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Abstract— Video-based traffic sign recognition is a key ability
of autonomous vehicles but a demanding challenge due to the
enormous number of classes and natural conditions in the
wild. We address this problem with a fully automatic close-
to-life image-to-image translation technique for traffic sign
substitution in natural images (cf. Fig. 1). The work is intended
as data augmentation technique and allows for training rare or
unavailable traffic sign classes, or otherwise uncommon cases
in visual traffic sign detection and classification. To this end, we
extend our previous data generation model [1] and propose a
rendering pipeline to create convincing traffic sign images with
realistic background and camera recording artifacts.

Experiments are conducted by exchanging traffic sign classes
on different parts of the German Traffic Sign Recognition
Benchmark (GTSRB) [2]. We demonstrate that the pipeline
is well-suited for generating representative images of unseen
traffic sign classes. A baseline image classification setup trained
on real data shows an overall performance similar to being
trained with a comparable number of artificial data samples.
Our code is made publicly available under an open source
license. 1

I. INTRODUCTION

Video-based perception and interpretation of traffic signs
in a close surrounding are important capabilities for both
advanced driver assistance systems (ADAS) and autonomous
vehicles. While ADAS may assist in inattentive moments or
confusing situations, autonomous vehicles can additionally
make use of traffic signs as landmarks and match them with
map information to improve localization.

Although they were designed to stand out, the detection
and classification of traffic signs are still challenging prob-
lems as

• the number of possible classes is extensive,
• the variance in appearance due to weather, background,

relative pose to the camera, design choices, and record-
ing conditions is high, and

• the frequency of encountering different classes is ex-
tremely unbalanced.

In the past, huge datasets with example images have been
compiled [2], [3], [4], [5] to address the main obstacles for
traffic sign classification. They are representative in portray-
ing numerous weather, background and recording conditions.
Still, in particular the high number of classes and the often
nationally decided choices for icon designs or color schemes
pose problems which cannot be solved by data collection
alone.
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Fig. 1. Overview of contribution. Natural traffic sign images (left column)
taken from the GTSRB dataset serve as a basis for the automatic generation
of various other realistic traffic sign classes (right columns). Our approach
is able to extract information on traffic sign pose, illumination, and motion
blur from the original image and use them to generate more natural looking
samples of new traffic signs.

This paper extends our work from 2019 [1], in which we
proposed a style transfer technique that translated between
icon-like depictions of arbitrary traffic signs (then named
prototype images, now renamed to cartoon images for ease
of association) and life-like images of traffic signs. To this
end we developed a deep neural network architecture based
on the CycleGAN training paradigm [6]. Results showed
that training an out-of-the-box classifier with a comparable
number of generated traffic sign images instead of their real
counterparts would decrease the classification rate by 5 to
20 percentage points.

After careful inspection, we attribute the suboptimal per-
formance of the approach to the low-quality backgrounds
in the generated images. Fig. 2 illustrates the nature of the
problem. It exemplifies the change in background structure
when the background color in the corresponding cartoon
image is changed. At the same time one can clearly perceive
the variance in image artifacts such as illumination and
motion blur that the transfer imposes on the life-like im-
ages. The generated backgrounds lack consistency for larger
structures like buildings and seem to prefer vegetation as
it is more straightforward to generate. Further investigation
shows that mountings, like the pole to which the sign is
attached, are clearly useful for a traffic sign classifier but
are oftentimes neglected or even omitted by our previously
proposed generation process.

This paper addresses these shortcomings and features an
extended generation pipeline that aims to replace traffic signs
in real images by ones that were created artificially. That is,
in this line of work we exchange suboptimal parts of the
generation process by traditional rendering approaches but



maintain realistic image artifacts (e.g., illumination, motion
blur) that are already captured well in our earlier approach.

This line of work makes use of the previously pro-
posed CycleGAN for both unsupervised pose estimation
and background segmentation as well as for style transfer
in the ultimately generated life-like images. In detail, our
contributions are:

• a fully unsupervised pose estimation scheme for traffic
sign images

• a fully unsupervised background segmentation scheme
for traffic sign images

• an image generation pipeline substituting traffic signs
in real traffic sign images

• an extensive evaluation of our approach and a full
comparison to our earlier work.

