reasonable. In this study, we therefore propose the K-weighted oligo kernel
considering all oligomers of length K (K-mers), in which the relative importance of
all K-mers can be controlled individually. A task specific choice of the weighting pa-
rameters can potentially increase the classification performance. Moreover, appropriate
weights for a particular classification task may reveal sequence characteristics with high
discriminative power and biological importance.

The question arises how to adjust the weighting parameters for the K-mers for a given
task. In practice, appropriate hyperparameter combinations are usually determined by
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grid search. This means that the hyperparameters are varied with a fixed step size
through a wide range of values and the performance of every combination is assessed
using some performance measure. Because of the computational complexity, grid search
is only suitable for the adjustment of very few parameters. Hence, it is not applicable for
the adjustment of the 4K weights of the K-weighted oligo kernel. Perhaps the most elab-
orated systematic technique for choosing multiple hyperparameters are gradient descent
methods [3, 4, 5]. If applicable, these methods are highly efficient. However, they have
significant drawbacks. In particular, the score function for assessing the performance of
the hyperparameters (or at least an accurate approximation of this function) has to be
differentiable with respect to all hyperparameters. This excludes reasonable measures
such as the (exact) cross-validation error. Further, the considered space of kernels has
to have an appropriate differentiable structure.

We propose a method for hyperparameter selection that does not suffer from the
limitations described above, namely using the covariance matrix adaptation evolution
strategy (CMA-ES, [6]) to search for appropriate hyperparameter vectors [7, 8].

As an application of our approach to kernel optimization we consider the prediction
of bacterial gene starts in genomic sequences. Although exact localization of gene starts
is crucial for correct annotation of bacterial genomes, it is difficult to achieve with con-
ventional gene finders, which are usually restricted to the identification of long coding
regions. The prediction of gene starts therefore provides a biologically relevant signal
detection task, well-suited for the evaluation of our kernel optimization scheme.

We therefore apply the CMA-ES to the tuning of weighted oligo kernels for detecting
prokaryotic translation initiation sites, that is, for classifying putative gene starts in
bacterial RNA. The performance measure for the hyperparameter optimization is based
on the mean classification rate of five-fold cross-validation.

In the following we introduce the oligo kernel and our new parameterization. Section
3 deals with the adaptation of kernel parameters using evolutionary optimization meth-
ods. Section 4 presents the experiments demonstrating the performance of the kernel
and the optimization of the hyperparameters.

2 Oligo Kernels

The basic idea of kernel methods for classification is to map the input data, here biologi-
cal sequences, to a feature space endowed with a dot product. Then the data is processed
using a learning algorithm in which all operations in feature space can be expressed by
dot products. The trick is to compute these inner products efficiently in input space us-
ing a kernel function (e.g., see [9]). Here the feature space can be described in terms of
oligo functions [2]. These functions encode occurrences of oligomers in sequences with
an adjustable degree of positional uncertainty. This is in contrast to existing methods,
which provide either position-dependent [10] or completely position-independent rep-
resentations [11]. For an alphabet A and a sequence s, which contains K-mer ω ∈ A K

at positions Ss
ω = {p1, p2, . . .}, the oligo function is given by

μ s
ω(t) = ∑

p∈Ss
ω
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(
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K
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for t ∈ R. The smoothing parameter σK adjusts the width of the Gaussians centered on
the observed oligomer positions and determines the degree of position-dependency of
the function-based feature space representation. While small values for σK imply peaky
functions, large values imply flatter functions. For a sequence s the occurrences of all
K-mers contained in A K = {ω1,ω2, . . . ,ωm} can be represented by a vector of m oligo
functions. This yields the final feature space representation ΦK(s)= [μ s

ω1
,μ s

ω2
, . . . ,μ s

ωm
]′

of that sequence. The feature space objects are vector-valued functions. This can be
stressed using the notation

φK
s (t) = [μ s

ω1
(t),μ s

ω2
(t), . . . ,μ s

ωm
(t)]′ .

