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Abstract

Machine learning often requires the optimization of multiple, partially conflicting
objectives. True multi-objective optimization (MOO) methods avoid the need to
choose a weighting of the objectives a priori and provide insights about the trade-
offs between the objectives. We extend a state-of-the-art derivative-free Monte
Carlo method for MOO, the MO-CMA-ES, to operate on an unbounded set of
(non-dominated) candidate solutions. The resulting algorithm, UP-MO-CMA-ES,
performed well in two recent performance comparisons of MOO methods.

1 Introduction

Multi-objective optimization (MOO, also known as multi-criteria or vector optimization) addresses
simultaneous optimization of several objectives. The goal is to find or to approximate the set of
Pareto-optimal solutions. A solution is Pareto-optimal if it cannot be improved in one objective
without getting worse in another one. There is an increasing interest in using MOO in machine
learning ???, e.g., for parameter tuning and for understanding trade-offs. Conflicting objectives are
ubiquitous, for example complexity vs. accuracy vs. computational complexity of big data processing
?, sensitivity vs. specificity (e.g., ?), or performance on multiple tasks including multi-objective
reinforcement learning (e.g., see ? and references therein). While the attitude towards evolutionary
optimization is sometimes marked by a touch of skepticism, multi-objective evolutionary algorithms
(MOEAs) have become broadly accepted MOO methods. Model-based approaches such as ParEGO ?
are an attractive alternative for expensive problems, and so are evolutionary model-assisted algorithms
?. Both types of methods typically fit global (regression) models to previous evaluations in order
to predict unseen objective vectors. In contrast, the algorithm under study builds an ensemble of
local models, and instead of inter- and extrapolating the objective functions, it learns distributions of
promising new candidate solutions.

The covariance matrix adaptation evolution strategy, CMA-ES ?, is arguably one of the most
competitive derivative-free algorithms for real-valued single-objective optimization ??. The algorithm
has been successfully applied to many real-world problems, and its many variants have demonstrated
superior performance in benchmarks and competitions. In machine learning, the CMA-ES is being
applied for direct policy search in reinforcement learning and hyperparameter tuning in supervised
learning (e.g., see ?????, and references therein). There exists an extension of the CMA-ES to MOO,
the multi-objective CMA-ES (MO-CMA-ES, ??). The original MO-CMA-ES uses an upper bound,
given by the offspring population size, on the set of solutions it considers in each iteration. We recently
developed a refined variant, termed Unbounded Population MO-CMA-ES (UP-MO-CMA-ES, ?),
which maintains an unbounded set of solutions, and submitted it to three benchmarking competitions.
In the following, we present a generalization of the algorithm and summarize the benchmarking
results.
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2 UP-MO-CMA-ES

The UP-MO-CMA-ES is the unbounded-population variant of MO-CMA-ES, which again is a multi-
objective variant of the seminal CMA-ES algorithm. We start out by briefly sketching the working
principles of these methods, and then describe UP-MO-CMA-ES.

objective to be minimized
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Figure 1: Contributed hypervolume ∆S
of a point a to a set X of four solutions.
The green and gray area are the hyper-
volume dominated by X .

CMA-ES The covariance matrix adaptation evolution
strategy (CMA-ES, ??) is a Monte Carlo method for
derivative-free single-objective optimization. In each iter-
ation, it samples candidate solutions from a d-dimensional
multivariate normal search distribution, and ranks them
according to their objective function values. The mean and
the covariance matrix of the search distribution are then
adapted with various mechanisms based on the spatial dis-
tribution of the better-ranked points (cf. ??). Changing the
mean corresponds to the actual optimization steps, while
adapting the covariance matrix aims at maximizing the
probability of sampling even better points. Adaptation of
a global variance parameter enables evolution strategies
to converge to the optimum at a linear rate ??. Adaptation
of the full covariance turns CMA-ES into a variable met-
ric methods, suitable for solving ill-conditioned problems.
Key concepts of the update rule can be derived from prin-
ciples from information geometry ?, resembling natural
gradient learning. The CMA-ES comes with robust de-
faults for all of its hyperparameters, making it practically
parameter-free. Efficient covariance matrix updates are discussed in ??.

The search distribution in the CMA-ES does not model the objective function directly, but instead
it models the algorithm’s belief about promising new candidate solutions. However, it was found
that on quadratic objective functions the (quadratic) log-density aligns with the objective, effectively
performing model-guided optimization. Hence, despite performing direct search, CMA-ES is closely
related to second order optimization methods like NEWUOA ?.

