
Second Order SMO Improves

SVM Online and Active Learning

Tobias Glasmachers and Christian Igel
Institut für Neuroinformatik, Ruhr-Universität Bochum

44780 Bochum, Germany

Abstract

Iterative learning algorithms that approximate the solution of support vector
machines (SVMs) have two potential advantages. First, they allow for online and
active learning. Second, for large datasets computing the exact SVM solution may be
too time consuming and an efficient approximation can be preferable. The powerful
LASVM iteratively approaches the exact SVM solution using sequential minimal
optimization (SMO). It allows for efficient online and active learning. Here, this
algorithm is considerably improved in speed and accuracy by replacing the working
set selection in the SMO steps. A second order working set selection strategy, which
greedily aims at maximizing the progress in each single step, is incorporated.

1 Introduction

The applicability of support vector machines (SVMs, Cortes and Vapnik 1995) to large
scale problems is limited by the training time, which scales at least quadratically with
the number of input patterns. Although progress has been made during the last decade
to significantly speed up SVM learning (Joachims, 1999; Platt, 1999; Fan et al., 2005;
Glasmachers and Igel, 2006), there is an increasing interest in approximation methods
(Vishwanathan et al., 2003; Bordes et al., 2005; Tsang et al., 2005; Keerthi et al., 2006).
Iteratively approximating the SVM solution may not only save computation time, it also
allows for online and active learning.

We consider the LASVM algorithm proposed by Bordes et al. (2005), which performs
sequential minimal optimization (SMO, Platt 1999) during learning. The algorithm can
be used for online learning, where the machine is presented a continuous stream of fresh
training examples and the task is to update the classifier quickly after every observed
pattern. In active learning mode, this continuous stream of examples is produced by a
heuristics picking informative training patterns.

Recently, progress has been made in speeding up SMO-like algorithms (Fan et al., 2005;
Glasmachers and Igel, 2006). We transfer these results to online and active learning by
incorporating them into the LASVM algorithm.

1

2 SVM Training with SMO

We consider training data (xi, yi) ∈ X×{±1}, a Mercer kernel function k : X×X → R with
corresponding feature space F and feature map Φ : X → F obeying 〈Φ(x), Φ(z)〉 = k(x, z)
for all x, z ∈ X, and a fixed regularization parameter C > 0. Training a C-SVM means
solving the primal optimization problem

minimize
1

2
‖w‖2 + C ·

ℓ
∑

i=1

max{0, 1 − yi · (〈w, Φ(xi)〉 + b)} . (1)

In practice, the corresponding dual problem is solved, which can be stated as

maximize W (α) = yTα − 1

2
αT Kα

s.t.
∑ℓ

i=1
αi = 0 (equality constraint)

mi ≤ αi ≤ Mi ∀i ∈ {1, . . . , ℓ} (inequality constraint) ,

(2)

where K ∈ R
ℓ×ℓ denotes the kernel Gram matrix with Kij = k(xi, xj) and the vector

y ∈ R
ℓ is composed of the training data labels. The lower and upper bounds are defined as

mi = min{0, yi ·C} and Mi = max{0, yi ·C}, respectively. An input pattern x is classified
according to the sign of

c(x) = 〈w, Φ(x)〉 + b =

ℓ
∑

i=1

αik(xi, x) + b =
∑

i∈S

αik(xi, x) + b ,

where S contains the indices of all support vectors (i.e., all input patterns xi with αi 6= 0).
Typical implementations solve the dual problem up to a fixed accuracy, for example

until the Karush-Kuhn-Tucker (KKT) optimality conditions are violated by no more than,
say, ε = 0.001. Iterative decomposition algorithms such as SMO find an (approximate)
solution of problem (2) without the need to store the ℓ × ℓ matrix K in working memory.
An iteration of a SMO-like algorithm consists of the selection of a working set B = {i, j},
the solution of the induced sub-problem changing only the dual variables αi and αj (see
equation (4)), the update of the gradient and an optimality check. The algorithm has to
compute the gradient g(α) = ∇W (α) = y − Kα of the dual objective function needed (at
least) for the optimality check. All these steps require at most O(ℓ) operations using O(ℓ)
working memory.

Experiments show that the optimization speed crucially depends on the working set
selection strategy (Fan et al., 2005; Glasmachers and Igel, 2006). As the decomposition
algorithm has to keep track of g(α), it is straightforward to use this information for working
set selection. This leads to the most prominent selection method, most violating pair

(MVP) working set selection (e.g., see Joachims, 1999). The index pair (i, j) fulfilling

i = argmin
i|mi<αi

gi(α) and j = argmax
j|αj<Mj

gi(α) (3)

is called most violating pair (MVP), as it most strongly violates the KKT conditions. The
MVP can be obtained in O(ℓ) operations.