II. RELATED WORK

The basis of our previous approach and the core of the data
augmentation pipeline presented in this work is a CycleGAN
model [6] that trains a bidirectional style transfer (cf. [7] for
a recent review of the topic) between two image domains
without the need for matching inter-domain image pairs. Two
adversarial losses [8] impose a resemblance of the transferred
results with the respective target domains. Furthermore, a
cycle-consistency loss is introduced that enforces the two
transfer mappings to be inverse mappings of one another.

Traffic sign substitution can be likened to other keypoint
guided image-to-image translation techniques such as swap-
ping faces [9], facial expressions [10], [11], hand gestures
[12], or entire persons [13], [14], [15]. These methods heav-
ily rely on pre-annotated keypoints, such as facial landmarks
or body joints, for training. Decreasing this effort is therefor
extensively covered in research. We cite the work by Reed
et al. [16] aiming to identify points of interest by evaluating
verbal image descriptions and let a user manually define the
arrangement of these landmarks.

Our method avoids the need for additional labeling, which
would be infeasible for a data augmentation technique.
Instead, due to the rather simple geometry in traffic sign
images, we propose a hand-designed extraction of pose and
background segmentation from the cartoon representation.

Traffic sign image generation is also covered in the work
of Luo et al. [17], in which the authors paste a traffic sign
icon into a random image section of a traffic scene and
likewise conduct a style transfer by a model trained with
an adversarial loss. While their approach allows for high
variance in background appearance, there are several aspects
that lead to mediocre results.

Their generative network requires the input of affine trans-
formation parameters, allowing for unnatural poses given a
certain location in the background image. Illumination infor-
mation is calculated from the given background and imposed
on the foreground, hereby ignoring natural differences in
exposure of fore- and background. The authors add Gaussian
blur with random kernel size for more variation at the cost of
a plausible focal length and a clear distinction of fore- and

Fig. 2. Some examples that were generated by our previous style transfer
approach [1]. Corresponding life-like and cartoon images are aligned
column-wisely: The original top left image was transferred to its bottom
left cartoon counterpart. Then, the background color of the cartoon image
was altered for the generation of life-like images with different backgrounds.
The resulting images exhibit variance in recording artifacts like illumination
and motion blur but provide no realistic background.

background with regard to blurriness. Furthermore, incon-
sistencies which we identified in our own earlier approach
(cf. Sec. I) and which we are dealing with in this paper, e.g.,
missing mountings, are not taken into account.

Our approach is to provide highly realistic images for
training and only use backgrounds and surroundings that
have been recorded before and are therefore less arbitrary.
We automatically extract necessary information, i.e., a valid
pose estimation for the substitute, as well as illumination, and
motion blur information, from the original image foreground,
in order to generate consistent samples in all three respects.

III. METHOD
We begin with a brief recapitulation of the most important

aspects of our previous approach [1] in Sec. III-A and map
out the extension in detail in Sec. III-B. The entire procedure
is based on some pre-annotated basis of natural traffic sign
images for both the training of the CycleGAN transfer model
and as a source for the exchange of traffic sign classes. Please
refer to Fig. 3 to follow the explanations in this paragraph.
The approach gives rise to an unsupervised pose estimation
and background segmentation of traffic signs in Sec. III-C.
We use the GTSRB to this end, but similar datasets would be
feasible as well. Finally, Sec. III-D states current restrictions
to the approach.

A. Traffic Sign Generation

The CycleGAN-based architecture from our previous work
[1] trains a bidirectional mapping between a set of cartoon
images and a set of real traffic sign images. The cartoon
images consist of an icon-like depiction of a traffic sign in
front of a homogeneously but arbitrarily colored background
(cf. Fig. 2, bottom row). Due to the cycle-consistency en-
forced during training (concatenating both mappings should
result in the original input), the style transfer will respect
image structures as closely as possible. In fact, since the
cartoon image background is chosen randomly and does
not correlate to any traffic sign class, it is used to encode
real background texture but also recording artifacts like
illumination and motion blur. One should point out that the
CycleGAN tends to create small, barely visible variations in



the background color to aim for cycle-consistency but also
encode more spatial information.

B. Overview of New Generation Pipeline

The proposed generation pipeline in this paper can be
divided into two main parts: extraction and composition.
During extraction, all necessary information is taken directly
or indirectly from a given real traffic sign image. The
substitute traffic sign is created afterwards in the composition
part of the algorithm. Fig. 3 depicts the different intermediate
results of both directions.

