
Fusing Shape-from-Silhouette and the Sparsity Driven Detector for

Camera-Based 3D Multi-Object Localization with Occlusions

Matthias Michael∗ Daniela Horn∗ Sebastian Houben∗

Abstract— Position estimation of multiple objects in a 3D
environment poses a challenging task, even more so in the
presence of occlusions due to infrastructure. In this paper
we present a method to accurately localize up to 10 moving
pedestrians by fusing the output of a Sparsity Driven Detector
with volumes generated by a Shape-from-Silhouette approach.
We also show how occlusion information from a 3D map of the
environment can be integrated into our algorithm to further
improve performance. We investigate the influence of different
camera heights and image sizes on the optimization problem
and demonstrate real-time capability for certain configurations.
Additionally, our code is made publicly available under an open
source license.1

I. INTRODUCTION

The tracking and position estimation of multiple moving

objects, e.g., for surveillance systems, was, and still continues

to be, a major challenge in computer vision. Reliable results

in this area can improve safety in a number of applications

such as robotics and autonomous driving. Recent progress

in the latter requires vehicles to gather more and more

information on their environment to maneuver safely on their

way. While driving autonomously on highways is already a

manageable task, moving vehicles in an inner-city context

needs much more precise and detailed information on present

objects and obstacles as less assumptions can be made –

a circumstance which applies to flowing traffic and off-

street scenarios, e.g., in car parks, alike. Often the required

kind of information can not be provided by the sensors

already installed in the car since they are generally limited

in range. Thus, they cannot deal properly with occlusions

evoked by immobile objects, such as lampposts or shrubbery,

or other traffic participants. Especially so-called vulnerable

road users (VRUs), i.e., pedestrians, cyclists etc. are highly

endangered in these situations. Using additional static sen-

sors (e.g., CCTV cameras) can overcome a majority of the

discussed problems.

Laser-based sensors can provide accurate 3D information

of objects in an observed scene. However, they have draw-

backs in form of rather large investment and installation

costs. Image-based sensors, on the other hand, are affordable

and can be more flexibly applied to a variety of applications.

In this paper, we present a robust method to detect multiple

moving objects and accurately reconstruct their 3D position

based on camera images.

∗Ruhr University Bochum, Insitute for Neural Computation
{firstname.lastname}@ini.rub.de

1https://github.com/MatthiasMichael/

SparsityDrivenDetector

Our method fuses the results of an adapted version of

the Sparsity Driven Detector (SDD), as developed by Wu et

al. [1], [2], [3], together with the volumes generated by a

Shape-from-Silhouette (SfS) approach [4] to estimate accu-

rate object positions. While the SDD itself is independent

of the number of cameras used to capture input images,

SfS requires at least two cameras looking at the scene to

infer voxel occupancy. Computation is done independently

for each frame and no explicit object tracking or interpolation

is employed.

This paper is organized as follows: Section II gives a short

overview on already proposed systems and methods dealing

with the topic of multiple object tracking. Our method is

described in Section III while experimental setup and results

are discussed in Section IV. Section V concludes the paper.

II. RELATED WORK

The reconstruction of 3D object positions from multiple

cameras generally follows a 2-step process, in which relevant

objects are first detected in each camera image individually

before being merged to a 3D representation. The crucial

aspect is to solve the correspondence problem, i.e., to identify

the same object from different camera perspectives. Once

the identification process has been successful, objects can

optionally be tracked over time for further stabilization.

Bredereck et. al. [5] propose an image-based 3D tracking

algorithm which utilizes a greedy matching method consid-

ering the initial two-dimensional tracking per camera. 3D

positions are then obtained by triangulating the positions of

cameras currently seeing the observed object. The authors

claim that the approach neither requires special knowledge

about the current scene nor any marking of enter-and-exit

zones and can be extended to any object class which should

be tracked. This system is evaluated on tracking single

persons with an overall accuracy of 0.749.

In our own previous approach [6], we implement an

efficient change detection algorithm to detect pedestrians and

vehicles in a parking garage. This algorithm is tailored to the

difficulties arising in indoor surveillance scenarios, using an

adapted outlier rejection heuristic to enhance the robustness

of the foreground detection. The overall mean position error

is 0.78 m or less.

Shape-from-Silhouette approaches require the filled 2D sil-

houettes of relevant objects to be extracted from the camera

images. When working with image sequences, these silhou-

ettes can be generated by applying change detection [7]. In

the case of static images, semantic segmentation [8] can

2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Auckland, NZ, October 27-30, 2019

978-1-5386-7023-1/19/$31.00 ©2019 IEEE 1417

be employed. Based on the silhouettes of multiple views,

the 3D object can be reconstructed using either a surface-

or a voxel (volume element)-based approach. Surface-based

methods generate a polygon or view cone around the area

that can potentially be occupied by the object belonging to

a certain silhouette. All polygons from different cameras are

then intersected to compute the actual 3D volume [9]. Voxel-

based algorithms divide the space into discrete elements and

decide for each element whether or not an object occupies

it by examining if its projection in all camera images lies

inside a silhouette.