2

3 The LASVM Algorithm

The LASVM algorithm (Bordes et al., 2005) holds a set S̃ of support vectors on which the
current classifier is based. It uses SMO to modify both the dual variables αi, i ∈ S̃, and
the set S̃ itself. There are two types of update steps, called process and reprocess, using
different kinds of working sets B. In process the first element of B comes from the stream
of online or active learning examples, while in reprocess it is selected from S̃. The second
element is always chosen from S̃. If the coefficient of a new example ends up non-zero after
process the example is added to S̃. After reprocess all examples with zero coefficients
not violating the KKT conditions are removed from S̃.

The active learning LASVM algorithm starts with initializing S̃ with ℓinit ≪ ℓ elements
of each class using process repeatedly. A predefined number of epochs follows, consisting
of ℓ iterations each. Every iteration is divided into three steps: An active selection step, a
process step, and a reprocess step. After the last epoch an optional finishing step similar
to standard SMO optimization can be conducted. The duration of this finishing step
cannot be controlled in advance, as it repeats reprocess steps until the KKT conditions
are fulfilled with a predefined accuracy ε on the support vector set S̃.

On many datasets, the resulting classifier performs already sufficiently well in terms of
generalization error after only a single epoch of training (Bordes et al., 2005). In addition,
the resulting kernel expansion after the finishing step is usually more sparse than the exact
SVM solution.

Bordes et al. (2005) have shown that in the limit of arbitrary many epochs LASVM
converges to the exact SVM solution. This statement holds for the online learning case
and for the active learning scheme with slight modifications.

4 Second Order Working Set Selection for LASVM

The information computed in the SMO update step can be used for highly efficient working
set selection (Fan et al., 2005; Glasmachers and Igel, 2006). For a pair B = {i, j} of variable
indices the progress in the dual objective achieved in a potential SMO step can be computed
as follows. Let α be fixed as the current solution at the start of the SMO iteration. We
parametrize the feasible line segment with a variable µ

B
as α + µ

B
w

B
with w

B
∈ R

ℓ being
the vector of all zeros except (w

B
)i = 1 and (w

B
)j = −1. Because the equality constraint

is already incorporated into the parametrization, the SMO sub-problem (see Platt, 1999)
is given by

maximize W (α + µ
B
w

B
)

s.t. max{mi − αi, αj − Mj} ≤ µ
B
≤ min{Mi − αi, αj − mj} .

(4)

We rewrite

W (α + µ
B
w

B
) = W (α) + (gi(α) − gj(α))µ

B
−

1

2
(Kii − 2Kij + Kjj)(µB

)2 .

3

Ignoring the inequality constraint we obtain the solution

µ∗
B

=
gi(α) − gj(α)

Kii − 2Kij + Kjj

resulting in the dual objective progress

P (B) = W (α + µ∗
B
w

B
) − W (α) =

1

2
(Kii − 2Kij + Kjj)(µ

∗
B
)2

=
(gi(α) − gj(α))2

2(Kii − 2Kij + Kjj)
. (5)

Fan et al. (2005) propose to use this quantity as a fast approximation of the true progress.
Because it would take O(ℓ2) operations to check all possible index pairs, Fan et al. (2005)

suggested to fix the first index i as in (3) and just to select j = argmaxj |αj<Mj
P ({i, j}) max-

imizing the dual objective progress. This strategy requires only linear time. In LASVM,
the choice of the indices i and j is restricted to S̃ and the working set selection is linear in
|S̃|.

Given that the diagonal entries Knn of the kernel Gram matrix can be cached we still
need the i-th matrix row of K to carry out the computation. If this row is not available
from the kernel cache, expensive kernel evaluations are needed. But these computations
are required for the gradient update at the end of the SMO step anyway. Thus, the second
order information can be used without the need for additional kernel evaluations.

In the following, we call this algorithm second order (SO) working set selection strategy,
because it makes use of kernel values defining the second order terms of the dual objective.

For incorporation of the SO working set selection in the iterative LASVM we have to
cache the diagonal of the kernel Gram matrix K before the optimization loop starts. This
can be done in space and time linear in ℓ. Then, in both the process and reprocess steps
we replace MVP by SO when choosing the second element of the working set from S̃.

It turns out to be sufficient to consider the approximation of the true progress as defined
in equation (5). The neglected inequality constraint could be respected by just a few
additional computations (Glasmachers and Igel, 2006). However, experiments indicated
that this does not improve the learning speed of LASVM when using the SO working set
selection strategy.

