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Gregor Schöner (gregor.schoener@ini.rub.de)

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

Reasoning and other mental operations are believed to rely on
mental models. Arguments have been made that mental mod-
els share representational substrate with perception. Here, we
demonstrate that a neural dynamic architecture that perceptu-
ally grounds language may also support the building of men-
tal models. Supplied with a sequence of simple premises that
specify the colors of object pairs as well as their spatial rela-
tion, the architecture builds a mental model of the described
scene. We show how the neural processes of the architec-
ture evolve in response to both determinate and indeterminate
premises. For indeterminate premises, we demonstrate that
the preferred mental models observed in human participants
emerge from the underlying neural dynamics.
Keywords: mental models; neural dynamics; dynamic field
theory; grounded cognition; visual imagery

Introduction
Most of our thinking relates to real or imagined scenes and
events. Mental models of such scenes can be built from lan-
guage and enable us to understand statements, reason about
them, and make inferences (Johnson-Laird, 2010; Knauff,
2013). But how do neural processes generate such mental
models?

Mental models may have propositional form, but may also
entail perceptual representations (Mani & Johnson-Laird,
1982; Zwaan, 2014) and, therefore, mental imagery. We
know that when we imagine something, the brain’s senso-
rimotor areas are engaged as if we were actively perceiving
a scene (Kosslyn, Ganis, & Thompson, 2001; Pulvermüller,
2005). Many thus believe that mental imagery is based on the
same kinds of perceptual representations that underlie per-
ception and cognition in general (Barsalou, 2009; Gallese &
Lakoff, 2005). If mental imagery and mental models share
their representational format with perception and cognition,
then this suggests a route for providing a neural process ac-
count. Here we pursue this route by showing that a neural ar-
chitecture of the perceptual grounding of language (Richter,
Lins, Schneegans, Sandamirskaya, & Schöner, 2014; Richter,
Lins, & Schöner, 2017) can serve to build mental models.

The neural architecture interfaces continuous perceptual
representations with representations of discrete concepts. It
is based on dynamic field theory (DFT), a mathematical and
conceptual framework for modeling cognitive processes that
is consistent with neural principles (Schöner, Spencer, & the
DFT Research Group, 2015). In DFT, neural activation is
captured by dynamic neural fields that are defined over con-
tinuous feature dimensions and evolve in continuous time
based on differential equations. This enables the coupling of
neural representations to online sensory and motor processes.

The current paper demonstrates how the same architec-
ture, with minimal changes, captures the process of building
mental models. The architecture is supplied with multiple
premises about objects, specifying their colors and spatial re-
lations. It is able to build a mental model of the described
scene based on continuous perceptual representations. This
first requires that the discrete color and relational concepts
invoked by the description activate continuous perceptual rep-
resentations, a mapping that we assume is previously learned.
Furthermore, it requires that new objects are placed in an
imagined scene representation or mental canvas, based on the
specified spatial relation to other objects. In our language,
translating relations into spatial positions entails active co-
ordinate transforms. Building the scene representation also
requires that spatial positions are bound to continuous feature
representations, such as color. Ultimately, this bound repre-
sentation of features and space must yield a stable working
memory of the imagined scene. When a sentence refers to
an object that is already part of the mental model, it must be
brought into the attentional foreground, guided by its distinct
features. Finally, the time-continuous neural dynamics of this
architecture must organize all of these processes, which en-
tails the generation of sequences.

A particular challenge appears in ambiguous descriptions.
Take the following example: “Imagine a green ball. Now
imagine a red ball to the left of that green ball. Now imagine
a blue ball to the left of the green ball.” The first and second
premise are determinate problems, where the premise unam-
biguously specifies where to place the new object. The last
premise, on the other hand, is an indeterminate problem be-
cause it does not specify whether the blue object should be
placed to the left or to the right of the red object. Ragni and
Knauff (2013) find that most people solve indeterminate de-
scriptions by sequentially placing objects such that they cre-
ate the least amount of change relative to the already estab-
lished scene. They capture this preferred mental model by an
architecture that places objects in the first free slot on a grid-
canvas. This paper demonstrates how the same behavior may
emerge from the neural architecture. The positioning of new
objects emerges from inhibitory influences of objects that are
already present in the scene.