Typically SfS is applied with a high resolution and a

multitude of cameras to reconstruct the shape of a single

object as accurately as possible [10], which in most cases

does not reach real-time performance. However, it can also

be used with lower resolution on larger areas containing

several objects, where the 3D reconstruction primarily gives

information about the object’s position instead of being a

detailed model.

A complete pipeline for the estimation of the 3D position

of pedestrians is presented by Cheung et. al. [11]. Each used

camera is connected to a PC which calculates the silhouette

of the moving person and sends the result to a host computer.

A voxel-based 3D reconstruction is estimated employing the

sparse pixel occupancy test (SPOT) algorithm. Ellipsoids

are then fitted to the reconstructed data to visualize the

movement of the person. Although the real-time performance

is given (15 fps for a combination of five cameras), the

approach neither takes the presence of multiple people into

account nor the observed area of 2 m×2 m×2 m, which is

undersized for the given purpose.

Since detected silhouettes are normally inconsistent due

to calibration errors or occlusions, Landabaso et. al. [12]

propose a new method to reconstruct 3D objects and their

pose from these inconsistent silhouettes. They extend the

basic idea of SfS by providing a fast technique to classify

parts of the volume which tend to be inconsistent taking

into account the 2D detection error probability. The approach

reaches a recall of 0.63, which is 20% higher than the classic

SfS approach, and a comparable precision. Unfortunately, the

authors did not report on processing time for a single frame.

Using SfS and combining multiple views from different

cameras to gain 3D object positions often creates ghost

objects, especially when there are multiple real objects in the

scene. An illustration of such a situation for two dimensions

is given in Fig. 1. These detections primarily occur when

silhouettes generated by different objects are used to generate

a 3D shape. Michoud et al. [13] introduce a method to

remove ghost objects resulting in a more robust tracking.

First, they use a statistical approach to enhance the volume

reconstruction by calculating a fusion of all captured images,

which leads to a compensation of inconsistent silhouettes. In

a second step, they identify ghost objects by estimating an

SfS probability map, marking segmented pixels which belong

to an object.

Fig. 1. Illustration of the ghost problem with two cameras and two
objects (left), two cameras and three objects (middle), three cameras and
three objects (right). Light blue cones: Volumes marked as active. Green
outline: Correct reconstruction. Red outline: Ghost object. Yellow outline:
Reconstruction at the correct position but with distorted shape.

III. ALGORITHM

This section provides an in-depth description of our algo-

rithm starting with the necessary input data in Sec. III-A.

Subsequently, an explanation of our SfS and SDD imple-

mentations is given with more details on how to integrate

occlusion reasoning into those methods (cf. Sec. III-B –

Sec. III-C). Finally, we explain how the respective results

can be fused to obtain the final reconstruction in Sec. III-D.

A. Input

Our algorithm requires input in the form of I segmentation

images Si with I ≥ 2 as well as extrinsic and intrinsic

calibration data of cameras Ci. While the SDD can also

provide results for areas covered by a single camera (as a

special case, SSD can be deployed on a monocular setup),

shapes can only be computed from the intersection of at least

two view cones.

Additional information about the environment can be pro-

vided by two 3D meshes consisting of individual polygons.

The first mesh MS describes the static elements of the scene

that can lead to occlusions while the second mesh MN marks

parts of the ground on which objects can move. Both meshes

are optional inputs for the method itself but significantly im-

prove performance when dealing with occlusions. Different

steps of the approach are shown in Fig. 2.

B. Shape-from-Silhouette

The initial step of the SfS algorithm is the creation of a

3D voxel space. The space should be a cuboid to allow easy

indexing of each voxel based on its position. The extent of

the cuboid is determined by a minimal bounding box – either

spanned around the cameras with the lower z-coordinate

being equal to a user-defined offset for the ground plane

or around the static scene elements MS. The reserved space

is then filled with individual voxels. Their side lengths are

parameterizable but are usually set to the same value for each

dimension, however, different side lengths are possible in

our implementation. To determine if a voxel v is segmented

based on a segmentation image Si, the region Rv
i in Si for

each i= 1, ..., I that corresponds to v needs to be known. This

information is precomputed for each voxel and each camera.

First, it is determined if v is visible in Si by computing the

pixel positions (xv
c,i,y

v
c,i) for each corner ev

c with c = 1, ...,8

of v.

Granted that the static elements MS are available, occlu-

sions can also be taken into account for voxel visibility. A

1418

Fig. 2. From left to right: Walkable area marked in green with red grid points. Active voxels from the SfS reconstruction. SDD detections. Detections
fused with volumes and bounding boxes.

view ray rv
c,i is created between the position of the camera

Ci and the voxel corner ev
c. For each relevant scene polygon

ρ ∈Ms said view ray rv
c,i is tested for an intersection with

ρ before reaching the voxel corner ev
c. In this case ev

c is

occluded by ρ in the image taken by camera Ci.

