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Abstract. The influence of non-constant population sizes in evolution-
ary multi-objective optimization algorithms is investigated. In contrast to
evolutionary single-objective optimization algorithms an increasing pop-
ulation size is considered beneficial when approaching the Pareto-front.
Firstly, different deterministic schedules are tested, featuring different pa-
rameters like the initial population size. Secondly, a simple adaptation
method is proposed. Considering all results, an increasing population
size during an evolutionary multi-objective optimization algorithm run
saves fitness function evaluations compared to a fixed population size.
In particular, the results obtained with the adaptive method are most
promising.

1 Introduction

The size of the population is an external parameter in evolutionary algorithms
(EA, [6,7]). Chosen once, it is expected to stay constant for the whole opti-
mization run. However, the right choice of the population size has an enormous
effect on the outcome of the EA run. Results vary from very good to very poor
only with respect to a proper setting. Choosing a population too small may
prevent the localization of optimal solutions, whereas choosing a population too
large wastes considerable resources, in particular if fitness function evaluations
are computationally expensive. Thus, a dynamic population size might help in
saving many function evaluations without any loss in solution quality.

A typical single-objective EA run can be split into two phases. During the
first phase the aim of the algorithm is to identify the basin of the globally best
solution. To this end, a larger population size seems to be adequate. Having
identified this basin or at least a good candidate for it, the goal of the algo-
rithm shifts to identifying the best solution within this basin. Here, a smaller
population size is sufficient. This possibly scales down to the (1 + 1) selection
scheme.

The situation changes completely if more than one objective is considered.
The optimization run of an evolutionary multi-objective optimization algorithm
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(EMOA, [3,4]) can be split into two phases as well. However, the population
sizes are expected to be adapted best in a different way. Often, only a rather
limited population size is sufficient to approach a Pareto-front. Once the front
is reached, it needs to be explored and covered well, and, consequently, larger
populations are expected to perform better at this task.

Another difference is the role of the population in single and multi-objective
EA. In a single-objective EA, the population allows to sample the fitness land-
scape sufficiently well, and to maintain a set of diverse solutions. The perfor-
mance of the population is measured by the fitness of the best individual. In a
multi-objective EA, the population represents the algorithm’s current approx-
imation to the Pareto-front. All non-dominated individuals contribute to it’s
performance. Usually, there is a pre-defined upper limit on the allowable size of
the result set, which is often considered the canonical value of the population
size parameter.

As a consequence, the simple rule for adapting the population size of an
EMOA could be: start small, grow big. Big refers here to the limit of the result
set size, while we’d like to start with a much smaller size. In this study, we aim
at proving that increasing the population size like this saves fitness function
evaluations compared to a fixed population size.

Efforts for realizing a dynamic population size in evolutionary algorithms
have been driven mainly by the desires to eliminate an external parameter and
to improve performance. Only few attempts have been made to extend automatic
population size control to multi-objective optimization. An early example (1977)
of a dynamic population size in an EMOA was given by Peschel and Riedel [12],
where the new population was formed by the non-dominated individuals from
the union of parents and offspring. The PR1 algorithm [13] as well as the SEMO
algorithm [10] work similarly. Tan et al. [14] as well as Lu and Yen [11] impose
a cellular structure on the Pareto-front. This approach required prior knowledge
of the front, which is only practical for synthetic benchmark problems. In [8] the
population size develops as a function of a pre-defined time-dependent sched-
ule (deterministic component) and the number of non-dominated individuals
(adaptive component). It is maybe closest in spirit to the present study.

This study starts summarizing multi-criteria optimization basics before the
schedules are defined in section 3. Section 4 presents experiments and results
before we conclude our findings and provide a short outlook.

2 Multi-Criteria Optimization

Considering only one objective in applied optimization is a simplification that
does not mirror the complexity of the underlying application in most (or almost
all) cases. Often multiple objectives f1, . . . , fn : X → R need to be considered.
Here we focus on two objectives. The most common way to deal with multiple
objectives appears to be aggregation, e.g., to a weighted sum f(x) =

∑

i wifi(x).
In contrast, multi-objective or multi-criteria optimization (MCO) offers a differ-
ent way to handle multiple objectives in a more unbiased, maybe more effective
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way. For this approach, we have to consider the vector-valued objective function
f : X → R

n, f(x) =
(

f1(x), . . . , fn(x)
)

.
In MCO, an important concept is Pareto dominance, i.e., an objective value

y ∈ R
n dominates another value y′ ∈ R

n iff y is better in at least one dimension of
the objective space and not worse in all the others. More formally and considering
minimization, this reads

y ≺ y′ iff ∀i : yi ≤ y′i ∧ ∃j : yj < y′j .