This representation is well-suited for the interpretation of discriminant functions and
visualization [2]. To make it practical for learning, we construct a kernel function to
compute the dot product in the feature space efficiently. The inner product of two se-
quence representations φ K

i and φ K
j , corresponding to the oligo kernel kK(si,s j), can be

defined as

〈
φ K

i ,φ K
j

〉
≡

∫
φK

i (t)·φK
j (t)dt ∝ ∑

ω∈A K
∑

p∈Si
ω

∑
q∈S j

ω

exp

(
− 1

4σ2
K

(p − q)2
)

≡ kK(si,s j)

using φ i ≡ φ si
. The feature space representations of two sequences may have different

norms. In order to improve comparability between sequences of different lengths, we
compute the normalized oligo kernel

k̃K(si,s j) =
kK(si,s j)√

kK(si,si)kK(s j,s j)
. (1)

From the above definition of the oligo kernel, the effect of the smoothing parameter
σK becomes obvious. For the limiting case σK → 0 with no positional uncertainty, only
oligomers which occur at the same positions in both sequences contribute to the sum.
In general it is not appropriate to represent oligomer occurrences without positional un-
certainty. This would imply zero similarity between two sequences if no K-mer appears
at exactly the same position in both sequences. For σK → ∞ position-dependency of the
kernel completely vanishes. In this case, all terms of oligomers occurring in both se-
quences contribute equally to the sum, regardless of their distance and the oligo kernel
becomes identical to the spectrum kernel [11].

2.1 Weighted Oligo Kernel

So far, the different K-mers are weighted equally in the K-mer oligo kernel. However,
some K-mers may be more discriminative than others. Therefore, we introduce new
parameters wi, i = 1, . . . ,4K , for their weighting and define the K-weighted oligo kernel
k̃K-weighted in analogy to equation (1) with

kK-weighted(si,s j) = ∑
ω∈AK

|wi| ∑
p∈S

si
ω

∑
q∈S

s j
ω

exp

(
− 1

4σ2
K

(p − q)2
)

.

The parameterization ensures a valid oligo kernel for w1, ...,w4K ,σ ∈ R. This makes
unconstrained optimization methods directly applicable to the 1+4K kernel parameters.
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3 Evolutionary Model Selection

Evolutionary algorithms are iterative, direct, randomized optimization methods inspired
by principles of neo-Darwinian evolution theory. They have proven to be suitable for
hyperparameter and feature selection for kernel-based learning algorithms [7, 8, 12, 13,
14,15,16,17,18,19]. Evolution strategies (ES, [20]) are one of the main branches of evo-
lutionary algorithms. Here the highly efficient covariance matrix ES (CMA-ES, [6,21])
for real-valued optimization is applied, which learns and employs a variable metric by
means of a covariance matrix for the search distribution. The CMA-ES has successfully
been applied to tune Gaussian kernels for SVMs considering a cross-validation error as
optimization criterion [7, 8]. The visualization of the objective function in [7] depicts
an error surface that shows a global trend superimposed by local minima, and ES are
usually a good choice for such kind of problems.

In the CMA-ES, a set of μ individuals forming the parent population is maintained.
Each individual has a genotype that encodes a candidate solution for the optimization
problem at hand, here a real-valued vector containing the hyperparameter combina-
tion of the kernel parameters to be optimized. The fitness of an individual is equal to
the objective function value—here the five-fold cross-validation error—at the point in
the search space it represents. In each iteration of the algorithm, λ > μ new individu-
als, the offspring, are generated by partially stochastic variations of parent individuals.
The fitness of the offspring is computed and the μ best of the offspring form the next
parent population. This loop of variation and selection is repeated until a termination
criterion is met. The object variables are altered by global intermediate recombination

and Gaussian mutation. That is, the genotypes g(t)
k of the offspring k = 1, . . . ,μ cre-

ated in iteration t are given by g(t)
k = 〈g̃〉(t) + ξ (t)

k , where 〈g̃〉(t) is the center of mass

of the parent population in iteration t, and the ξ (t)
k ∼ N(0,C(t)) are independent real-