If any corner ev
c of v is either outside of the camera image

Si or occluded, the voxel v is considered not visible by Ci,

which is marked by setting a corresponding variable ov
i to

true. Otherwise ov
i is set to false and the convex hull around

all reprojected positions (xv
c,i,y

v
c,i) is constructed to determine

which pixels are inside of the hull. To minimize memory

consumption, only the first and the last pixel of each pixel

row are stored to identify the image region Rv
i corresponding

to the voxel v. This setup procedure is listed as pseudocode

in Algorithm 1.

Posterior to the setup, every time new segmentation images

are available the algorithm has to determine for each voxel

v whether or not it belongs to a moving object in the

environment. The status can therefore be active or inactive,

which needs to be inferred from the segmentation images.

The precomputations during the setup phase allow to directly

access the pixels in each segmentation image Si that corre-

sponds to the current v. Thus, the number of active pixels

nv
i in the image region Rv

i is counted and compared with

|Rv
i | · tseg, where |Rv

i | denotes the total number of pixels in

that region. tseg is expressed as a relative threshold since |Rv
i |

greatly varies depending on the position of v relative to Ci. If

nv
i exceeds |Rv

i | · tseg, v is marked as segmented in Ci, which

is denoted by setting sv
i to true. Otherwise it is set to false.

The occupancy av of v can now be expressed as a

function of the occlusion and segmentation flags ov
i and sv

i ,

respectively. In the case of v being occluded in every camera

image, no inference can be made about its status and it will

always be considered inactive. Otherwise we found

av =

{

1 if sv
i = ¬ov

i ∀i∧∃ i : ov
i = true

0 otherwise
(1)

to be most reasonable for the given scenario. It states that in

order to be considered active, a voxel v has to be segmented

in exactly those cameras in which v is visible. This function

allows to detect superfluous segmentations in single camera

images. Missing segmentations, however, might fail to detect

a certain object.

If no information on occlusions is available, the occupancy

Input:

v← voxel

i← camera index

Ci← camera

Si← segmentation image of Ci

MS← static mesh (optional)

Result:

Rv
i ← region in Si

ov
i ← flag indicating if v is occluded outside of Ci

ov
i ← false;

Rv
i ← empty;

for c← 1 to 8 do

ev
c← corner of v;

(xv
c,i,y

v
c,i)← backprojected pixel position of ev

c in

Ci;

if (xv
c,i,y

v
c,i) not visible in Ci then

ov
i ← true;

break;

end

if MS is present then

rv
c,i← view ray between Ci and ev

c;

if rv
c,i intersects any polygon ρ ∈MS then

ov
i ← true;

break;

end

end

end

if ov
i is false then

Rv
i ← convex hull around all (xv

c,i,y
v
c,i),c = 1, ...,8;

end

Algorithm 1: SfS initial setup as 3D voxel space. The

procedure is repeated for each voxel and each camera.

av needs to be computed as

av =

{

1 if ∑i(s
v
i)≥ 2

0 otherwise
(2)

Since it is uncertain whether the segmentation in a third

camera is missing due to occlusion or due to an error, objects

are detected as soon as two cameras agree on their existence.

Based on the number of cameras recording the scene and the

scene’s structure, this number can be increased.

1419

After the previous step each voxel occupancy av is known

and hypotheses for the position and shape of actual objects

need to be inferred from the given information. This is done

by assigning an object hypothesis to a group of active voxels

that are spatially connected, or at least so close together that

it is reasonable to assign them to the same object. While this

is usually done by clustering active voxels together based on

their distance, it is not feasible in our application due to the

large number of potentially active voxels.

To overcome these problems, we use a sequential fill

procedure which only requires two passes over the entire

space. An object hypothesis index hv is assigned to all

voxels v. It is initially set to 0 and the voxels are traversed

sequentially. hv will later denote the affinity of v to a certain

object. During voxel traversal, and when av is 1, the indices

hv′ of neighboring occupied voxels v′ that have already been

visited and are within a certain distance threshold tobj are

checked. If no such v′ exists, hv is set to the next higher

unused value starting with 1. In case of only a single value for

hv′ (either because there is only one v′ or because all hv′ are

equal), hv is set to that value. Otherwise, if multiple values

for hv′ are found, a clash exists. This means that voxels which

should belong to the same object have been assigned different

indices – something that needs to be corrected afterwards. To

do this, hv is set to the minimal index hmin = min(hv′) > 0.

All clashing indices hv′ 6= hmin are inserted into a map Q as

Q(hv′) = hmin.

After the first traversal the remaining clashes have to be

removed. This is done by traversing the space a second time

and setting hv to Q(hv) for each v of which the corresponding

index hv can be found in Q. Thus, each connected group of

voxels ends up with the lowest index that has been assigned

to a voxel inside of it. All voxels with the same index are

then used to create a new object hypothesis ζ .

