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Abstract

This paper explores the use of the standard approach for proving runtime
bounds in discrete domains—often referred to as drift analysis—in the context
of optimization on a continuous domain. Using this framework we analyze the
(1+1) Evolution Strategy with one-fifth success rule on the sphere function. To
deal with potential functions that are not lower-bounded, we formulate novel
drift theorems. We then use the theorems to prove bounds on the expected
hitting time to reach a certain target fitness in finite dimension d. The bounds
are akin to linear convergence. We then study the dependency of the different
terms on d proving a convergence rate dependency of Θ(1/d). Our results
constitute the first non-asymptotic analysis for the algorithm considered as
well as the first explicit application of drift analysis to a randomized search
heuristic with continuous domain.
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1 Introduction

The standard methodology for proving runtime bounds of evo-
lutionary algorithms defined on a discrete search space is of-
ten referred to as drift analysis. It consists in proving a drift
condition, e.g. expected drift w.r.t. a potential strictly smaller
than c < 0, that directly translates into a bound on the hit-
ting time to reach the optimum. It allows to decouple generic
mathematical arguments, summarized in drift theorems, from
arguments specific to the algorithm. With drift analysis, proofs
that could take several pages before have been simplified con-
siderably [11, 5, 4, 12, 13].

In this work we explore the utility of such an approach for
the analysis of algorithms operating on a continuous domain.
For this purpose we focus on the analysis of the (1 + 1)-ES
with one-fifth success rule on the sphere function f : Rd → R,
x 7→ ‖x‖2. We are particularly interested in benefits of drift
analysis over current tools for analyzing continuous randomized
search heuristics, like investigating stability of Markov chains.

The (1+1)-ES We focus here on one of the simplest adap-
tive algorithms, namely the (1+1) evolution strategy (ES) with
one-fifth success rule [14]. It is defined in algorithm 1, where
we assume minimization of a function f : Rd → R. The state
of the algorithm at iteration t is (mt, σt) ∈ Rd × R>0, where
mt is the mean of the Gaussian sampling distribution and also
the best solution found so far, and σt is the standard devia-
tion of the distribution or “step-size” that controls the distance
at which novel solutions are sampled. This variant of the algo-
rithm, which was fist proposed in [10], implements Rechenberg’s
idea of maintaining a probability of success of roughly 1/5. This
algorithm is not a “toy” algorithm as it features the important
flavor of the widely used state-of-the-art CMA-ES [6], namely
adaptation of the sampling distribution.

Algorithm 1: (1+1)-ES with 1/5-success rule

1: input m0 ∈ Rd, σ0 > 0, f : Rd → R, parameter α > 0
2: for t = 1, 2, . . . , until stopping criterion is met do
3: sample xt ∼ mt + σtN (0, I)
4: if f

(
xt
)
≤ f

(
mt

)
then

5: mt+1 ← xt . move to the better
solution

6: σt+1 ← σt · eα . increase the step size
7: else
8: mt+1 ← mt . stay where we are
9: σt+1 ← σt · e−α/4 . decrease the step size

Drift Analysis in Rd Interestingly, although drift theorems
are often formulated for finite domains, they naturally gener-
alize to continuous domains [12, 13]. To date however, drift
analysis in the style of discrete domains has not been explic-
itly applied to analyze continuous algorithms. Note that drift

conditions are also central in other approaches addressing con-
vergence in continuous domains, while they are typically not
used for obtaining bounds on the hitting time (see below). At
the same time, we will see that some difficulties can arise when
dealing with continuous search spaces as it seems natural to
use a potential function that converges to minus infinity when
approaching the optimum. To overcome those problems we for-
mulate novel drift theorems.

Analyzing state-of-the art continuous evolutionary algo-
rithms means analyzing adaptive algorithms. While this adap-
tation is the key for the practical success of ES (ensuring linear
convergence on wide classes of problems, similar to gradient-
based methods on strongly convex functions), in turn it makes
the analysis difficult. Indeed, when σt is too small compared
to ‖mt‖, the progress towards the optimum is very small. This
complicates the task of finding a suitable potential function and
proving a drift condition.

When analyzing algorithms in continuous domains, our goals
are (i) to establish how fast the algorithm converges for a fixed
dimension d (usually linear convergence), and (ii) to investigate
the dependency of the convergence rate on the search space
dimension (usually Θ(1/d))—this is different from discrete do-
mains where the optimum can be located in finite time. In
terms of hitting time to reach a certain precision ε, property (i)
means that for all ε > 0 the expected hitting time is finite and
proportional to log(‖m0‖) − log(ε), while property (ii) means
that it is also proportional to d.

Related work Some of the drift methodology is underlying
many results of J. Jägersküpper [7, 8, 9]. Drift is not uncovered
explicitly in these works, which makes it arguably difficult to
follow the analysis carried out. That might be the reason why
nobody built so far on Jägersküpper’s impressive work. We also
have to point out that Algorithm 1 differs from the variant an-
alyzed by Jägersküpper, where the step-size is kept fixed for
several iterations.

For a fixed dimension, the linear convergence of the algo-
rithm on scaling-invariant functions—including in particular
the sphere function—has been shown using Markov chain anal-
ysis [2]. This analysis is asymptotic in nature and does not pro-
vide a dependency of the convergence rate on the dimension.
The difficult part in the approach also relies on proving a drift
condition, that should however hold only outside a compact set,
not on the whole domain.

Drift of a step size adaptive algorithm is also analyzed in [3],
the only prior work that uses a potential function in a contin-
uous domain. That approach remains very restricted, applying
only to symmetric functions of a single variable.