Methods
Dynamic field theory (DFT) is a mathematical framework
for modeling cognitive processes based on neural principles
(Schöner et al., 2015). In DFT, the activation of popula-
tions of neurons is captured by dynamic neural fields. Fields



are defined over continuous feature dimensions, for example
color or space, and evolve in continuous time based on the
following integro-differential equation

τu̇(x, t) =−u(x, t)+h+ s(x, t)+
∫

g(u(x′, t))w(x− x′)dx′.

Here, u(x, t) is the activation of a field defined over the con-
tinuous feature dimension x at time t. τ is a time constant
that determines the time scale of the dynamics, h is a negative
resting level, and s(x, t) is external input from other fields or
sensors. The last term, the integral, formalizes lateral interac-
tion within the field. The interaction kernel w features local
excitation and mid-range or global inhibition. The strength
of interaction is determined by the field’s sigmoidal output
function g(u(x, t)) with a threshold at zero (Amari, 1977).

With sufficient external input s(x, t), a field goes through
a dynamic detection instability, where the subthreshold at-
tractor becomes unstable and a new attractor emerges above
threshold. This leads to the formation of a stable peak of
activation—the unit of representation in DFT. The shape of
the interaction kernel determines whether a field may form
multiple peaks or make a selection decision to form only a
single peak. With sufficient self-excitation, peaks become
self-sustained and remain stable after initial input is removed.
Fields may be defined over multiple continuous feature di-
mensions. Dynamic neural nodes are not defined over any
feature dimension and instead represent discrete concepts.
Fields and nodes may be coupled to form larger architec-
tures, where fields of different dimensionality are connected
via shared feature dimensions. DFT architectures are con-
tinuously updated and may be coupled to sensory input and
motor output.

Architecture
The architecture introduced here (Figure 1) is composed of
dynamic neural fields and nodes that are interconnected to
form a single dynamical system. It can be functionally di-
vided into five parts, described in the following sections.

Concepts
The user interacts with the architecture by supplying premises
such as “an orange object to the left of a blue object.” Each
discrete concept of color and spatial relation contained within
such a premise is represented by a pair of dynamic neural
nodes. Memory nodes (blue circles in Figure 1) represent part
of the premise and act as an interface for the user. Produc-
tion nodes (pink circles) gate the influence of memory nodes
onto the architecture. The perceptual meaning of a concept
is encoded in patterned synaptic connections (marked with
a star) between the production nodes and a dynamic neu-
ral field. Color concepts (i.e., RED, BLUE, CYAN, GREEN,
ORANGE) are encoded by connections from their production
node to every location of the color attention field, which is de-
fined over the hue dimension. The weights that make up the
connection patterns are determined by Gaussians centered on
the respective colors. Spatial relational concepts (i.e., TO THE

LEFT OF, TO THE RIGHT OF, ABOVE, BELOW) are encoded
by connections from their production node to every location
of the relational field, which is defined over two-dimensional
space. These connection patterns are inspired by empirical
data (Logan & Sadler, 1996); they are depicted in Figure 1
next to their respective concept nodes using a color-code. In
a relational premise like “the orange object to the left of the
blue object”, color concepts appear in the roles of the target
object (here, orange) and the reference object (blue). In the
architecture, each color concept thus appears twice, for target
and reference.

Attention
The attentional system consists of two fields. The color atten-
tion field is defined over the circular hue dimension. A peak
in this field brings objects of the specified color into the atten-
tional focus. It feeds excitatorily into the three-dimensional
attention field along their shared hue dimension. The atten-
tion field is defined over two additional spatial dimensions
that span a canvas on which objects may be imagined. When
the color attention field has a peak, its output forms a sub-
threshold pattern of activation in the attention field in the
shape of a sheet. When this sheet of activation overlaps with
subthreshold localized input along the spatial dimensions, the
field may form a peak. This is visible in Figure 1 in the low-
est slice through the attention field. The subthreshold local-
ized input along the spatial dimensions can come from four
sources. For objects that are already part of a mental model,
the input comes from the scene representation field, which
holds a representation of the mental model. For new objects
that are to be added to a mental model, the input comes from
the target field. In case the object is the first one to be placed
in the model, a localized bias input places it at the center of
the spatial canvas. This case is detected by the color mis-
match field, which forms a peak if the color represented in
the color attention field does not already exist in the mental
model. A last input to the attention field comes from the ref-
erence field and supports inferences about reference objects.