C. Sparsity Driven Detector

The SDD implicitly solves the correspondence problem,

which leads to ghost detections of the SfS algorithm, by

placing template objects on a discrete grid and thereby

recreating the segmentation images. The first step of this

approach is the selection of appropriate grid points. In the

simplest case, the grid points are laid out uniformly over

the entire voxel space at its lowest z-coordinate. However,

if additional data is provided by the previously mentioned

ground mesh MN , these grid points can only be created

in areas covered by MN at an appropriate height. This

procedure eliminates the generally required assumption of

a flat ground plane, which many other methods employ.

Based on the grid, the dictionaries can be created. This

requires one or more binary templates τ for each detectable

object. Besides a binary image showing the template, τ
has to be equipped with additional information wτ and hτ

about the width and height of the displayed object in world

coordinates. A dictionary Dτ contains one entry dτ
j for each

grid point p j, j = 1, ...,J. A single entry dτ
j in turn comprises

information about how the segmentation images S1, . . . ,SI

would look like if the template τ would be placed at p j.

dτ
j therefore consists of I binary images of size W ×H that

are stored in a linear fashion in a single column vector. This

allows for Dτ to be interpreted as an M × J matrix with

M =W ·H · I.

To create the entry dτ
j , first for each camera Ci the ray r

j
i =

p j −Ci is computed and its upward-pointing z-coordinate

is set to 0 since we are merely interested in the horizontal

direction. The normal to this modified direction vector is

denoted as r̂
j
i . Next, four points are computed as

q
j
i,s =

p j−
wτ

2
·

r̂
j
i

||r̂ j
i ||

+(0,0,ht)
T if s = 1

p j +
wτ

2
·

r̂
j
i

||r̂ j
i ||

+(0,0,ht)
T if s = 2

p j +
wτ

2
·

r̂
j
i

||r̂
j
i ||

if s = 3

p j−
wτ

2
·

r̂
j
i

||r̂ j
i ||

if s = 4

(3)

This ensures that the template is standing upright and facing

the camera. A projective transform from the template edge

pointing to the projections of the template corners q
j
i,s is

calculated and used to transform the template image itself.

Occlusion reasoning can be included by checking, if the

initial ray r
j
i intersects any static scene polygon ρ ∈Ms and

– if it does – by filling the image of ρ in Ci with black, thus

removing a part of the previously projected template.

The benefit of describing Dτ as a matrix is the fact that

multiplying Dτ with a vector x ∈ {0,1}J creates a linear

combination of the entries chosen by the non-zero indices

of x. The task of solving the correspondence problem can

then be formulated as choosing x such that the segmentation

images Si are recreated as closely as possible:

min
x
||S̄−Dτ ·x||0 (4)

where S̄ denotes the concatenation of all segmentation im-

ages Si. To keep the optimization linear, the L0-norm is re-

placed by the L1-norm and corresponding auxiliary variables

u are introduced. The problem can then be formulated as:

min
x,u

[

xT uT
]

·

[

0

1

]

(5)

s.t.

[

−Dτ −I

Dτ −I

]

·

[

x

u

]

≤

[

−S̄

S̄

]

(6)

[

0

0

]

≤

[

x

u

]

≤

[

1

∞

]

(7)

where I is the identity matrix of size M×M. This can be

used as input to a linear solver to estimate object positions

all from the same template τ . To extend this method to K

different templates, Eq. (6) has to be changed to incorporate

multiple dictionaries while ensuring that only one template

can be chosen for each grid point:

−Dτ1 . . . −DτK −I

Dτ1 . . . DτK −I

I . . . I 0T 0

 ·

x1

...

xK

u

≤

−S̄

S̄

1

 (8)

1420

The original publication [3] further outlines a method to

estimate dynamic occlusions between objects by optimizing

min
x,L̄

[

||S̄−Dτ ·x||1 +β · ||L̄− S̄||1
]

, (9)

where L̄ estimates the number of layers that explain all

camera segmentation images S̄. This implies that

∀m = 1, ...,M

{

L̄m ≥ S̄m if S̄m > 0

L̄m = 0 if S̄m = 0
(10)

β is a weighting parameter that is set to 0.1, following

the recommendations of the original publication. The entire

optimization problem therefore becomes:

min
x,L̄,u

[

xT L̄T uT
]

·

0

0

1

 (11)

s.t.