If an objective value y is not dominated by any other value in the image A =
f(X) of the objective function (or generated by the algorithm), it is said to be
non-dominated, i.e., ∀y′ ∈ A : y′ 6≺ y. This concept allows for ranking of sets
in the multi-dimensional objective space. MCO algorithms aim for the optimal
set A∗ = {y ∈ A | 6 ∃y′ ∈ A : y′ ≺ y}. It has the property that every two
points y and y′ from A∗ are mutually non-dominated, i.e. y′ 6≺ y ∧ y 6≺ y′.
This set is called the Pareto-front. The dominance relation is pulled back to the
decision space X via the objective function by defining x ≺ x′ iff f(x) ≺ f(x′)
for x, x′ ∈ X. The resulting set f−1(A∗) ⊂ X of optimal solutions is called the
Pareto-set.

In addition to the number of objectives, there is a structural change in the
step from one to multiple objectives. The strict order of objective values in the
single-criterion objective space turns into a partial order (induced by Pareto
dominance) in the multi-criteria objective space. This structural change implies
that besides Pareto dominance a secondary quality indicator is required for rank-
ing and thus for rank-based selection in EA.

In recent years, the hypervolume [15,17] set indicator turned from a fre-
quently used quality indicator to a well-established selection operator for EMOA.
The hypervolume of a set Y is defined as the n-dimensional volume of the space
spanned by the set and a reference point yref that needs to be defined by the
user:

Λ





⋃

y∈Y

{

y′ ∈ R
n
∣

∣

∣ y ≺ y′ ≺ yref

}





with Λ being the n-dimensional Lebesgue measure of the given set. The hyper-
volume of a set P ⊂ X of solutions (e.g., a population) is the hypervolume of
the corresponding values {f(x) |x ∈ P}.

Maximization of the hypervolume covered by the population implicitly covers
the traditional goals of convergence of the solution set to the optimal front as
well as good solution spread. Most prominent instances of hypervolume based
selection MCO algorithms are SMS-EMOA [2], Hyp-E [1], as well as MO-CMA-
ES [9].

The (µ+ 1) selection mechanism in SMS-EMOA provides an elegant way to
enlarge and diminish the population size online. The population can be enlarged
by skipping the selection step, and it can be reduced by skipping the offspring
generation step. Therefore, this algorithm is used for the present study.1

1 The software is available on request by email to the first author.
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3 Schedules

A population size schedule is simply a rule defining which population size to use
at which time. Such a rule may be a fixed function of the generation counter
or an adaptive decision rule based on online indicators. We investigate both
possibilities.

3.1 Fixed Schedules

We start with the definition of a family of fixed, parametric schedules. The
(increasing) population size is a function of time, measured by the number of
fitness evaluations (FE), and normalized in relation to a budget of FEbudget

fitness evaluations. In an application, this budget may be set to the affordable
number of fitness evaluations. We think of it as a conservative estimate. We
want to note clearly that the budget is a highly problem specific parameter.
It is hard to guess a sound value without prior experimentation. Therefore,
the requirement of providing an optimal budget parameter may not be realistic
in practice. Here, this proceeding allows us to define comparable schedules for
very different problems. As a practical solution, we also propose an adaptive
scheduling strategy below.

FE

FEinter FEfullFEbudgetS

Sstart

Sinter

Sfull

α

βγ

δ

Fig. 1. Illustration of the fixed schedules
and their parameters as functions of the
population size S over the number of fit-
ness evaluations FE. Refer to the text for
details.

The final population size Sfull is
the desired size of the Pareto-front ap-
proximation. In this study, it is fixed
to Sfull = 100. Besides these con-
stants, each schedule is defined by
four parameters α, β, γ, δ ∈ [0, 1] as
follows. The initial population size is
set to Sstart = ⌊α · Sfull⌋. The time
FEfull by which the growing popula-
tion size reaches Sfull is represented
as a fraction of the budget: FEfull =
⌊β · FEbudget⌋. In between we inter-
polate linearly. Thus, these parame-
ters define linearly growing schedules
with a cut-off at Sfull. This class of
schedules is further enriched by an in-
termediate point (FEinter, Sinter), de-
fined by FEinter = ⌊γ · FEfull⌋ and
Sinter = ⌊(1− δ) · Sstart + δ · Sfull⌋. This construction is illustrated in figure 1.

3.2 Adaptive Schedules

An alternative to a fixed schedule as a function of FE is an adaptive rule. We
have found the following extremely simple rule to be effective: maintain a fading
record of success probabilities, and increase the population size by a factor as
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soon as the success rate drops below a threshold. This rule is inspired by Rechen-
berg’s famous 1/5 rule for the adaptation of the step size (mutation strength) in
evolution strategies. Here, a very similar rule is used successfully in a completely
different context.