5 Experiments and Results

In our experiments we compared the performance of LASVM using either MVP or SO
working set selection.1 In the work of Bordes et al. (2005) the original LASVM was
compared to an old version of LIBSVM using MVP working set selection. Thus, we had
to clarify whether LASVM is still faster after the new working set selection is incorporated

1Source code is available from http://www.neuroinformatik.rub.de/PEOPLE/igel/solasvm.

4

into both machines. Therefore, we conducted the experiments also with LIBSVM 2.8 using
SO working set selection (Fan et al., 2005).

We considered four benchmark datasets, namely Adult, Banana, USPS+N, and Chessboard.
The first three benchmarks were also used by Bordes et al. (2005). These are difficult
datasets in the sense that it takes several learning epochs for LASVM to converge. On
datasets where LASVM basically converges in a single epoch we observed no significant
differences between the two working set selection strategies in LASVM. In addition, the
chessboard dataset (Glasmachers and Igel, 2005) was considered because this simple
dataset leads to dual SVM problems that are very difficult to solve by SMO.

Gaussian kernels k(x, z) = exp(−γ‖x−z‖2) with parameter γ > 0 were used. The cache
for the kernel matrix rows was set to the default size of 256 MB if not stated otherwise.
Some datasets consist of 10 different partitionings into training and test sets. In these
cases all our results refer to mean values over the partitions (Bordes et al., 2005).

We measured runtimes for different cache sizes, classification rate on a test set not used
for training, and primal (1) as well as dual (2) objective value. First, we conducted 50
epochs of training to investigate the convergence behavior of the two LASVM variants.
Second, we conducted one single epoch of training. This corresponds to a realistic applica-
tion scenario. These results are compared to the baseline batch learning results produced
by LIBSVM trained until convergence.

The learning trajectories over 50 epochs shown at the top of Figure 1 demonstrate
that the new working set selection dramatically speeds up LASVM. The SO algorithm
leads to much faster learning than MVP. The longer LASVM needs to converge the more
pronounced are the differences. The performance indicators listed in the table in Figure 1
clearly show that the solution quality considerably increased at the same time.

It seems that the selection of better working sets leads to a faster convergence of the set
S̃. Wrongly adding a training example to S̃ can decrease the overall speed as subsequent
working set selection scales linear in |S̃|. Even worse, this may lead to other wrong choices
in future decisions. Therefore a well founded working set selection can play a key role
in speeding up the entire algorithm. This is in accordance with the number of support
vectors used by both methods, see the table in Figure 1. After a single learning epoch
without finishing, the SO solutions are extremely sparse compared to machines produced
using MVP. Besides improved training speed and accuracy we consider this feature as a
decisive difference between MVP and SO working set selection. In three of four cases the
solutions of LASVM with SO working set selection were even more sparse than the exact
SVM solutions, whereas LASVM with MVP can lead to machines with almost four times
more support vectors compared to LIBSVM when considering a single learning epoch.

Thus, the main result of this paper is non-ambiguous: The SO method is better than
the original LASVM in all measured performance criteria. The comparison of LASVM
with LIBSVM 2.8, both using SO working set selection, is more difficult. Our selection of
difficult datasets as discussed above clearly biases this comparison as we can not expect
LASVM to reach the performance of LIBSVM on these problems. On simple datasets
where LASVM needs only a few epochs to reach the same objective value as LIBSVM the
LASVM algorithm has the same classification error (Bordes et al., 2005). When comparing

5

the classification rates in the table, we have to keep in mind that LASVM was only trained
for one epoch and had usually not yet converged, whereas LIBSVM was trained until
convergence. Of course, the LASVM solution will approach the exact SVM solution found
by LIBSVM (i.e., having approximately the same classification rate and number of support
vectors) in subsequent epochs. Still, even for some of our difficult datasets we only see
small differences in classification rate between LIBSVM and LASVM with SO working set
selection after a single epoch, whereas LASVM with MVP performs considerably worse.

On the Adult dataset the LIBSVM algorithm outperforms LASVM in terms of training
time although it computes a more accurate solution. This result indicates that LIBSVM
profits more than LASVM from the SO working set selection in this example. This is
possible because the number of LASVM iterations is fixed by the epoch length while
LIBSVM may stop after less iterations. On the other three datasets LASVM is clearly
faster than LIBSVM, especially for small cache sizes, see bottom of Figure 1. The small
cache behavior is an indicator of how an algorithm performs on large scale datasets. By
design it is one of LASVM’s advantages to work well with comparatively small cache sizes.
Therefore it is not surprising that LASVM is much more robust to a cache size reduction
than LIBSVM. This is a general property of LASVM independent of the working set
selection algorithm.