In this work, we go beyond the state-of-the-art as follows.
Other than Jägersküpper’s results, our bounds provide (non-
asymptotic) constants, and they hold with full probability. In
contrast to Markov chain analysis, we obtain a dependency in
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the dimension and non-asymptotic results. Compared to [3], we
go beyond a proof of concept by analyzing a simple yet realistic
algorithm.

Outline The rest of the paper is organized as follows. In the
next section we introduce novel drift theorems for lower and
upper bounds to deal with unbounded potentials, since this is a
natural design in our context. In Section 3, we prove technical
results needed to derive the drift condition for the upper bound.
In Section 4 we define our potential function and show two drift
conditions for the lower and the upper bound. By applying the
drift theorems to the drift conditions we derive lower and upper
bounds on the first hitting time, corresponding to linear con-
vergence with Θ(1/d) scaling of the convergence rate. For the
sake of readability, all proofs are in the appendix.

Notation A multivariate normal distribution is denoted
N (0, I). With Φ1 we denote the cumulative density function
of the standard normal distribution N (0, 1) on R, and ϕd is the
pdf of the standard normal distribution on Rd. The indicator
function of a set or condition C is denoted by 1{C}.

2 Additive Drift on an Unbounded
Domain

In the continuous setting considered in this paper, we aim at
proving a runtime bound that translates into linear convergence.
Linear convergence is typically pictured as the log of the dis-
tance to the optimum converging to minus infinity like −CR× t
with CR > 0. It is thus natural to construct a potential func-
tion that involves the log of the distance to the optimum. Yet,
this means that the potential function can take values that are
arbitrarily negative, while in drift theorems it is typical to as-
sume that the potential function is lower bounded (by zero or
one). For this reason we need to adapt existing drift theorems.

We adopt the following formalism. Let {Xt : t ≥ 0} be a se-
quence of real-valued random variables adapted to a filtration
{Ft : t ≥ 0}. In our typical setting Xt can be homogeneous
to the logarithm of the distance to the optimum and thus go
to minus infinity when linear convergence occurs. Additionally,
from one iteration to the next, Xt+1 can be arbitrarily much
smaller than Xt. This happens if by chance we have made an
atypically good step that improves the current solution a lot.

While arbitrarily good steps should be helpful in the sense
of making the hitting time only smaller, we face the technical
difficulty to distinguish this situation from the following sce-
nario: assume a process Xt with an average decrease of −1,
i.e., fulfilling E[Xt+1|Ft]−Xt ≤ −1, but where Xt+1 equals Xt

with probability 1− p, and with probability p� 1 we jump to

Xt−1 = Xt − 1/p, possibly overjumping the target in a single
but very improbable step. The time needed to sample this jump
is geometrically distributed with expectation 1/p, resulting in
an arbitrarily large hitting time. This small example illustrates
that controlling only the expected drift is not enough for bound-
ing the expected hitting time. If the domain is bounded from
below then the size of a possible jump is also bounded, avoiding
this difficulty. Therefore we have to find a way of controlling
extreme events.

To circumvent this problem, instead of controlling directly
the drift on Xt we will control the drift of a process with trun-
cated and hence bounded single-step progress. More precisely,
for given A > 0 we consider the truncated process defined iter-
atively as Y A

0 = X0 and

Y A

t+1 = Y A

t + max
{
Xt+1 −Xt,−A

}
, (1)

where progress (towards minus infinity) larger than −A is cut.
By construction (almost surely1)

Y A

t+1 − Y A

t ≥ −A , (2)

Xt ≤ Y A

t , (3)

where the latter equation holds as indeed Xt = X0 +∑t−1
k=0(Xk+1 − Xk) ≤ Y A

0 +
∑t−1
k=0 max{(Xk+1 − Xk),−A} =

Y A
0 +

∑t−1
k=0(Y A

k+1 − Y A

k ) = Y A
t .

As a direct consequence of inequality (3), for β ∈ R, the
hitting time TXβ = min{t : Xt ≤ β} ∈ N ∪ {∞} of Xt to reach

(−∞, β] is upper bounded by the hitting time TY
A

β = min{t :

Y A
t ≤ β} of Y A

t to reach (−∞, β], i.e., TXβ ≤ TY
A

β . Hence an up-
per bound on the hitting time of Y A

t results in an upper bound
on the hitting time of Xt. Exploiting this idea, we derive an
upper bound on the hitting time TXβ in the following theorem
based on bounding the expected drift of the truncated process
{Y A

t : t ∈ N}.

Theorem 1 (Upper bound via drift on truncated process). Let
{Xt : t ≥ 0} be a sequence of real-valued random variables
adapted to a filtration {Ft : t ≥ 0} with X0 = x0 ∈ R. For
β < x0 let TXβ = min {t : Xt ≤ β} be the first hitting time of
the set (−∞, β]. If there exist A,B > 0 such that Y A

t is inte-
grable, i.e. E

[∣∣Y A
t

∣∣] <∞, and

E
[
Y A

t+1

∣∣∣Ft]−Y A

t = E
[

max
{
Xt+1−Xt,−A

} ∣∣∣Ft] ≤ −B , (4)

then the expectation of TXβ satisfies

E
[
TXβ
]
≤ E

[
TY

A

β

]
≤ x0 − β + A

B
. (5)

Remark 1. A drift on the truncated process Y A
t also gives a

drift on Xt. Indeed, assume E[|Xt|] < +∞. Since

Xt+1 −Xt ≤ max {Xt+1 −Xt,−A} = Y A

t+1 − Y A

t ,

1We use almost surely although the property is deterministic, simply to disambiguate from in distribution and in expectation.

3



if inequality (4) is satisfied then it holds

E[Xt+1|Ft]−Xt ≤ −B . (6)

The next proposition ensures that the integrability of the
truncated process is implied by the integrability of {Xt : t ≥ 0}.