Scene representation
The mental model is built and memorized in the scene rep-
resentation field, also defined over hue and two-dimensional
space. Strong self-excitation as well as surround inhibition
ensure that peaks in this field remain stable even after excita-
tory input from the attention field is removed. The output of
the scene representation field feeds excitatorily into the spa-
tial scene representation field. It holds a representation of the
spatial positions of all objects in the mental model.

Spatial transformation and object creation
The spatial transformation system enables the architecture to
express spatial relational premises. A premise such as “the
orange object to the left of the blue object” (shown in Fig-
ure 1) consists of three elements, all of which need to be
represented by the architecture: the object the premise is pri-
marily referring to (the target object, here orange), the spatial
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Figure 1: Activation snapshot of the architecture as it forms a mental model consisting of five objects. For two-dimensional
fields, activation is shown color-coded, where blue colors denote subtreshold and yellow colors denote suprathreshold activa-
tion. For three-dimensional fields, two-dimensional slices of activation are shown. Neural nodes are denoted by circles that are
filled if the node is active and empty if inactive. Excitatory synaptic connections are shown by black lines with arrowheads,
inhibitory connections by lines ending in black circles; patterned connections are marked with a star. Steerable neural mappings
are denoted by blue diamonds. See text for details.

relation (here, to the left of), and the object which the relation
uses as a reference position (the reference object, here blue).
The spatial transformation system represents these three ele-
ments in dedicated dynamic neural fields, the target field, the
relational field, and the reference field, respectively. The tar-
get field and reference field are defined over two-dimensional
space and receive input from the attention field. Whenever
there is a peak in the attention field, one of the fields may
be brought into the dynamic regime to form peaks. The two-
dimensional relational field represents the relative position of
a target object with respect to the reference object. The field
is defined such that the reference object would be in the cen-
ter of the field. The relational field also receives input from
the production nodes of all spatial relation concepts (e.g., TO
THE LEFT OF, see Figure 1). Coordinate transformations be-
tween the absolute spatial positions in the target field and the
relative positions in the relational field are based on steer-
able neural mappings (blue diamonds in Figure 1; Schnee-
gans & Schöner, 2012), which are approximated by convolu-
tions here. The architecture has four such coordinate trans-
forms (blue diamonds, from left to right): the first enables the
position of an already existing target object to be transformed
into the relational field. The second transforms a peak in the

relational field into the reference field. The third is analogous
to the second but feeds into the target field. These three coor-
dinate transforms enable the architecture to make inferences
on an already established mental model. The third transform
also accounts for the creation of new objects in the scene: a
peak is induced in the relational field from the spatial tem-
plate that represents one of the spatial relations. The position
in space where the peak forms determines where the new ob-
ject is going to be placed in space. The fourth transform has
a crucial impact on the position where the peak forms in the
relational field. It transforms the output of the spatial scene
representation field and feeds inhibitorily into the relational
field, introducing inhibition in positions that are already oc-
cupied by objects in the mental model. Due to this inhibi-
tion, peaks induced in the relational field tend to shift further
outward, avoiding changes to the already established mental
model. This is consistent with the preferred mental models
that humans tend to build (Ragni & Knauff, 2013).

Process organization

All of the processes within the architecture evolve au-
tonomously in time based solely on the underlying dynamical
system. That is, the architecture does not depend on any al-