The algorithm works as follows. The low-pass filtered success rate is initialized
to a value of R ← 1/2. In each generation it is updated according to R ←
(1 − η) · R + η · 1suc where the success indicator 1suc is one if the offspring
generated in the current iteration survives the selection phase and zero otherwise.
A learning rate of η = 0.01 results in sufficiently stable behavior. Once the
success rate indicator R drops below the threshold of 1/5, the population size is
increased:

S ← min
{

⌈c · S⌉, Sfinal

}

, R← 1/4

At the same time, the success rate R is reset away from 1/5 in order to avoid
multiple population size increases due to random effects. We set the increase
factor to c = 3/2.

The intuition behind this scheme is that initially the success rate is high,
since all individuals are selected with the same probability. As the population
approaches the front, successes become harder to sample as the success probabil-
ity slowly approaches zero. At this stage, progress can be made only by spreading
out the population over the front, which requires an increase of the population
size.

This adaptive strategy has a number of parameters such as the initial value of
the success rate estimate, the success rate threshold of 1/5, the learning rate of
0.01 and the increase factor of 3/2. We did not tune these parameters. We have
run a few trials with other parameter settings and we did not find the algorithm
to be very sensitive to the exact values. However, the threshold should be kept
around 1/5 for the procedure to work well.

The only remaining critical parameter is the initial population size Sstart.
Analog to the fixed schedules defined above, we express this parameter by means
of α ∈ [0, 1] as Sstart = ⌊α · Sfull⌋.

4 Experimental Evaluation

The goal of our experimental evaluation is two-fold. First of all, we aim for
an overview of whether and how many fitness evaluations can be saved with a
non-uniform population size schedule. To this end, we test a large number of
deterministic schedules against the baseline method, which is to run the EMOA
with the full target population size. Second, and maybe more importantly, we
investigate the performance of our adaptive population size control method. The
primary performance comparison is with the uniform baseline. The systematic
grid evaluation of non-adaptive schedules serves as a second baseline. It allows to
judge the performance of the algorithm relative to the possible gain that could
be expected from any population size adaptation algorithm.
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We consider the benchmark problems ZDT1-4 and ZDT6 from [16], the two-
objective versions of DTLZ1-4 from [5], as well as Schaffer’s problem. We use
30 variables for ZDT1-3 and 10 variables for all other problems. The goal of
optimization is to cover 99.9% of the hypervolume theoretically achievable with
100 individuals, relative to the reference point (1.1, 1.1). Visual inspection re-
veals that this formalized goal corresponds to a reasonably accurate problem
solution. For the ZDT and DTLZ problems, the achievable hypervolume can
be obtained from the website http://www.tik.ee.ethz.ch/~sop/download/

supplementary/testproblems/ for the reference point (11, 11) and converted
easily. For Schaffer’s problem we use the formulation f1(x) = |x1 −

1
2
| and

f2(x) = |x1 + 1
2
|, so that the optimal front fits inside the unit square. The

achievable hypervolume with N points is 1.12 − 0.5− 0.5/(N − 1).

The first experiment compares SMS-EMOA with population size 100 to the
same algorithm with increasing population size schedules as described in sec-
tion 3. We have tested a four-dimensional grid of schedules given by the pa-
rameters α ∈ {0.01, 0.05, 0.1, 0.2, 0.5}, β ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, γ ∈
{0.5, 0.6, 0.7, 0.8, 0.9}, and δ ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7}. The budget FEbudget

was set to the number of FE required by the baseline, rounded up, see table 1.
The algorithm was run 100 times for each of the 1 050 schedules. The median
number of FE relative to the baseline is reported compactly in figure 2.

Table 1. Budgets for the definition of the fixed schedules. The budget values were
determined by rounding up the median FE required by plain SMS-EMOA for reaching
99.9% of the optimal hypervolume.

Problem Schaffer ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4

Budget 6 000 9 000 11 000 10 000 40 000 7 000 36 000 6 000 105 000 6 000

The results show two basic facts. First, the region where a good schedule
is found varies from problem to problem. This clearly shows the need for an
adaptive strategy. Second, problems exist where the baseline is hard to beat
with any schedule. This means that increasing populations help in many cases,
but not always, while it (nearly) never harms.