Proposition 1 (Integrability of the truncated process). If a
process {Xt : t ≥ 0} is integrable, i.e., E[|Xt|] < ∞, then its
truncated process {Y A

t : t ≥ 0} defined in equation (1) is inte-
grable as well.

Our lower bound also relies on an unbounded potential func-
tion. Typical drift theorems for establishing lower bounds as-
sume that the potential is bounded and hence cannot be applied
directly [9]. Instead we use the following theorem, the proof of
which can be seen as a reformulation of the arguments used in
[8, Theorem 2] as a drift theorem. It generalizes [9, Lemma 12].
Note that due to the more general setting we lose a (bearable)
factor of four in the bound.

Theorem 2. Let Xt be integrable and adapted to Ft such that

X0 = x0 and E[Xt+1 | Ft]−Xt ≥ −C

for C > 0. For β < x0 we define TXβ = min {t : Xt ≤ β}. Then
the expected hitting time is lower bounded by

E
[
TXβ
]
≥ x0 − β

4C
− 1

2
.

3 Probability of Successes with Posi-
tive Progress Rate

In this section we derive properties of the success probabil-
ity that will be central for establishing the drift condition for
the upper bound. For an improvement rate r ∈ [0, 1) and
x ∼ N (m,σ2I) in Rd we define the success probability with
rate r given (m,σ) as

psucc
r,d (m,σ) = Pr

x∼N (m,σ2I)

(
‖x‖ < (1− r) · ‖m‖

)
i.e. as the probability that the norm of the offspring is smaller
than (1− r)‖m‖. As a consequence of the isotropy of the mul-
tivariate normal distribution, this success probability equals

psucc
r,d (m,σ) = Pr

(∥∥∥∥e1 +
σ

‖m‖
N
∥∥∥∥ < (1− r)

)
where e1 = (1, 0, . . . , 0) and N is a standard normally dis-
tributed vector. This latter equation reveals that the probabil-
ity of success with improvement rate r is a function of σ/‖m‖.
Let us introduce the normalized step size σ̄ = d · σ/‖m‖ and
define

psucc
r,d (σ̄) := Pr

(∥∥∥e1 +
σ̄

d
N
∥∥∥ < (1− r)

)
, (7)

then psucc
r,d (σ̄) = psucc

r,d (m,σ). For r = 0 we recover the “classic”
probability of success

psucc
0,d (σ̄) := Pr

(∥∥∥e1 +
σ̄

d
N
∥∥∥ < 1

)
.

The success probability function is illustrated in Figure 1.
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Figure 1: The success probability function psucc
d,r (σ̄) for r · d =

ρ = 0 (left) and r · d = ρ = 1 (right). The solid curves depict
psucc
ρ (σ̄), while the dotted curves are psucc

r,d (σ̄) with r · d = ρ for
d ∈ {2, 4, 8, 16, 32, 64, 128, 256}. The curves for high dimensions
are indistinguishable from the limit curve.

We start by proving that the function σ̄ → psucc
r,d (σ̄) is con-

tinuous, and for r = 0 it is monotonically decreasing and hence
bijective. This is formalized in the following lemma:

Lemma 1. 1. For all d ∈ N and r ∈ [0, 1), σ̄ → psuccr,d (σ̄) is
positive and continuous.

2. For r = 0 it is strictly monotonically decreasing and thus
bijective.

3. For all d ∈ N, the image of σ̄ → psucc0,d (σ̄) is (0, 1/2).

We now investigate the asymptotic limit of the function
σ̄ → psucc

r,d (σ̄) for d to infinity.

Lemma 2. For r = r(d) fulfilling limd→∞ d · r(d) = ρ the limit
psuccρ (σ̄) := limd→∞ psuccr,d (σ̄) exists, and it equals psuccρ (σ̄) =

Φ1

(
− ρ
σ̄ −

σ̄
2

)
. For ρ = 0, the function psucc0 is continuous

and strictly monotonically decreasing and the image of psucc0 is
(0, 1/2).

For ρ = 0 we recover the known result that the asymptotic
limit of the probability of success (for r = 0) equals Φ1(−σ/2)
[1]. The above lemma captures the intuition that success is
maximized with a small step size (for ρ = 0, psucc

ρ is maximal
for σ̄ → 0), while a non-trivial step size (σ̄ > 0) is needed for
making significant progress (ρ > 0).
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4 Potential and Drift

In this section we define a potential function V (θt) that de-
fines the unbounded and untruncated process from Section 2.
First we establish that it satisfies the conditions of Theorem 1.
Then we prove a drift condition for the lower bound. Finally
we apply the drift theorems to obtain lower and upper bounds
for the first hitting time of the (1+1)-ES. Our goal is to es-
tablish lower and upper bounds on the expected first hitting
time of log(‖mt‖) to the set (−∞, β], where β = log(ε) is the
logarithm of the target distance ε to the optimum. Linear or
geometric convergence of (1+1)-ES—that is what we observe in
simulation and what Jägersküpper found in his analysis with
overwhelming probability—is implied if log(‖mt‖) decreases at
a linear rate towards −∞. The potential function V (θt) will be
chosen so that its first hitting time gives an upper bound on the
first hitting time of log(‖mt‖).