gorithms or control inputs from the user in order to success-
fully build mental models; the user only supplies premises.
The architecture organizes the processes based on the princi-
ples of behavioral organization (Richter, Sandamirskaya, &
Schöner, 2012). Every process is represented by a pair of dy-
namic neural nodes: intention nodes (green circles marked
“i” in Figure 1) represent whether a process is currently
active and determines its influence on the rest of the ar-
chitecture; condition-of-satisfaction (CoS) nodes (red circles
marked “c”) represent whether a process has been success-
fully finished and determine the conditions leading to that
finish. The architecture has four processes. The intention
node of the reference process gives input to the reference field
and to all production nodes of color concepts that are tied to
the reference role. It thus brings the color—and thereby also
the spatial position—of the reference object into the atten-
tional foreground, bringing its spatial position into the refer-
ence field. If the reference object is not yet part of the mental
model in the scene representation field, it is added to it as well
(in the center). The CoS of the reference process is a peak in
the reference field. The intention node of the target process
is analogous to that of the reference process. The CoS of the
target process is a peak in the target CoS field, which checks
whether the target object is represented as part of the mental
model. The relational process gives input to all production
nodes of spatial relation concepts and to the relational field.
This induces a peak in the relational field, establishing the
position at which the new target object is placed. Lastly, the
reset process only has an intention node, which inhibits large
parts of the architecture in order to remove any self-sustained
peaks or turn off self-sustained nodes. This is required before
a new premise is supplied to the architecture to prevent acti-
vation from previous premises from interfering. Two precon-
dition nodes (black circles in Figure 1) ensure that processes
are organized in a sequence. They inhibit the intention nodes
of the target process and the reset process, respectively. They
are in turn inhibited by the CoS nodes of the reference pro-
cess as well as the target and relational process, respectively.
This structure leads to the sequence: reference process, target
process, and reset process. The relational process can be ac-
tive independently of the reference and target process. After
the reset process, the architecture is again in a state where a
new premise can be supplied.

Results

This section demonstrates how the activation in the architec-
ture evolves as it incrementally builds a mental model of the
following four premises: 1. There is a cyan object above a
green object. 2. There is a red object to the left of the green
object. 3. There is a blue object to the right of the red ob-
ject. 4. There is an orange object to the left of the blue object.
This example shows that the architecture is able to interpret
multiple colors and spatial relations, that it can use different
target and reference objects across premises, and that it can
deal with both determinate and indeterminate cases.

Figure 2 shows activation snapshots of relevant parts of
the architecture at six moments in time (t1, . . . , t6) during the
task. Time points t1, t2, and t6 show the result after supplying
and building the mental model according to the first, second,
and fourth premise, respectively. Time points t3, . . . , t5 show
the detailed processes within the architecture that extend the
mental model for the third premise.

Determinate cases
At the beginning of the task, the user supplies the first deter-
minate premise by activating the three memory nodes for “tar-
get: cyan”, “spatial relation: above”, and “reference: green”
(leftmost column, topmost two rows in Figure 2). At t1,
the reference process has already brought the reference ob-
ject into the center of the reference field (fourth row) and
the scene representation field (last row) and has turned off.
The relational process is still active but has already induced
a peak in the relational field (fifth row) from the template of
the spatial relation ABOVE, yielding the new position of the
cyan target object. From there, it is represented in the tar-
get field (sixth row), the attention field (seventh row), bound
there with the CYAN color from the color attention field (third
row), and memorized in the scene representation field. Af-
ter t1, the reset process is activated, removing all sustained
peaks from the architecture except for the ones in the scene
representation field.

At time t2, the mental model has been extended to represent
the second premise “the red object to the left of the green ob-
ject” (second column, last row). Since the second premise is
also a determinate case, the processes are analogous to those
of the first premise.

Indeterminate cases
The processes regarding the third premise, “blue to the right
of red”, are shown in more detail at three time points t3, . . . , t5.
The premise is an indeterminate problem because the green
object already occupies the spatial position directly to the
right of the red object. Data by Ragni and Knauff (2013)
suggests that most subjects would place the blue object in the
first free position to the right of the red object—to the right of
the green object. The model captures this behavior. Shortly
before t3 (third column), the premise is supplied by the user,
who activates the memory nodes for “reference: red”, “target:
blue” (first row), and “spatial relation: to the right of” (second
row). At t3, the reference process brings the color red into the
attentional foreground in the color attention field (third row).
This brings the red object in the mental model (last row) into
the attention field (second to last row) and establishes it as
the reference object in the reference field (fourth row). At t4
(fourth column), the relational process has already activated
the production node of the spatial relation TO THE RIGHT OF,
which projects into the relational field (fifth row). Crucially,
this field also receives inhibitory input from the spatial scene
representation field, reflecting the spatial positions of all ob-
jects that are already part of the mental model (round blue
shapes in the plot). This inhibition leads to the position of