−Dτ (β + 1)I −I

−Dτ (−β + 1)I −I

Dτ (β − 1)I −I

Dτ (−β − 1)I −I

·

x

L̄

u

≤

β · S̄
−β · S̄

β · S̄
−β · S̄

, (12)

0

S̄

0

≤

x

L̄

u

≤

1

∞ · S̄
∞

 (13)

where ∞ · S̄ is meant to be 0 for zero-elements of S̄. This can

also be extended to multiple templates by adapting Eq. (12)

to:

−Dτ1 . . . −DτK (β + 1)I −I

−Dτ1 . . . −DτK (−β + 1)I −I

Dτ1 . . . DτK (β − 1)I −I

Dτ1 . . . DτK (−β − 1)I −I

I . . . I 0T 0 0T 0

·

x1

...

xK

L̄

u

≤

β · S̄
−β · S̄

β · S̄
−β · S̄

1

We refer to those four optimization problems as single

(Eq. (5)), multi (Eq. (8)), single-layered (not stated ex-

plicitly), and multi-layered (Eq. (12)), respectively. After

solving, the association between non-zero values of x or

xk,k = 1, ...,K to the corresponding grid point and template

has to be made to recreate the actual object class and

position ϑ n = {ϑ n
c ,ϑ

n
p},n = 1, ...,N. In [3], the optimization

problems described here are embedded into a network-flow

data association framework to ensure temporal consistency

of the detections. The local detection problem as well as the

global network-flow problem have to be solved iteratively.

This means, however, that the entire image sequence needs

to be available to the algorithm at once and online usage is

not possible.

D. Fusion

Indeed we found that the solutions to the individual

optimization problems sometimes place multiple objects in

close proximity to each other when the silhouettes in the

images can be explained better this way. Additionally, some-

times false positive detections are produced. But instead

of employing a global optimization scheme, we propose

local frame-based methods to improve the correctness of the

results.

Fig. 3. Example of virtual experiment input from the occluded scenario.
Both images were generated with Unreal Engine 4 Left: Virtual camera im-
age of sample test environment. Right: Corresponding binary segmentation
image.

First, all distinct object detections ϑ n1 and ϑ n2 , n1 6= n2

are merged to a new detection if

ϑ n1
c = ϑ n2

c and ||ϑ n1
p −ϑ n2

p ||< tmerge,

where tmerge is a user-defined merging threshold. The result-

ing detection has the same object class as the individual

merged detection and is located at its mean position (and

is not longer restricted to the discrete positions). This elimi-

nates all false positives due to multiple detections at the same

location.

Now all remaining object detections ϑ n are assigned to a

corresponding SfS object hypothesis ζ z if ϑ n
p is inside the

bounding box of ζ z. Multiple ϑ n can be assigned to the same

ζ z (the inverse is not possible due to the voxel clustering

process). In this case ζ z is split into several smaller object

hypotheses by assigning its voxels each to the closest ϑ n.

Afterwards, all SDD detections ϑ n without a corresponding

SfS detection ζ z are discarded as false positive. Likewise,

all voxels – and, thus, all clusters ζ z – that are outside of

the range of all ϑ n are removed and only the final object

hypotheses remain.

IV. EXPERIMENTS

The following experiments have been conducted to eval-

uate different aspects of the presented approach. In order

to receive accurate and very precise evaluation results, we

use synthetic image data including automatically generated

ground truth for all experiments. The data generation process

is set out in Sec. IV-A, while Sec. IV-B elaborates the chosen

test scenarios and our reasoning behind them. The respective

results are given in detail in Sec. IV-C.

A. Data Generation

When it comes to data generation, the use of artificial

image data is advantageous compared to real-world images

in many respects. For our experiments we therefore opted for

Unreal Engine 42, currently one of the major open-source

game engines, to create all necessary data. This includes

image data, ground-truth annotation, as well as metadata

regarding the virtual environment.

The input data required for our approach are binary seg-

mentation images similar to those produced by background

subtraction algorithms. While these images would normally

2https://www.unrealengine.com

1421

result from pre-processing camera images, e.g., by certain

object detection algorithms or foreground segmentation, we

opt for artificial image data as our sole input. By leaving

the image segmentation process out of our scope of work,

illumination changes and other challenges that occur in the

segmentation task, can be set aside not being part of our

approach. On a side note, however, one must take into

account that the quality of the segmentation images has a

huge impact on the performance of our method, which is

why we abandon natural image data for our proof of concept.

Instead, we can fully profit from the pixel-perfect and fully

automatic annotation of synthetic image data (cf. Fig. 3), as

only the resulting binary segmentation image is used as input

to our algorithm.

With the help of a self-defined render mode in Unreal En-

gine, these segmentation images can easily be captured from

regular levels. Fig. 3 shows one of our experiment setups,

in the following referred to as “occluded”, and the recorded

corresponding binary segmentation image. Apart from pixel-

perfect segmentation results, the use of a simulated envi-

ronment provides full control over every detail of the data

creation. The definition of walkable areas and a waypoint

system direct a walking character’s movements such that

the same scene is perfectly reproducible, as required for at

least one of our experiments (see Sec. IV-B). At the same

time, a less controlled manner can be implemented as well,

should a randomness of movement be required. Furthermore,

the exported metadata can be adapted to export exactly the

required information in a custom format.