4.1 Potential Function

We fix two probabilities pu and p` such that 0 < pu < 1/5 <
p` < 1/2. Since the probability of success function σ̄ 7→ psucc

0,d (σ̄)
with rate r = 0 is bijective (see Lemma 1), we know that there
exist u and ` such that psucc

0,d (u) = pu and psucc
0,d (`) = p`. We

assume that pu and p` are chosen such that u/` ≥ α5/4. Given
these parameters, we define the potential function

V (θ) = V (m,σ) = log
(
‖m‖

)
(8)

+ max

{
0 , v · log

(
α · ` · ‖m‖
d · σ

)
, v · log

(
α1/4 · σ · d
u · ‖m‖

)}
with coefficient v > 0 to be determined later. The potential
function consists of three parts. The term log(‖m‖) measures
optimization progress: when approaching the optimum, it de-
cays to −∞. The other terms become positive and hence active
only if the step size is not well adapted. The second term in the
maximum kicks in if σ is “too small”, and the third term turns
positive if σ becomes “too large”. Hence the potential combines
two ways of making progress, namely approaching the optimum
and adapting the step size towards a regime where the (1+1)-
ES can make significant optimization progress. The parameter
v relates these two types of progress by putting them on the
same scale.

Lemma 3. It holds E
[
|V (θt)|

]
< ∞. In other words, V (θt) is

integrable for each t ∈ N. Moreover, for all A > 0 the truncated
process Y A

t defined in equation (1) with Xt = V (θt) is integrable
for each t ∈ N.

4.2 Truncated Drift

In the following, we prove that V (θt) satisfies the prerequisites
of Theorem 1. First we prove a proposition with a range of

possible choices for the constants A and v. We then show in
Proposition 3 how to set those constants to obtain the right
scaling with respect to d for the hitting time.

Proposition 2. Consider optimization of the sphere function
f : Rd → R, x 7→ ‖x‖2 with the (1+1)-ES. If the parameters
v and A fulfill 0 < v < min {1, 4A/ log(α)} then the potential
function V defined in eq. (8) fulfills

E [max{V (θt+1)− V (θt) , −A} | θt] ≤ −B , (9)

with

B = min

{
A · p∗ − 5

4
· v · log(α),

v · log(α) ·
(

5p` − 1

4

)
, v · log(α) ·

(
1− 5pu

4

)}
(10)

and p∗ = min
σ̄∈[`,u]

{
psucc

1−exp(− A
1−v ),d

(σ̄)

}
.

The previous proposition is the core component establishing
the drift of the truncated process. The next proposition shows
how to arrange the parameters so that the speed of the drift
scales as desired in the limit of large dimensions.

Proposition 3. Consider d ≥ 2. For A = 1
d and v = p′

2·d·log(α)

with p′ = min
σ̄∈[`,u]

{
psuccr′,d (σ̄)

}
and r′ = 1 − exp

(
− log(α)
d·log(α)−1

)
it

holds B > 0 and B ∈ Θ(1/d).

Proposition 3 implies that the expected truncated drift (9)
is of order Ω(1/d).

4.3 Hit-and-Run

A very general lower bound on the expected first hitting time
was established by Jägersküpper. His argumentation in [8, The-
orem 2] is based on the hit-and-run algorithm. Here we use a
similar approach for proving the lower bound. In iteration t,
given a mutation direction δt = xt − mt (with the notation
of algorithm 1), the hit-and-run algorithm selects the optimal
length of δt maintaining its direction and produces the offspring
x∗t = mt + γ∗δt with γ∗ = arg minγ f(mt + γ · δt). By construc-
tion, the progress of the hit-and-run method upper bounds the
progress of the (1+1)-ES. Using the same realization for the
Gaussian vector creating the offspring xt (see Algorithm 1), we
indeed have:

log(‖mt‖)− log(‖mt+1‖) ≤ log(‖mt‖)− log(‖x∗t ‖) . (11)

The log-progress of the hit-and-run on the sphere is

log
(
‖mt‖

)
− log

(
‖x∗t ‖

)
= − log

(∥∥∥e1 + (γ∗/‖mt‖)δt
∥∥∥) .

In the next lemma, we bound the expectation of its progress.
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Lemma 4. For d ≥ 2, the expected log progress of the hit-and-
run algorithm is upper bounded by 1/d.

Using inequality (11) we find that the expected log progress
of the (1+1)-ES is upper-bounded by 1/d.

E[log(‖mt‖)− log(‖mt+1‖)|Ft] ≤
1

d
. (12)

4.4 Bounds on the First Hitting Time

Finally, all preparations are in place and we can reap the fruit
of our labor, which are formulated in the following theorem. To
this end, let Tε = min{t : ‖mt‖ ≤ ε} be the first hitting time of
(−∞, log(ε)] by log(‖mt‖), where mt is defined in Algorithm 1.

Theorem 3. The expected first hitting time of the (1+1)-ES
starting from θ0 = (m0, σ0) on the sphere function f(x) = ‖x‖2
fulfills(

log(‖m0‖)− log(ε)
)
· d

4
− 1

2
≤ E[Tε] ≤

V (θ0)− log(ε) + 1
d

B

with V (θ) defined in eq. (8) and B given in eq. (10). With the
choice of constants A and v given in Proposition 3, it is hence
of the form

E[Tε] ∈ Θ
((

log(‖m0‖) + log(1/ε)
)
· d
)
. (13)

The asymptotic form (13) of the expected first hitting time
implies (i) that the process is akin to linear convergence due
to the term log(1/ε), and (ii) a convergence rate of the form
Θ(1/d) due to the factor d in the expected hitting time.

5 Discussion and Conclusion

We have established the first non-asymptotic runtime bound for
the first hitting time of the (1+1)-ES with one-fifth success rule
(Algorithm 1) on the sphere function. Our proof is based on a
global drift condition, a generic approach that has proven in-
valuable for the analysis of discrete algorithms. Our work shows
that such approaches are a promising tool also for continuous
domains. As usual in drift analysis, constructing the potential
function and establishing drift conditions makes up the lion’s
share of the efforts. In this sense, our drift theorems merely add
convenience.