On the DTLZ4 benchmark all strategies with initial population size of less
than 50 hit the maximum of 500 000 FE in the median. It turns out that this
result is not due to an algorithmic flaw but must be attributed solely to numerical
problems.2

2 The term cos(π/2 · x100

i ) in the DTLZ4 problem applied to numbers xi < 0.83 gives
exactly one when evaluated with 64bit IEEE double precision numbers. This leads to
a large fitness plateau and a spurious local optimum. Control experiments with (a)
higher precision, (b) lower exponent, and (c) larger population confirm this finding.
Therefore, we do not consider the DTLZ4 benchmark any longer.

http://www.tik.ee.ethz.ch/~sop/download/supplementary/testproblems/
http://www.tik.ee.ethz.ch/~sop/download/supplementary/testproblems/
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Fig. 2. Performance of fixed and adaptive schedules. Each 5 × 7 matrix of bitmaps
encodes values of the parameters α (rows) and β (columns). In addition the initial pop-
ulation size is listed in brackets on the right. Within each bitmap, rows and columns
encode parameters δ and γ, respectively, so that the position within the bitmap re-
sembles the position of the intermediate point as indicated in figure 1. The column
on the right of the matrix reports results for the adaptive schedule. Pixel colors indi-
cate relative runtime, measures as number of FE divided by number of FE required
by SMS-EMOA. Values smaller than 1 (blueish color) indicate an improvement over
the baseline, values close to 1 (green) mark performance indifferent to the baseline,
and values larger than 1 (yellow to red) indicate deterioration of the performance as
compared to the baseline.
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In the second experiment, the population size online adaptation procedure
is tested against plain SMS-EMOA and also ranked relative to the extensive
grid of deterministic schedules. The experimental setup remains unchanged. The
adaptive schedule has a single parameter α controlling the initial population size
Sstart. For a fair comparison, this parameter was varied in the same range as
before.

The results for the adaptive schedules are reported graphically in the column
right to the bitmap matrix in figure 2, as well as numerically in table 2. The
performance of the algorithm is rather robust w.r.t. its only parameter, the initial
population size. Our results suggest a default setting of α = 0.1 (corresponding
to Sstart = 10 in our experiments).

It becomes clear that on average the adaptive schedule works about as well
as a good fixed schedule. Importantly, this is achieved across different problems
that require different types of schedules, without prior knowledge of the budget,
and with a practically parameter free method.

Table 2. Performance (median number of FE, lower is better) of plain SMS-EMO and
adaptive population size schedule, with the same initial population size of Sstart = 10.

Problem Schaffer ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3

Baseline 5 482 8 867 10 271 9 533 39 422 6 012 35 052 5 015 102 185
Adaptive 5 848 4 851 5 544 5 712 46 591 2 701 34 926 3 058 97 880

An interesting question is how exactly the online adaptation evolves the
population size. Figure 3 answers this question. There is a high correlation be-
tween the population size staying low for an extended period and a significant
performance improvement over the baseline (compare to figure 2). This is not
surprising since increasing the population size quickly basically means that plain
SMS-EMOA takes over quickly. Such behavior is hard to avoid on multi-modal
problems such as ZDT4, DTLZ1, and DTLZ3. Importantly, although in these
cases online adaptation does not help, it also does not (seriously) impair perfor-
mance.

In contrast, for problems ZDT1, ZDT2, ZDT3, ZDT6, and DTLZ2 adaptively
increasing the population size results in considerable savings of FE, in the order
of about 50%. All of these problems can be solved by approaching the front with
a small population, resulting in increased selection pressure, and spreading the
increasing population over the front as soon as the progress rate drops.

In summary, starting small and growing the population big over the course
of a multi-objective optimization run can save a significant fraction of fitness
evaluations, while it nearly never hurts. Our adaptive algorithm performs in most
cases about as well as the (in general unknown) best deterministic schedule.
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Fig. 3. Evolution of the adaptively controlled population size starting with 10 indi-
viduals. All successful runs were rescaled to the same length which is displayed on a
percentage scale.

5 Conclusion and Outlook

We have proposed an online adaptation scheme for the population size of an
EMOA. This algorithm was compared with the usual proceeding of fixing the
population size to the desired cardinality of the result set, as well to a large num-
ber of systematically chosen deterministic increasing population size schedules.
The proposed adaptive algorithm compares favorably. It saves up to about 50%
of the fitness evaluations of the standard algorithm in case uni-modal problems,
whereas it shows nearly unchanged behavior on multi-modal benchmarks. The
comparison of the performance of the adaptive schedule to the large set of de-
terministic schedules reveals that significantly better results cannot be expected
with any population size schedule. Thus the strategy to start small and grow big

turns out to be successful in MCO.

A few open questions remain for future research. We did not present an adap-
tation rule for shrinking of the population size, although a similar success-based
adaptive rule is straightforward to design. However, at least on standard bench-
marks shrinking is not very useful. Another open question is how the adaptation
rule can be adapted to work with an evolution strategy without interfering with
the (often success-based) step size adaptation mechanism. An extension of this
study to more than two objectives is work in progress.
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