B. Setup

We test our implementation on three different scenarios all

displaying a 20 m × 20 m environment. The first scenario –

“one-person” – consists of a single person moving around in

a flat area without occlusions and provides images captured

by three cameras. Scenario “multi-person” shows the same

space with 5 moving persons and is filmed by 4 cameras.

Here, we also vary the camera height between 2 m and

6 m with increments of 1 m to test the influence on the

localization quality. The “occluded” scenario adds static

occlusions and non-flat walkable areas. It contains a total

of 10 moving persons, which are filmed by 3 cameras at 6 m

height.

For evaluation we consider a ground-truth position de-

tected correctly, if it lies within the bounding box of a

detection. All ground-truth positions without a corresponding

detection are regarded as false negative and all detections

without a ground-truth position as false positive, which

allows to compute precision and recall of our method.

Additionally we report on emean, the mean distance between

a detection and its ground-truth point. For this calculation

a detection is represented by the mean position of all

corresponding active voxels. Only the horizontal component

of the distance is considered for evaluation since all actors

are assumed to be vertically anchored on the floor.

Our implementation exposes several parameters, which

can influence accuracy and speed of the overall method.

Zero Initialization Advanced Initialization

0

100

200

300

400

500

600

D
u
ra
ti
o
n
(m

s)

Barrier

Concurrent

Dual

Network

Primal

Fig. 4. Timing comparison of the different root algorithms provided by
CPLEX on the scenario one-person with and without advanced initialization.

These are:

dg the horizontal distance of grid points in cm,

sv the side length of each voxel in cm,

W,H the width and height of the images used for opti-

mization in pixels,

tmerge the distance threshold for merging multiple detec-

tions in cm, and

tsegm the segmentation threshold as a factor between 0

and 1 to mark a voxel as active.

Furthermore, it is possible to choose between the 4 opti-

mization types described in Section III. We use the same 2

templates for pedestrians as proposed in [3], with the closed-

legs template being omitted for optimization types single and

single-layered.

Shape-from-Silhouette object hypotheses are computed

on a Quadro M1000M-GPU (993 MHz, 2 GB RAM) with

NVIDIA CUDA3. The occupancy of a single voxel is

independent of its neighboring voxels, which allows for

straightforward parallelization. Only clustering is executed

on the CPU. Our implementation of the SDD’s optimization

problem uses IBM’s ILOG CPLEX4 C++ interface. This pro-

vides two additional parameters – the root algorithm, which

can be set to “Barrier”, “Concurrent”, “Dual”, “Network”, or

“Primal”, and a choice of whether or not the solution of the

previous frame should be used as an advanced initialization

of the current frame. In our experiments we used an Intel

i7-6820HQ CPU, with 2.7 GHz and 16 GB RAM.

C. Results

Unless stated otherwise, we use the image size W ×H =
160× 120 pixel. In our first experiment we investigate the

influence of the root algorithm and optional activation of

advanced initialization.

We set the parameters of our algorithm to
{

dg = 40, sv = 30, tmerge = 60, tsegm = 0.5
}

and execute the pipeline with optimization type single on

scenario one-person with all ten possible CPLEX configura-

tions. The timings depicted in Fig. 4 show that it is optimal to

3https://developer.nvidia.com/cuda-zone
4https://www.ibm.com/analytics/optimization-

modeling-interfaces

1422

200 250 300 350 400 450 500 550 600

Camera height above ground (cm)

0

500

1000

1500

2000

E
x
ec
u
ti
o
n
ti
m
e
(m

s)

single

multi

singleLayered

multiLayered

Fig. 5. Mean execution time of all four presented approaches for an image
size of 160×120 and different camera heights between 2 m and 6 m

use the Dual simplex algorithm with advanced initialization,

which results in an average of 91 ms per optimization per

frame and, thus, is used in all further tests. The detected

object positions were almost identical for each variant.

The same scenario is used to estimate appropriate values

for dg, sv, tmerge, and tsegm – again with optimization type

single. Table I shows the selected values and corresponding

results. We executed all tests for sv = 20 and sv = 30 but

found only negligible differences with setup times being

slightly longer for sv = 20. The single actor is found in

each frame and in rare cases superfluous detections are made.

When changing the grid distance from dg = 10 to dg = 20, the

time necessary for computation decreases by roughly 100 ms,

however emean increases by only 1.4 cm. Therefore we use
{

dg = 20, sv = 30, tsegm = 0.05
}

and examine the influence of tmerge on more complex scenes.