Establishing a drift condition is simplified in the stability
analysis of the underlying Markov chain, since drift is needed
only outside a compact set, i.e., for very small and very large
normalized step size σ̄. On the other hand, the current analy-
sis is non-asymptotic and provides estimates of the convergence
rate as a function of the problem dimension.

Jägersküpper established similar results already more than
a decade ago, when drift analysis was only in its infancy. His

results are hard to follow from a modern perspective. We im-
prove on his work by proving non-asymptotic bounds for finite
dimensions.
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Appendix

proof of theorem 1. We consider the truncated process defined
above and the stopped truncated process as Z0 = Y A

0 and
Zt = Y A

min{t,TY A

β }
. By construction it holds Xt ≤ Y A

t ≤ Zt

and TXβ ≤ TY
A

β . We will prove that

E[Zt+1 | Ft] ≤ Zt − B · 1{TY A

β >t} . (14)

We start from

E[Zt+1 | Ft] = E[Zt+11{TY A

β ≤t}
| Ft] + E[Zt+11{TY A

β >t} | Ft]
(15)

and estimate the different terms:

E[Zt+11{TY A

β ≤t}
| Ft] = E[Zt1{TY A

β ≤t}
| Ft] = Zt1{TY A

β ≤t}
(16)

where we have used that 1{TY A

β ≤t}
is Ft-measurable, and this

also implies that Y A
t and Zt, being functions of Xt and TY

A

, are
Ft-measurable. Also

E[Zt+11{TY A

β >t} | Ft] = E[Yt+1 | Ft]1{TY A

β >t}

≤ (Yt − B)1{TY A

β >t} = (Zt − B)1{TY A

β >t} (17)

where we have also used that 1{TY A

β >t} is Ft measurable. Hence

injecting (16) and (17) into (15), we end up with (14). From
(14), by taking the expectation we deduce

E[Zt+1] ≤ E[Zt]− B · Pr[TA > t] . (18)

Following the same approach as [13, Theorem 1], since TY
A

β is
a random variable taking values in N, it can be rewritten as
E[TY

A

β ] =
∑+∞
t=0 Pr[TY

A

β > t] and thus it holds

B ·E
[
TY

A

β

]
t̃→∞←−

t̃∑
t=0

B ·Pr
[
TY

A

β > t
]
≤

t̃∑
t=0

(
E[Zt]−E[Zt+1]

)
≤ E[Z0]− E[Zt̃] = x0 − E[Zt̃] . (19)

Since Yt+1 ≥ Yt − A, then YTY A

β
≥ β − A and given that

Zt ≥ YTY A

β
, we deduce that E[Zt̃] ≥ β − A for all t̃, which

implies

E
[
TY

A

β

]
≤ x0 − β + A

B
.

With E[TXβ ] ≤ E[TY
A

β ] this proves the upper bound.

proof of proposition 1. From the definition of the truncated
process (1) we obtain |Y A

t+1| ≤ |Y A
t | + |Xt+1 − Xt| + A which

implies

E[|Y A

t+1|] ≤ E[|Y A

t |] + E[|Xt+1 −Xt|] + A

≤ E[|Y A

t |] + E[|Xt+1|] + E[|Xt|] + A ,

where the second to fourth terms are finite. Since Y A
0 = X0 is

integrable, Y A
t is integrable by induction.

proof of theorem 2. After T = b(x0 − β)/(2C)c iterations it
holds E[x0 − XT ] ≤ C · T ≤ (x0 − β)/2. From Markov’s in-
equality we conclude Pr(x0 − XT ≥ x0 − β) ≤ 1

2 and thus
Pr(x0 − XT ≤ x0 − β) ≥ 1

2 , which is equivalent to Pr(TXβ ≥
T ) ≥ 1

2 . Applying the Markov inequality once more we obtain

E[TXβ ] ≥ Pr
(
TXβ ≥ T

)
· T ≥ T/2 ≥ x0 − β

4C
− 1

2
.

proof of lemma 1. We introduce the sample z ∼ N (0, I)
through z = (x − m)/σ, or equivalently, x = m + σ · z. We
write the success rate in the form

psucc
r,d (σ̄) =

∫
Ar,d(σ̄):=B( dσ̄

−m
‖m‖ ,

d
σ̄ (1−r))

ϕd(z) dz.

For increasing values of σ̄ the ball-shaped integration area
shrinks, and in case of r > 0 it also moves away from the ori-
gin. Together with the monotonicity of ϕd w.r.t. ‖z‖ this proves
that psucc

r,d is monotonically decreasing. Continuity of psucc
r,d fol-

lows from the boundedness of ϕd, and positivity from the fact
that Ar,d(σ̄) is non-empty and ϕd is positive. This proves the
first claim. For r = 0 the balls are nested. This immediately
proves the second claim. From⋂
σ̄>0

A0,d(σ̄) = ∅ and
⋃
σ̄>0

A0,d(σ̄) =
{
z ∈ Rd

∣∣∣mT z < 0
}

we conclude limσ̄→0 p
succ
0,d (σ̄) = 1/2 and limσ̄→∞ psucc

0,d (σ̄) = 0,
which proves the last claim.