6 Conclusion

The powerful LASVM online and active learning algorithm (Bordes et al., 2005) can be
combined in a natural and elegant way with second order working set selection. Theoret-
ical considerations support the expectation that the combined algorithm shows superior
learning speed. The experiments show that we indeed achieve a considerable speed up. At
the same time we gain increased accuracy and sparseness. For datasets that are difficult
to learn this effect is very pronounced. We conclude that second order working set selec-
tion should become the default in iterative SVM learning algorithms relying on sequential
minimal optimization.

References

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with on-
line and active learning. Journal of Machine Learning Research, 5:1579–1619, 2005.
http://leon.bottou.com/projects/lasvm.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information
for training support vector machines. Journal of Machine Learning Research, 6:1889–1918,
2005.

T. Glasmachers and C. Igel. Gradient-Based Adaptation of General Gaussian Kernels. Neural
Computation, 17:2099–2105, 2005.

6

T. Glasmachers and C. Igel. Maximum-gain working set selection for support vector machines.
Journal of Machine Learning Research, 7:1437–1466, 2006.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Support Vector Learning, chapter 11, pages
169–184. MIT Press, 1999.

S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier
complexity. Journal of Machine Learning Research, 8:1–22, 2006.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, chapter 12, pages 185–208. MIT Press, 1999.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM training on very
large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVM. In T. Fawcett and N. Mishra,
editors, Proceedings of the Twentieth International Conference on Machine Learning (ICML-
2003), pages 760–767. AAAI Press, 2003.

Fig. 1: Performance of LASVM with most violating pair (MVP) and second order (SO)
working set selection. LIBSVM 2.8 results are reported for comparison. The plots at the top
illustrate the evolution of primal and dual objective over 50 epochs of training on the benchmark
problems. The upper (decreasing) and lower (increasing) curves represent the primal and dual
objective, respectively, converging to the same optimal value. The table lists the classification
rate, primal and dual objective value as well as the number of support vectors. The curves
beneath show the dependency of the runtime on the cache size for the first learning epoch.

7

time (seconds)

o
b
je

c
ti

v
e

v
a
lu

e
/

1
0
0
0
0 MVP, primal

MVP, dual
SO, primal

SO, dual

Adult

100

105

110

115

120

125

130

135

140

145

300 400 500 600 700 800
time (seconds)

o
b
je

c
ti

v
e

v
a
lu

e
/

1
0
0
0
0 MVP, primal

MVP, dual
SO, primal

SO, dual

Banana

0
0

5 10 15 20

20

25 30

40

60

80

100

120

140

time (seconds)

o
b
je

c
ti

v
e

v
a
lu

e
/

1
0
0
0
0 MVP, primal

MVP, dual
SO, primal

SO, dual

USPS+N

1.45

1.46

1.47

1.48

1.49

1.5

50 100 150 200 250 300 350 400 450 500
time (seconds)

o
b
je

c
ti

v
e

v
a
lu

e
/

1
0
0
0
0 MVP, primal

MVP, dual
SO, primal

SO, dual

Chessboard

0
0

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

dataset parameters algorithm #SV cl. rate primal dual

Adult MVP 14033 74.84% 1,187,350 1,036,160
ℓ = 32, 562 C = 100 SO 11167 82.10% 1,189,174 1,046,430
1 partition γ = 0.005 LIBSVM 11345 85.13% 1,065,429 1,065,408

Banana MVP 484 64.79% 915,624 52,984
ℓ = 4, 000 C = 316 SO 145 80.01% 375,718 253,562
10 partitions γ = 0.5 LIBSVM 162 90.04% 267,278 265,545

USPS+N MVP 3870 99.09% 17,214 14,207
ℓ = 7, 329 C = 10 SO 2501 99.36% 15,867 14,454
10 partitions γ = 2 LIBSVM 2747 99.51% 14,635 14,633

Chessboard MVP 3395 97.86% 782,969 60,771
(5000) C = 1000 SO 944 98.91% 143,614 83,686
1 partition γ = 2 LIBSVM 873 99.40% 90,959 90,946

MVP
SO

LIBSVM

Adult

cache size (MB)

ti
m

e
(s

e
c
o
n
d
s)

0
0.1 1 10 100

200

400

600

800

1000

1000

1200
MVP

SO
LIBSVM

Banana

cache size (MB)

ti
m

e
(s

e
c
o
n
d
s)

0
0.01 0.1 1

1

2

3

4

5

10 100 1000

MVP
SO

LIBSVM

USPS+N

cache size (MB)

ti
m

e
(s

e
c
o
n
d
s)

0
0.1 1 10 100

200

400

600

800

1000

1000

1200
MVP

SO
LIBSVM

Chessboard

cache size (MB)

ti
m

e
(s

e
c
o
n
d
s)

0
0.001 0.01 0.1

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

1.8

10 100 1000

8