We explore the multi-person scenario and – in addition

to camera height – also use all four optimization types

Toptim with tmerge = 40 and tmerge = 100. Additionally, we

test the effect of using a smaller image size of 80×60 pixel

for the dictionary, which leads to a total of 80 different

TABLE I

RESULTS OF OUR SYSTEM FOR THE LOCALIZATION OF A SINGLE

PERSON. RESULTS ARE IDENTICAL FOR sv = 20 AND sv = 30.

dg tmerge tsegm emean (cm) Precision Time (ms)

10 100 0.05 14.105 0.999 266.80
10 100 0.50 14.105 0.999 256.43
10 40 0.05 14.284 0.982 254.08
10 40 0.50 14.273 0.982 253.99
20 100 0.05 15.474 1.000 155.13
20 100 0.50 15.596 0.981 155.40
20 40 0.05 15.474 1.000 152.57
20 40 0.50 15.596 0.981 165.79
30 100 0.05 16.571 1.000 125.02
30 100 0.50 16.793 0.986 133.11
30 40 0.05 16.571 1.000 130.61
30 40 0.50 16.793 0.986 134.06
40 100 0.05 20.805 0.997 118.25
40 100 0.50 20.805 0.997 119.40
40 40 0.05 20.805 0.997 116.20
40 40 0.50 21.514 0.876 118.61

200 250 300 350 400 450 500 550 600

Camera height above ground (cm)

10

12

14

16

18

20

L
o
ca
li
za
ti
o
n
er
ro
r
(c
m
)

single

multi

singleLayered

multiLayered

Fig. 6. Mean localization error of all four presented approaches for an
image size of 160×120 and different camera heights between 2 m and 6 m

configurations. Table II shows the results of all experiments

for a camera height of 2 m. The best results for each

other camera height and both image sizes, respectively, are

presented as well. We learn that the larger merging threshold

generally performs better. The runtime is influenced by

both camera height and optimization type. Apparently, lower

camera heights result in problems that are harder to optimize,

and adding layer estimation requires at least double the

execution time. This relationship is illustrated in figures 5

and 6. Reducing the image size leads to many false positive

detections for low camera heights but also greatly improves

the runtime approaching real-time capability for scenarios

with cameras at greater heights. All experiments yield a

recall of 99 % or higher. So the main problem are false

positive detections.

For the occluded scenario we set tmerge = 100 and test

both image sizes for a camera height of 6 m. The results

are displayed in Tab. III. Larger image sizes and complex

versions of the optimization problem clearly lead to more

accurate localization. At the cost of ∼ 4 cm accuracy and

one percentage point of precision, real-time capability is

achieved. In comparison to Tab. II, the shorter runtime

suggests that adding occlusions simplifies the optimization

problem since less grid points have to be considered for

recreating the silhouettes of the input images.

V. CONCLUSION

In this paper we present a flexible algorithm for 3D multi-

object localization which runs online and exhibits real-time

capability for certain camera and parameter setups. While

cameras mounted at higher locations are generally preferable,

even for cameras at 2 m height a good precision and mean

localization error is reached at the cost of longer runtime. The

reason for the increased runtime most likely is the similar

appearance of binary templates placed at neighboring grid

points when viewed at a low angle. In this case fewer posi-

tions can be easily ruled out and the optimization problem

becomes more complex.

For the general application of SfS higher cameras are also

preferable. Cameras oriented parallel to the ground plane

can lead to significantly more plausible ghost detections

1423

TABLE II

RESULTS FOR THE Multi-Person SCENE. FOR CAMERA HEIGHTS ABOVE

2 M ONLY THE BEST CONFIGURATIONS ARE SHOWN.

Height W ×H Toptim tmerge emean Prec Time (ms)

200 160×120 m.-l. 100 15.505 0.861 2078.34
200 160×120 m.-l. 40 15.591 0.743 1172.01
200 160×120 s.-l. 100 16.700 0.883 1375.37
200 160×120 s.-l. 40 16.599 0.804 808.64
200 160×120 m. 100 17.060 0.937 856.28
200 160×120 m. 40 17.106 0.915 470.43
200 160×120 s. 100 18.065 0.971 585.47
200 160×120 s. 40 18.124 0.958 329.29
200 80×60 m.-l. 100 17.344 0.802 357.20
200 80×60 m.-l. 40 19.385 0.552 212.96
200 80×60 s.-l. 100 17.617 0.821 253.28
200 80×60 s.-l. 40 18.829 0.613 249.57
200 80×60 m. 100 19.393 0.840 212.93
200 80×60 m. 40 21.064 0.631 115.34
200 80×60 s. 100 19.888 0.876 127.28
200 80×60 s. 40 20.946 0.754 126.99

300 160×120 s. 100 15.945 0.997 370.85
300 80×60 s. 100 17.538 0.951 89.92
400 160×120 s. 100 16.185 0.999 273.72
400 80×60 s.-l. 100 15.953 0.977 159.41
500 160×120 m. 100 14.593 0.999 384.19
500 80×60 s.-l. 100 14.942 0.991 178.23
600 160×120 m. 100 13.981 1.000 324.70
600 80×60 m.-l. 100 14.110 0.998 159.95

compared to cameras positioned at a steep angle. In our

system however, these false detections are ruled out by the

SDD. Only when SfS and SDD both produce a false positive

object hypothesis at the same position a wrong detection is

created.