proof of lemma 2. We consider the sequence of random vari-
ables

Jd = 1{
‖e1+ σ̄

dN‖2<(1−r)2
} = 1{

1+2 σ̄dN1+ σ̄2

d2 ‖N‖2<1−2r+r2
}

= 1{
2σ̄N1+ σ̄2

d ‖N‖2<−2rd+r2d
}

indexed by d. Here N denotes a standard normally distributed
vector in Rd, and N1 is its first component. Almost surely by
the Law of Large Numbers, ‖N‖2/d converges to 1 such that
when d goes to infinity then it holds

lim
d→∞

1{
2σ̄N1+ σ̄2

d ‖N‖2<−2rd+r2d
} = 1{2σ̄N1+σ̄2<−2ρ} = 1{N1<− ρσ̄−

σ̄
2 }

almost surely. Since psucc
d,r (σ̄) = E [Jd] and Jd converges almost

surely to 1{N1<− ρσ̄−
σ̄
2 } we need to prove the uniform integrabil-

ity to ensure that the limit also holds in expectation. However
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the uniform integrability is here obvious since E [|Jd|] ≤ 1 for
all d. Hence we have proven

lim
d→∞

E [Jd] = E
[
1{N1<− ρσ̄−

σ̄
2 }
]

=

Pr

(
N1 < −

ρ

σ̄
− 1

2
σ̄

)
= Φ1

[
− ρ
σ̄
− 1

2
σ̄

]
.

proof of lemma 3. The statement holds trivially for t = 0, since
the initial condition is a constant. The following elementary cal-
culation shows that the pole of the logarithm in the definition
of V is not problematic. Let B(0, 1) denote the open ball of
radius one around the origin, then he have:∫

B(0,1)

log(‖z‖) dz =

∫ 1

0

∫
S(0,r)

log(‖z‖) dz dr

=

∫ 1

0

(∫
S(0,r)

dz

)
log(r) dr =

2 · πd/2

Γ(d/2)

∫ 1

0

rd−1 log(r) dr

=
2 · πd/2

Γ(d/2)
·
[
rd(d log(r)− 1)

d2

]1

0

= − 2 · πd/2

Γ(d/2) · d2
,

where Γ denotes the Gamma function. Therefore
E
[
|V (θt)|

∣∣ θt−1

]
< ∞ for all t, and the statement follows by

induction. The integrability of the truncated process is straight-
forward from the above statement and Proposition 1.

proof of proposition 2. For the sake of simplicity we introduce
log+(x) = log(x) · 1{x≥1}. We rewrite the potential function as

V (mt, σt) = log (‖mt‖)

+ v · log+

(
α · ` · ‖mt‖
σt · d

)
(20)

+ v · log+

(
σt · d

α−1/4 · u · ‖mt‖

)
. (21)

We want to estimate the conditional expectation

E [max{V (θt+1)− V (θt) , −A} | θt] . (22)

We partition the possible values of θt into three sets. First the
set of θt such that σt < ` · ‖mt‖/d (σt is small), second the set
of θt such that σt > u · ‖mt‖/d (σt is large), and last the set of
θt such that ` · ‖mt‖/d ≤ σt ≤ u · ‖mt‖/d (reasonable σt). In
the following, we bound eq. (22) for each of the three cases and
in the end our bound B will equal the minimum of the three
bounds obtained for each case.

Reasonable σt case: ‖mt‖dσt
∈
[

1
u ,

1
`

]
. The potential function

at time t+ 1 can be written as

V (θt+1) = log (‖mt+1‖)

+ v · log

(
α · ` · ‖mt+1‖
d · σt+1

)
1{α`‖mt+1‖>d·σt+1}1{σt+1>σt}

+ v · log

(
α · ` · ‖mt+1‖
d · σt+1

)
1{α`‖mt+1‖>d·σt+1}1{σt+1<σt}

+ v · log

(
d · α1/4 · σt+1

u · ‖mt+1‖

)
1{α−1/4u‖mt+1‖<d·σt+1}1{σt+1>σt}

+ v · log

(
d · α1/4 · σt+1

u · ‖mt+1‖

)
1{α−1/4u‖mt+1‖<d·σt+1}1{σt+1<σt}.

In case of success, where thus 1{σt+1>σt}} = 1, we have
‖mt+1‖/σt+1 < ‖mt‖/(ασt) ≤ d/(α`), implying that the con-
ditions in the second term never hold at the same time and
thus the second term is always 0. Similarly, in case of failure,
‖mt+1‖/σt = ‖mt‖/(α−1/4σ) ≤ d/(α−1/4u) and we find that
the fifth term is always zero. We rearrange the third and fourth
term into

(3rd) = v · log+

(
α5/4 · ` · ‖mt‖

d · σt

)
· 1{σt+1<σt} ,

(4th) = −v ·

[
log

(
‖mt+1‖
‖mt‖

)
− log

(
d · σt

α−5/4 · u · ‖mt‖

)]
× 1{α−5/4u‖mt+1‖<d·σt}1{σt+1>σt} .

Then, the drift ∆t = V (θt+1)− V (θt) is upper bounded by

∆t ≤
(

1− v · 1{α−5/4u‖mt‖<d·σt} · 1{σt+1>σt}

)
log

(
‖mt+1‖
‖mt‖

)
+ v · log+

(
α5/4 · ` · ‖mt‖

d · σt

)
· 1{σt+1<σt}

+ v · log+

(
α5/4 · d · σt
u · ‖mt‖

)
· 1{σt+1>σt}

≤(1− v) log

(
‖mt+1‖
‖mt‖

)
+ v · log+

(
α5/4 · ` · ‖mt‖

d · σt

)
· 1{σt+1<σt}

+ v · log+

(
α5/4 · d · σt
u · ‖mt‖

)
· 1{σt+1>σt} .

The truncated drift max{∆t , −A} is upper bounded by

max{∆t , −A} ≤(1− v) max

{
log

(
‖mt+1‖
‖mt‖

)
, − A

1− v

}
+ v · log+

(
α5/4 · ` · ‖mt‖

d · σt

)
· 1{σt+1<σt}

+ v · log+

(
α5/4 · d · σt
u · ‖mt‖

)
· 1{σt+1>σt} .