MO-CMA-ES The powerful covariance matrix adaptation principle has been adapted for solving
MOO problems. The MO-CMA-ES algorithm ?? maintains a set (population) of minimal CMA-ES
instances (so-called 1+1 variants), covering different parts of the Pareto front (the objective function
vectors of non-dominated solutions). Each CMA-ES instance maintains its own Gaussian distribution,
forming a flexible mixture-of-Gaussians model of promising points along the arbitrarily shaped set
of non-dominated solutions. The MO-CMA-ES differs from the CMA-ES mostly in its selection
mechanism, which is based on maximizing the dominated hypervolume ? (see Fig. ??) of the set of
individuals in all CMA-ES instances ??.

Unbounded Population The main differences of UP-MO-CMA-ES compared to MO-CMA-ES
and most other MOEAs are the population model and the selection mechanism. The predominant
paradigm has been to maintain a fixed number of candidate solutions. Newly generated solutions
compete with existing ones based on their contributions to a set performance indicator, often the
dominated hypervolume ?. The fixed population size allows for sorting and ranking solutions by
their contributions, a key concept for selection and adaptation of the search distribution. In contrast,
UP-MO-CMA-ES maintains all non-dominated individuals in the population while discarding all
dominated points. Hence the size of the population is dynamic and unbounded.

This design has consequences for the goal of optimization. At first the algorithm must approach
the Pareto front. Once the front is reached, it does not follow the usual goal of finding the optimal
distribution of a fixed number of µ points over the front, but aims at filling in the gaps. Hence, if
successful, the hypervolume does not converge to the optimal µ-distribution ?, but to the hypervolume
covered by the actual (usually infinite) Pareto front. Of course, this requires unlimited memory, so in
practice the algorithm must stop (for the latest) when it runs out of memory. This is not a serious
limitation, we were able to run the algorithm in-memory on standard hardware on all BBOB-biobj
2016 problem instances for 106 function evaluations.
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An important component of the algorithm is the choice of the Gaussian distribution from which
the next candidate point is sampled. We select the Gaussian distribution based on the hypervolume
contribution of the corresponding point in the solution set, see Fig. ??. The contribution of the
hypervolume provides a measure of how well the front is approximated locally. Thus, giving more
weight to points with large contributions can lead to larger progress. The contributions of extreme
solutions (the “ends” of the Pareto front, i.e., best points in one objective) critically depend on the
somewhat arbitrary choice of a reference point (see Fig. ??). Therefore these points are selected
differently, namely with a fixed probability. This helps the algorithm to spread the solution set over
the whole Pareto front, irrespective of the size of the current set.

Two Objectives The UP-MO-CMA-ES for two objectives is described in ?. The method exploits
the one-dimensional and hence ordered structure of the Pareto front. Going beyond standard MO-
CMA-ES, it averages (recombines) the covariance matrices of solutions that are neighbors in the
current set of non-dominated solutions. Deciding whether a solution is dominated or not, updating
the set accordingly, and computing all hypervolume contributions is particularly inexpensive in the
case of two objectives. For µ non-dominated solutions this is achieved in O(log(µ)) amortized time
and O(µ) memory ?.

Extension to Three or More Objectives For m ≥ 3 objectives, there is no easy way to update
the hypervolume contributions cheaply when a solution is inserted or removed. This is because
the hypervolume contribution of an objective vector can be affected by arbitrarily many others.
While even approximating the hypervolume is #P hard for growing m ?, for m = 3 computing
the hypervolume contributions (of one or all points) can be performed in O(µ log(µ)) time, which
still allows a large number of solutions in the front. We decided to select the Gaussian distribution
corresponding to the point with maximum contribution as for m > 3 it is computationally cheaper to
select (one of) the largest contributors with an approximation algorithm (e.g., ??) than to compute the
contributions of all points with sufficient precision. In an ordered set each non-extreme solution has
exactly two well-defined neighbors, to its left and to its right. There is no (parameter-free, canonical)
extension of this concept to higher dimensions. Therefore we drop the recombination of covariance
matrices, which anyway has a minor effect on performance.

3 Performance in Competitions

The UP-MO-CMA-ES was evaluated against several baselines and many strong competitors using
two established benchmarking platforms. Detailed results tables and figures are found on the
corresponding websites. Here we briefly describe the main results.