izations of an m-dimensional normally distributed random vector with zero mean and
covariance matrix C(t). The matrix C(t) is updated online using the covariance matrix
adaptation method (CMA). Roughly speaking, the key idea of the CMA is to alter the
mutation distribution in a deterministic way such that the probability to reproduce steps
in the search space that led to the actual population—i.e., produced offspring that were
selected—is increased. The search path of the population over the past generations is
taken into account, where the influence of previous steps decays exponentially. The
CMA does not only adjust the mutation strengths in m directions, but also detects cor-
relations between object variables. The CMA-ES is invariant against order-preserving
transformations of the fitness function and in particular against rotation and translation
of the search space—apart from the initialization. If either the strategy parameters are
initialized accordingly or the time needed to adapt the strategy parameters is neglected,
any affine transformation of the search space does not affect the performance of the
CMA-ES. For details of the CMA-ES algorithm, we refer to the literature [6, 21].

4 Detection of Prokaryotic Translation Initiation Sites

We apply 1-norm soft margin SVMs with 3-mer weighted oligo kernels to the detection
of prokaryotic translation initiation sites [22]. We first introduce the problem and then
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the locality improved kernel, which we consider for comparison. Then the experimental
setup is described. Finally the results are presented.

4.1 Problem Description

To extract protein-encoding sequences from nucleotide sequences is an important task
in bioinformatics. For this purpose it is necessary to detect locations at which coding
regions start. These locations are called translation initiation sites (TIS). A TIS contains
the start codon ATG or rarely GTG or TTG (there is one known case where also ATT
serves as a start codon). The start codon marks the position at which the translation
starts. The codon ATG codes for the amino acid methionine, and not every ATG triplet
is a start codon. Therefore it must be decided whether a particular ATG corresponds to
a start codon or not. This classification problem can be solved automatically using ma-
chine learning techniques, in which the neighborhood of nucleotides observed around
potential TISs is used as input pattern to a classifier.

In contrast to prediction of eukaryotic TIS (e.g., see [23]) there is no biological jus-
tification for using a general learning machine across different species for prediction of
prokaryotic TIS. For this reason, learning of prokaryotic TISs is always restricted to a
limited amount of species-specific examples and model selection methods have to cope
with small data sets.

As in previous studies, we tested our approach on E. coli genes from the EcoGene
database [24]. Only those entries with biochemically verified N-terminus were consid-
ered and the neighboring nucleotides were looked up in the GenBank file U00096.gbk
[25]. From the 730 positive examples we created associated negative examples. For
the negative examples we extracted sequences centered around a codon from the set
{ATG,GTG,TTG}. Such a sequence is used as a negative example if the codon is in-
frame with one of the correct start sites used as a positive case, its distance from a
real TIS is less than 80 nucleotides, and no in-frame stop codon occurs in between.
This procedure generates a difficult benchmark data set, because the potential TISs in
the neighborhood of the real start codon are the most difficult candidates in TIS dis-
crimination. We created 1243 negative examples. The length of each sequence is 50
nucleotides, with 32 located upstream and 15 downstream with respect to the potential
start codon.

To minimize random effects, we generated 40 different partitionings of the data into
training and test sets. Each training set contained 400 sequences plus the associated
negatives, the corresponding test set 330 sequences plus the associated negatives.

Measuring the performance of a TIS classifier by the standard classification rate on
test sets leads to over-optimistic results. In a process of annotation, one normally ob-
tains a window with several possible TISs. The goal is to detect the position of a real
TIS—if there is one—within this window. If there are several positions marked as TISs,
one has to select one of them. In practice, the position with the highest score (i.e., de-
cision function value) is chosen. Thus, although a real TISs was classified as a TIS, the
classification can be overruled by a wrong classification in the neighborhood. There-
fore, when the SVM categorizes a location with corresponding sequence s as being a
TIS, we consider a frame of 160 nucleotides centered at that position. The score of ev-
ery potential TIS within this frame is computed. Only if s corresponds to a real TIS and
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real TIS

score

Example 1

ATGATGTTG GTG-80 +80
-0.7 0.3 0.4 -0.2

real TIS

score

Example 2

ATGATGTTG GTG-80 +80
-0.7 0.30.4 -0.2

Fig. 1. Performance assessment: Example 1 shows a correct positive classification of a TIS. In
example 2, the classification is not correct: The real TIS is classified as a TIS, but its score is not
the largest in the neighborhood.

the score for s is the largest of all potential TIS locations, the pattern s is considered to
be classified correctly, see Figure 1.