Figure 2: Activation of relevant parts of the architecture as it builds a mental model of four premises about five objects (see
text). Each column shows the activation of the architecture at a point in the continuous time shown on the bottom. Activation
of memory nodes (first two rows) and one-dimensional fields are plotted on the vertical axis; the threshold of zero is denoted by
gray lines. The colors of the circles and bars in the first row correspond to the color concepts the nodes represent. The concepts
of spatial relations (second row; LEFT, RIGHT, ABOVE, BELOW) are denoted by icons underneath the bars. All other activation
plots are color-coded (color-map, bottom right). The three-dimensional attention field and scene representation field are shown
projected onto 2D space by a maximum operation. Peaks in fields are labeled with the colors of the objects they represent.

the target object to be established in the next free position to
the right of the red reference object. At t5 (fifth column), the
relational field (fifth row) has formed a peak to the right of
the local inhibition, determining the position of the new blue
object. The target process brings the peak into the target field
(sixth row) and from there into the attention field (second to
last row). In this field, the input from the target field overlaps
with input from the color attention field (third row), binding
the spatial position of the new target object to the color BLUE.
From there, the peak comes up in the scene representation

field (last row) as well as in the spatial scene representation
field.

The next time point, t6, shows the fourth premise, “the or-
ange object to the left of the blue object”—also an indetermi-
nate problem. This time, two objects (green and red) occupy
the positions to the left of the blue object. The relational field
(fifth row) shows a peak as well as the inhibitory influence of
the two objects that brought up the peak in the first free po-
sition to the left of the reference object. The position of the
peak is transformed into the target field (sixth row), bound



with the color ORANGE in the attention field (second to last
row), and integrated into the mental model in the scene rep-
resentation field (last row).

Inferences on mental models
Once a mental model has been constructed, the architecture
supports inferences. For instance, it is able to extract the spa-
tial relation between objects, even if their relation has not
been specified by the premises before. This is enabled by
the transformation (leftmost diamond) that induces a peak in
the relational field from a given target and reference position.
The peak activates the most fitting spatial relation based on
its template. Moreover, given a phrase that contains only one
object (reference or target) and a spatial relation, the architec-
ture can infer the second object.

Discussion
We have introduced an architecture that captures the neural
dynamic processes of building mental models. With only
minimal changes, the architecture is based on previous work
in dynamic field theory (DFT) that accounts for the grounding
of language in actual perception (Richter et al., 2014; Richter
et al., 2017). New over the previous architecture is how ob-
ject representations are instantiated without perceptual input.
In particular, we show how the architecture deals with the
problem of placing objects in space. The processes of the ar-
chitecture on indeterminate problems matches data from hu-
man subjects, who tend to build a preferred mental model
that minimizes change (Ragni & Knauff, 2013). This behav-
ior emerges from the neural dynamics, specifically from the
interplay between the already established mental model and
the way positions for new objects are established. We fur-
thermore show that the architecture iteratively builds a mental
model as multiple premises are supplied in a sequence.

Our approach shares concepts with the information pro-
cessing account of Ragni and Knauff (2013), in which
symbolic elements are placed onto a two-dimensional grid-
canvas. Our architecture reframes these operations as neu-
ral processes. This includes the emergence of discrete
operational stages of processing from an underlying time-
continuous neural dynamics (Richter et al., 2012).

Overall, we show that mental models can be captured by
the same neural mechanisms that also support the perceptual
grounding of language. Experimental signatures of the pro-
posed mechanisms may be sought by asking participants to
graphically represent their mental map. Future versions of
the architecture may incorporate additional constraints that
shed light on how strategies other than the preferred mental
model may come about. Extensions of the architecture may
be able to account for how abstract relations are represented
(Knauff, 2013) by mapping them onto the spatial canvas de-
scribed here. Establishing mappings between different types
of relations may ultimately lead to a neurally plausible archi-
tecture of general relational reasoning.
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