Bi-objective Blackbox Optimization Benchmarking (BBOB) The bi-objective version of the
algorithm was run on the bi-objective version of the BBOB Benchmark ?.1 The benchmark is
based on a subset of functions of the single objective BBOB, where the bi-objective functions were
generated by picking combinations of two functions. Therefore the benchmark contained function
pairs as simple as two quadratic functions, but also pairs of multi-modal functions such as Rastrigin
which are even challenging in the single-objective case.

We ran the UP-MO-CMA-ES on the full BBOB-biobj 2016 benchmark in dimensions d ∈
{2, 3, 5, 10, 20} with a total budget of 106d function evaluations. To handle multi-modality, the
budget was distributed equally on 100 separate instances and the fronts merged after 1% of the total
budget was spent.

In the benchmark our algorithm ranked second ?, after another MO-CMA-ES variant termed HMO-
CMA-ES ?, which included a hybrid strategy targeted to solve highly multi-modal functions—and
outperformed UP-MO-CMA-ES on such problem instances.

Black Box Optimization Competition (BBComp) In BBComp,2 optimization problems are
truly black boxes to participants. The evaluation budget is limited, not only for a “fi-

1A comparative review of the results is yet to be published, but see http://coco.gforge.inria.fr/
presentation-archive/2016-GECCO/11_Anne_bbob-2016-wrap-up.pdf

2BBComp website with more details and all results: http://bbcomp.ini.rub.de/
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nal run” of the algorithm, but overall. Hence, there is no opportunity for offline tun-
ing to the specific problems at hand, so that the results are unbiased and unaffected
by over-fitting of algorithm parameters to problems or problem classes. UP-MO-CMA-
ES participated in the two and three objective tracks of the BBComp’2016 competition.

Figure 2: Aggregated performance of all seven algorithm in
the three-objective track of BBComp, UP-MO-CMA-ES in
red (higher and to the left is better).

On the two-objective track, UP-MO-
CMA-ES ranked second out of 7 al-
gorithms. It was outperformed by a
hybrid method combining restarted lo-
cal search and the SMS-EMOA algo-
rithm ?. On the three-objective track,
UP-MO-CMA-ES ranked first out of
7 algorithms, beating the above men-
tioned heuristic with a large margin
(see figure ??). We conclude that
the unbounded population approach
pays off in particular for higher di-
mensional Pareto fronts where filling
in “holes” offers a large potential for
gains.

For both tracks, a more detailed analy-
sis based on problem dimension re-
veals sub-optimal parameter tuning
for high dimensions. UP-MO-CMA-
ES totally dominated the field in both
tracks for low-dimensional problems
with d ≤ 10. However, it scored only second for d ≥ 32. We suspect that for high-dimensional
problems UP-MO-CMA-ES would profit from a more aggressive exploration strategy, using a larger
share of the budget for locating interesting parts (local optima) of the search space.

4 Conclusions

Many machine learning problems are inherently multi-objective, and typically it is not clear how to
weight these objectives a priori. Multi-objective optimization (MOO) algorithms allow to obtain a set
of solutions approximating the Pareto optimal ones, those which cannot be improved in one objective
without getting worse in another one. These solutions provide a basis for subsequent decision
making and an understanding of the trade-off between partially conflicting objectives, for example
training time, solution complexity, and predictive accuracy of learning machines. Evolutionary
MOO algoritms (EMOAs) mark the state-of-the-art, in particular for non-expensive settings and
studies without too limiting computation time constraints. Traditional EMOAs have been designed
to operate on an a priori fixed number of active candidate solutions. Dropping this restriction
removes one hyperparameter from the method, and more importantly, it allows to model the Pareto
front more accurately. This modification was applied to one of the most elaborate EMOAs for
continuous domains, the MO-CMA-ES. The optimization performance of the resulting UP-MO-
CMA-ES was compared to the state-of-the-art on two benchmarking platforms, BBOB and BBComp.
It demonstrated very promising performance. In its current form it apparently has two shortcomings:
the BBOB results reveal that it can fail on highly multi-modal problems with millions of local optima.
While we believe that the former class of optimization problems is not highly relevant, improved
restart strategies and revised hyperparameter3 settings may improve the performance of UP-MO-
CMA-ES on such problems. The BBComp results show that the algorithm is not yet well-tuned for
high-dimensional problems. We expect that this issues can be easily addressed by changing the way
the dimensionality enters the algorithm’s hyperparameters.
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3The hyperparameters in CMA-ES and MO-CMA-ES are typically not meant to be adjusted manually, but
are set to robust default values that incorporate scaling with respect to d, m, etc.
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