4.2 Locality Improved Kernel

For comparison, we consider the locality improved kernel [1,23]. It counts matching nu-
cleotides and considers local correlations within local windows of length 2l + 1. Given
two sequences si, s j of length L the locality improved kernel is given by

klocality(si,s j) =
L−l

∑
p=l+1

(
+l

∑
t=−l

vt+l ·matchp+t(si,s j)

)d

with matcht(si,s j) equal to one if si and s j have the same nucleotide at position t and
zero otherwise. The weights vt allow to emphasize regions of the window which are of
special importance. They were fixed to vt = 0.5 − 0.4|l − t|/l [1]. The hyperparameter
d determines the order to which local correlations are considered.

4.3 Experiments

In our experiments, we considered trimer oligo kernels with hyperparameter σ , locality
improved kernels with hyperparameters l and d, and weighted trimer oligo kernels with
adjustable σ and 64 weights. For each of the 40 partitionings into training and test
data and each sequence kernel independent optimizations of the kernel parameters were
conducted. In the end, we evaluate the median of the 40 trials.

For the SVM using the oligo kernel without individually weighting of the K-mers we
adjusted the smoothing parameter σ by one-dimensional grid-search. After narrowing
the possible values down, the grid search varied σ ∈ {0.1 + 0.2 · k | 0 ≤ k < 10}. The
parameters l and d of the locality improved kernel were also optimized using two-
dimensional grid-search. After determining an interval of parameters leading to well
generalizing classifiers, the grid-search varied l,d ∈ {2,3,4} [23]. For both kernels,
independent grid-searches were performed for each of the 40 partitionings.

The 1+43 = 65 parameters of the weighted trimer oligo kernels were optimized us-
ing the CMA-ES with randomly chosen starting points in the interval [0,1]. For each of
the 40 partitionings an independent optimization trial was started. The offspring popu-
lation size was λ = 16 (e.g., a default choice for this dimensionality, see [21]) and each
trial lasted 100 generations.
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The optimization criterion in the grid-searches and the evolutionary optimization
was the five-fold cross-validation error based on the error measure described above.
The training data set is partitioned into five disjoint subsets. For each of the subsets, the
classifier is trained using the union of the four other sets and a test error is computed on
the left-out subset. The final cross-validation error is the average of the five test errors.

4.4 Results

We first interpret the outcome of the optimization of the parameters of the weighted
oligo kernel. Then we compare the classification performance of the weighted oligo
kernel, the trimer oligo kernel with equal weights, and the locality improved kernel.

The results of the optimization of the smoothing parameter σ are shown in Table 1.
The optimized values are rather small, that is, the position of the triplets is very impor-
tant. However, the smoothing parameter for the oligo and the weighted oligo kernel do
not differ much.

To analyze the relevance of particular oligomers, the 64 triplets were sorted accord-
ing to the median of the corresponding evolved weighting parameters. The weight val-
ues indeed vary, and a group of a few oligomers with comparatively high weight values
can be identified. These triplets on the first 10 ranks are given in Table 2. Additionally
to the start codon ATG the triplets GAG, AGG, and GGA were assigned the largest
weight values. These triplets are all contained in the sequence TAAGGAGGT, which
is known to be of importance for translation initiation sites because it is the sequence
that will bind to the 16S rRNA 3’ terminal sequence of the ribosome. This sequence
is called Shine-Dalgarno Sequence [26, 27]. Obviously the kernel uses the presence of
triplets occurring in the Shine-Dalgarno sequence for discrimination.