To consider the expectation of the above upper bound on the
truncated drift, we need to compute the expectation of the max-

imum of log
(
‖mt+1‖
‖mt‖

)
and − A

1−v . Let a ≤ 0 and b ∈ R then

max(a, b) = a · 1{a>b}} + b · 1{a≤b}} ≤ b · 1{a≤b}} .

8



Applying this and taking the conditional expectation, a trivial
upper bound for the conditional expectation of

max

{
log

(
‖mt+1‖
‖mt‖

)
, − A

1− v

}
is − A

1−v times the probability of log
(
‖mt+1‖
‖mt‖

)
being no greater

than − A
1−v . The latter condition is equivalent to ‖mt+1‖ ≤

(1 − r) · ‖mt‖ corresponding to successes with rate r = 1 −
exp

(
− A

1−v

)
or better. That is,

(1− v) · E
[
max

{
log

(
‖mt+1‖
‖mt‖

)
, − A

1− v

}]
≤ −A · psucc

r,d

(
d · σt
‖mt‖

)
(23)

Note also that the expected value of 1{σt+1>σt} is the success

probability psucc
0,d

(
dσt
‖mt‖

)
. We obtain an upper bound for the

conditional expectation of the truncated drift in the case of
reasonable σt as

E [max{∆t , −A}|θt] ≤ −A · psucc
r,d

(
dσt
‖mt‖

)

+

5

4
log(α) + log

(
`‖mt‖
dσt

)
︸ ︷︷ ︸

≤0

 · v ·
(

1− psucc
0,d

(
dσt
‖mt‖

))

+

5

4
log(α) + log

(
dσt

u‖mt‖

)
︸ ︷︷ ︸

≤0

 · v · psucc
0,d

(
dσt
‖mt‖

)

≤ −A · p∗ +
5

4
log(α) · v , (24)

where r = 1− exp
(
− A

1−v

)
.

Small σt case: ‖mt‖dσt
> 1

` . If `‖mt‖ > dσt, the summand (20)
is positive. Moreover, if σt+1 < σt, we have `‖mt+1‖/d =
`‖mt‖/d > σt > σt+1 and hence the summand (20) is posi-
tive for V (θt+1) as well. If σt+1 > σt, any regime can happen.
Then,

V (θt+1)− V (θt)

= log

(
‖mt+1‖
‖mt‖

)
− v · log

(
α · ` · ‖mt‖
d · σt

)
+ v · log

(
α · ` · ‖mt+1‖

dσt+1

)
1{α`‖mt+1‖>d·σt+1}1{σt+1>σt}

+ v · log

(
α · ` · ‖mt+1‖

dσt+1

)
1{α`‖mt+1‖>d·σt+1}1{σt+1<σt}

+ v · log

(
α1/4 · σt+1d

u · ‖mt+1‖

)
1{α−1/4u‖mt+1‖<d·σt+1}1{σt+1>σt}

=
[
1 +

(
v · 1{`‖mt+1‖>dσt} − v · 1{α−5/4u‖mt+1‖<d·σt}

)
· 1{σt+1>σt}

]
· log

(
‖mt+1‖
‖mt‖

)
− v · log

(
u‖mt‖

α5/4 · d · σt

)
1{α−5/4u‖mt+1‖<d·σt}1{σt+1>σt}

− v · log

(
`‖mt‖
d · σt

)
·
(

1− 1{`‖mt+1‖>d·σt}1{σt+1>σt}

− 1{α5/4`‖mt+1‖>d·σt}1{σt+1<σt}

)
− v · log(α) ·

(
1− 5

4
1{α5/4`‖mt+1‖>d·σt}1{σt+1<σt}

)
On the RHS of the above equality, the first term is guaran-
teed to be non-positive since v ∈ (0, 1). The second and third

terms are non-positive as well since u‖mt‖
dα5/4σt

> u
α5/4`

> 1 and
`‖mt‖
dσt

> 1. Since v · log(α) is positive, replacing the indica-
tor 1{α5/4`‖mt+1‖>dσt} with 1 provides an upper bound. Alto-

gether, we obtain

V (θt+1)− V (θt) ≤ −v · log(α) ·
(

1− 5

4
1{σt+1<σt}

)
.

Note that the RHS is larger than −A. Then, the conditional
expectation of the truncated drift is

E [max{∆t , −A}|Ft] ≤ −v · log(α) ·
(

5

4
psucc

0,d

(
dσt
‖mt‖

)
− 1

4

)
≤ −v · log(α) ·

(
5p` − 1

4

)
< 0 . (25)

Here we used psucc
0,d

(
dσt
‖mt‖

)
> p` > 1/5.

Large σt case: ‖mt‖dσt
< 1

u . Since ‖mt+1‖
σt+1

≤ ‖mt‖
α−1/4σt

< d
α−1/4u

,

the summand (21) is positive in both V (θt) and V (θt+1).
For the summand (20), recall that α`‖mt‖/dσt < α`/u ≤
α · α−5/4 = α−1/4 < 1 since we have assumed that u/` ≥
α5/4. Hence, for V (θt) the summand (20) is zero. Also,
α`‖mt+1‖/dσt+1 ≤ α`/(α−1/4u) = α5/4`/u ≥ 1 and thus for
V (θt+1) the summand (20) also equals 0. We obtain

V (θt+1)− V (θt) =(1− v)
(

log (‖mt+1‖)− log (‖mt‖)
)