We investigated the localization performance for scenes

containing only pedestrians. Future work will have to con-

sider differently shaped objects. In the context of autonomous

driving, cars would be an important extension – especially

their variable appearance w.r.t. the camera’s viewing an-

gle. These additional objects would only require respective

templates to be provided during dictionary creation of the

SDD. The optimization problem however might become

considerably more complex depending on the number of

templates which in turn reduces the achievable framerate.

The method described in this paper is single-frame-based

and employs temporal integration only implicitly by reusing

the solution of the optimization problem of the previous

frame. However, classic tracking methods like the Kalman

filter could be used to improve the precision and accu-

racy [14]. It might also be possible to incorporate other ideas

of [3] and only allow specific grid points to be used as entry

or exit points where object tracks can be created or destroyed.

Besides camera height our method provides several op-

tions for performance tuning. The distance of the grid points

can be adjusted on the desired trade-off between localization

error and processing time. The walkable area can be adapted

so that impossible object positions are ruled out beforehand.

A few measures however can be taken to further improve

the runtime of our implementation. The discrepancy between

tmerge = 40 and tmerge = 100 suggests optimization potential

TABLE III

RESULTS FOR THE Occluded SCENARIO WITH tMERGE = 100 AND FOUR

CAMERAS AT 6 M HEIGHT.

W ×H Toptim emean Prec Rec Time (ms)

160×120 multi-layered 13.187 0.997 0.999 288.20
160×120 single-layered 13.955 0.996 0.999 238.48
160×120 multi 14.529 0.998 0.999 126.08
160×120 single 15.313 0.999 0.999 101.38
80×60 multi-layered 15.564 0.988 0.998 76.17
80×60 single-layered 16.003 0.989 0.998 66.60
80×60 multi 17.165 0.985 0.998 47.90
80×60 single 17.674 0.988 0.998 39.78

in the merging step. The volumes computed by SfS can be

seen as the convex hull of all objects that can potentially

be in the environment. Therefore, they might be used to

select plausible grid points for the SDD to consider. It is

worth investigating if the time saved by solving a smaller

optimization problem outweighs the time needed to adapt the

problem in each frame – especially for low camera heights.

REFERENCES

[1] Z. Wu, N. I. Hristov, T. L. Hedrick, T. H. Kunz, and M. Betke, “Track-
ing a large number of objects from multiple views,” in Proceedings
of the IEEE International Conference on Computer Vision, 2009, pp.
1546–1553.

[2] Z. Wu, A. Thangali, S. Sclaroff, and M. Betke, “Coupling detection
and data association for multiple object tracking,” in Prodceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 1948–1955.

[3] Z. Wu and M. Betke, “Global optimization for coupled detection and
data association in multiple object tracking,” Computer Vision and

Image Understanding, vol. 143, pp. 25–37, 2016.
[4] L. Guan, J.-S. Franco, and M. Pollefeys, “Multi-object shape estima-

tion and tracking from silhouette cues,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2008, pp.
1–8.

[5] M. Bredereck, X. Jiang, M. Korner, and J. Denzler, “Data association
for multi-object tracking-by-detection in multi-camera networks,” in
Distributed Smart Cameras, 2012, pp. 1–6.

[6] M. Michael, C. Feist, F. Schuller, and M. Tschentscher, “Fast change
detection for camera-based surveillance systems,” in Proceedings
of the IEEE International Conference on Intelligent Transportation

Systems, vol. 19, 2016, pp. 1–8.
[7] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-

tection.net: A new change detection benchmark dataset,” in Proceed-
ings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, 2012, pp. 1–8.
[8] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance

segmentation with a discriminative loss function,” arXiv: 1708.02551,
2017.

[9] J.-S. Franco and E. Boyer, “Exact polyhedral visual hulls,” in British

Machine Vision Conference, vol. 1, 2003, pp. 329–338.
[10] K. M. Cheung, S. Baker, and T. Kanade, “Shape-from-silhouette of

articulated objects and its use for human body kinematics estimation
and motion capture,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003.

[11] K. M. Cheung, T. Kanade, J.-Y. Bouguet, and M. Holler, “A real
time system for robust 3d voxel reconstruction of human motions,” in
Computer Vision and Pattern Recognition, 2000, pp. 714–720.

[12] J.-L. Landabaso, M. Pardàs, and J. R. Casas, “Shape from inconsistent
silhouette,” Computer Vision and Image Understanding, vol. 112,
no. 2, pp. 210–224, 2008.

[13] B. Michoud, E. Guillou, H. M. Briceño, and S. Bouakaz, “Silhouettes
fusion for 3d shapes modeling with ghost object removal,” 2008.

[14] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transaction of the ASME Journal of Basic Engineering,
no. 82, pp. 35–45, 1960.

1424