The medians of the weights for the potential start codons were 5.6 for ATG, 3.58 for
TTG, and 2.45 for GTG. That is, the presence of ATG appears to be a relevant feature,
whereas GTG and TTG are not as important as ATG. In all positive as well as nega-
tive sequence patterns there is a potential start codon at the positions 33–35. Still, the
frequency of ATG at this position is considerably higher in positive than in negative

Table 1. Optimized smoothing parameter for the oligo and the weighted oligo kernel

oligo kernel weighted oligo kernel
(grid search) (CMA-ES)

Mean 1.86 1.71
Median 1.9 1.83
0.25 quantile 1.5 1.34
0.75 quantile 2.3 2.12

Table 2. The 3-mers of major importance for classification

3-mer GAG ATG AGG GGA GGC GCT CAA TTG TCC GGG
weight 6.23 5.6 5.36 5.29 5 4.81 4.05 3.58 3.45 3.41
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Table 3. Classification performance in percent for 40 trials with different partitionings of the data

oligo kernel locality improved kernel weighted oligo kernel
(grid search) (grid search) (CMA-ES)

Mean 84.86 85.60 86.02
Median 85.01 86.01 86.41
0.25 quantile 83.90 84.63 84.79
0.75 quantile 86.42 86.78 87.08

examples. The initiation codon of more than 90 % of prokaryotic genes is ATG [22].
The rule of thumb “a pattern is positive if the start codon is ATG and negative other-
wise”, which would lead to a classification accuracy of about 72% when applied to our
data, can be implemented with the evolved kernel weights. However, more sophisticated
features based on the triplets with large weights in Table 2 can overrule the presence or
absence of ATG.

The classification results are given in Table 3. The median of the classification per-
formance of the 3-mer oligo kernel with equal weighting is 85.01%. Introducing the
weights for the individual 3-mers in the oligo kernel and optimizing them using
CMA-ES leads to an increase of the classification performance to 86.41%. The re-
sults achieved by the weighted oligo kernel are significantly better than those of the
oligo kernel with equal weights and the smoothing parameter as only adjustable vari-
able (Wilcoxon rank-sum test, p < 0.01).

The median of the locality improved kernel parameters adjusted by grid search was
two for both l and d. That is, the nucleotides were only compared within a small win-
dow. This is in accordance with the results for σ in the oligo kernels. The median
of the classification performance reached by the locality improved kernel is 86.01%,
that is, between the 3-mer oligo kernel with equal weights and the evolutionary opti-
mized 3-weighted oligo kernel. However, the differences are not statistically significant
(Wilcoxon rank-sum test, p > 0.05).

5 Conclusion and Outlook

A task specific choice of the kernel can significantly improve kernel-based machine
learning. Often a parameterized family of kernel functions is considered so that the
kernel adaptation reduces to real-valued optimization. Still, the adaptation of complex
kernels requires powerful optimization methods that can adapt multiple parameters ef-
ficiently. When the considered space of kernel functions lacks a differentiable structure
or the model selection criterion is non-differentiable, a direct search method is needed.
The covariance matrix adaptation evolution strategy (CMA-ES) is such a powerful, di-
rect algorithm for real-valued hyperparameter selection.

In biological sequence analysis, the CMA-ES allows for a more task specific adap-
tation of sequence kernels. Because multiple parameters can be adapted, it is possible
to adjust new weighting variables in the oligo kernel to control the influence of every
oligomer individually. Further, the cross-validation error can directly be optimized (i.e.,
without smoothening).
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We demonstrated the discriminative power of the oligo kernel and the benefits of the
evolutionary model selection approach by applying them to prediction of prokaryotic
translation initiation sites (TISs). The adapted weighted oligo kernel leads to improved
results compared to kernel functions with less adaptable parameters, which were opti-
mized by grid-search. Furthermore, it is possible to reveal biologically relevant infor-
mation from analyzing the evolved weighting parameters. For the prediction of TISs, for
example, triplets referring to the Shine-Dalgarno sequence are used for discrimination.
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