+ v · log (σt+1/σt) ,

where log (σt+1/σt) equals log(α) with probability psucc
0,d

(
dσt
‖mt‖

)
,

and − 1
4 log(α) with probability 1−psucc

0,d

(
dσt
‖mt‖

)
. The first term

on the RHS is guaranteed to be non-positive since v < 1, yield-
ing ∆t ≤ v · log(σt+1/σt). On the other hand,

v · log(σt+1/σt)
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= v ·
(

log(α)1{‖mt+1‖<‖mt‖}} −
1

4
log(α)1{‖mt+1‖=‖mt‖}}

)
= v ·

(
5

4
log(α)1{‖mt+1‖<‖mt‖}} −

1

4
log(α)

)
≥ −1

4
log(α)v ≥ −A

where the last inequality comes from the prerequisite v ≤
4A/ log(α). Hence, max{v · log(σt+1/σt),−A} = v log(σt+1/σt)
such that max{∆t , −A} ≤ v · log(σt+1/σt). Then, the condi-
tional expectation of the truncated drift is

E [max{∆t , −A}|θt] ≤ −
1

4
v log(α)

(
1− 5psucc

0,d

(
dσt
‖mt‖

))
≤ −v log(α)

(
1− 5pu

4

)
< 0 . (26)

Here we used psucc
0,d

(
dσt
‖mt‖

)
≤ pu < 1/5.

Inequalities (25), (26), and (24) together cover all possible
cases and hence imply the bound (10).

proof of proposition 3. We rewrite r′ = 1 − exp

(
− A

1− 1
d·log(α)

)
.

It holds v < 1
d·log(α) and hence r′ > r, from which we obtain

p′ < p∗. Now we consider the terms in equation (10) one by
one. We start with

A · p∗ − 5

4
· log(α) · v =

p∗

d
− 5

8

p′

d

which is lower bounded by − 3
8
p′

d and upper bounded by − 3
8
p∗

d .
Furthermore, we obtain

log(α) · v · 5p` − 1

4
=
p′

d
· 5p` − 1

8

log(α) · v · 1− 5pu
4

=
p′

d
· 1− 5pu

8
.

We collect these results into the definition of lower and upper
bounds

L =
p′

d
·min

{
3

8
,

5p` − 1

8
,

1− 5pu
8

}
U =

p∗

d
·max

{
3

8
,

5p` − 1

8
,

1− 5pu
8

}
for L ≤ B ≤ U . From L > 0 we immediately obtain B > 0. We
have limd→∞ d · r = 1 and hence according to Lemma 2

lim
d→∞

p∗ = lim
d→∞

(
min
σ̄∈[`,u]

{
psucc
r,d (σ̄)

})
(∗)
= min

σ̄∈[`,u]

{
lim
d→∞

(
psucc
r,d (σ̄)

)}
= min
σ̄∈[`,u]

{
Φ1

(
− 1

σ̄
− σ̄

2

)}
= min

{
Φ1

(
−1

`
− `

2

)
,Φ1

(
− 1

u
− u

2

)}
> 0 .

The equality (*) holds as follows: Let (σ̄d)d∈N be a sequence
of points where the minimum is attained, then the Bolzano-
Weierstraß property provides a convergent sub-sequence with
limit point σ̄ ∈ [`, u]. Since the success probability functions
and its limit are continuous, the minimum of the limit function
is attained at σ̄. We obtain U ∈ Θ(1/d). Analogously, with
limd→∞ d · r′ = 1 and

lim
d→∞

p′ = min
σ̄∈[`,u]

{
Φ1

(
− 1

σ̄
− σ̄

2

)}
> 0

we also obtain L ∈ Θ(1/d). Combining the results for L and U
proves B ∈ Θ(1/d).

proof of lemma 4. The log progress of the hit-and-run algo-
rithm amounts to − log(sin(θ)) ·1{θ≤π/2}, where θ ∈ [0, π) is the
angle between δt and e1. This follows from a geometric inter-

pretation of the algorithm. Let Wd =
∫ π/2

0
sind(θ)dθ denote the

Wallis integral. Then the density of θ is (2Wd−2)−1| sin(θ)|d−2.
The expected log progress of the hit-and-run algorithm is writ-
ten as

−1

2Wd−2

∫ π/2

0

log (sin(θ)) sind−2(θ)dθ

=
−1

2(d− 1)2Wd−2

∫ 1

0

log (r)√
1− r

2
d−1

dr .

Here we applied the change of variables sin(θ)d−1 = r. Note

that log (r) and 1/
√

1− r
2
d−1 are positively correlated. There-

fore, the integral on the RHS is lower bounded by the product
of the integrals of the two terms, which reads∫ 1

0

log (r)√
1− r

2
d−1

dr ≥
∫ 1

0

log (r) dr︸ ︷︷ ︸
=−1

∫ 1

0

√
1

1− r
2
d−1

dr︸ ︷︷ ︸
=(d−1)Wd−2

.

using d ≤ 2(d− 1) for all d ≥ 2 concludes the proof.

proof of theorem 3. Since log(‖mt‖) ≤ V (θt), then the hitting
time of (−∞, log(ε)] by V (θt), denoted TVε , is not less than Tε.
In Proposition 2 we have shown that for A = 1/d and v as set
in Proposition 3, the drift

E [max{V (θt+1)− V (θt) , −1/d} | θt] ≤ −B

holds. By applying Theorem 1 we obtain

E
[
TVε
]
≤
V (θ0)− log(ε) + 1

d

B
∈ Θ

(
(V (θ0)− log(ε)) · d

)
.

Together with E [Tε] ≤ E
[
TVε
]

this shows the upper bound.
Lemma 4 bounds the drift of Xt = log(‖mt‖), see eq. (12).
With the bound C = 1

d and β = log(ε), Theorem 2 yields the

lower bound E[Tε] ≥ (x0−β)·d
4 − 1

2 ∈ Θ
((
x0 − log(ε)

)
· d
)

.
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