Our pipeline heavily relies on the simplified representation
of the cartoon domain. Starting with a real-world sample
from the GTSRB, we first deploy the CycleGAN (cf. Sec. III-
A) to transfer it into its cartoon pendant. The abstract nature
of the cartoon space facilitates the extraction of the binary
background segmentation and consequently the calculation
of the traffic sign pose (cf. Sec. III-C).

A substitute is generated from previously gathered infor-
mation and a simple icon of the target traffic sign. We apply
the inverse pose to the icon of the traffic sign class we aim
to embed in order to receive a tilted version. Replacing the
background with the one from the earlier generated cartoon
representation yields a new cartoon image with the same
pose and encoded background but a different class. The new
cartoon is transferred into the life-like domain by use of
the CycleGAN. Once again the segmentation mask helps to
combine the newly generated traffic sign with the original
real background. Borders are crossfaded during this process
to avoid artifacts. The resulting composition is the substituted
traffic sign image.

C. Binary Segmentation and Pose Estimation

The background segmentation on the generated cartoon
is performed by estimating the mean of the background
color distribution via sampling pixels in vicinity to the
image border. Computing and thresholding the pixel-wise
Euclidean distance from the mean provides a simple way
to discriminate pixels of the background and the traffic sign.

Traffic sign pose estimation on the cartoon image is
slightly more involved as a certain degree of deformation on
the generated traffic sign representation is common during
style transfer. We found that the following robust feature
matching scheme based on ORB features [18] yields fast
and reliable results: We estimate the homography between
the cartoon and a straight icon of the same traffic sign class
assuming little to no rotation around the traffic sign plane
normal. That is, two ORB keypoints from the two images
are only matched if no significant rotation between them
is present. We then deploy a RANSAC approach in which
only those random samples of keypoints are considered that
lead to a homography which maps the cartoon’s background
mask to a mask extracted from the icon image by separating
transparent background pixels from the non-transparent fore-
ground. The mapping is achieved by computing the Jaccard
coefficient for each sampled homography and choosing the
one with maximum value. In order to generate more varied
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Fig. 3. Scheme of the generation process. The pipeline can be split in
two. The extraction part collects all necessary information from the original
image, while the composition part generates a realistic substitute image
with the help of the previously gathered information. Please note that the
generated traffic sign image has adapted the recording characteristics from
its source image: In this example it exhibits a slight overexposure.

traffic sign substitutes, for round traffic signs a random roll
rotation of up to 5◦ is applied to the resulting homography.

D. Restrictions

Due to the fixed-size input and output structure of the
CycleGAN model, it has only been trained with images of
128×128 pixels resolution. Larger images were downscaled
accordingly during training, smaller images were discarded.
In order to also substitute classes in low-resolution images,
we upscale them before the CycleGAN transfer.In doing so
we are able to significantly extend the number of possible
surroundings in which classes may be substituted.

Although the CycleGAN itself is capable of synthesizing
all visually similar traffic sign classes with which it was
trained, substituting traffic signs in images with our new
approach is currently only possible for traffic signs of the
same category. For an overview of the traffic sign categories
in the GTSRB, we refer to Tab. I.

While the most important factor for a successful substitu-
tion is a shared outer shape, we also found that mixing differ-
ent categories of round signs (i.e., restriction, derestriction,
and direction signs) has its challenges. Apart from the fact
that most direction signs appear in much lower heights that
all other traffic signs and therefore show backgrounds differ-
ent to those of other categories, the overall color scheme of
an image is used by the CycleGAN to extract illumination



TABLE I
CATEGORIZATION OF TRAFFIC SIGNS GIVEN IN THE GTSRB DATASET. EACH OF THE 43 TRAFFIC SIGN CLASSES IS SORTED INTO ONE OF THE FIVE

CATEGORIES BASED ON THEIR SHARED VISUAL FEATURES. (FIGURE AS SEEN IN [1])

Category Characterization Examples

Warning Signs upright triangular shape, red border, white background, black content

Restriction Signs circular shape, red border, white background, mostly black content

Derestriction Signs circular shape, white background, diagonal bars, gray content

Direction Signs circular shape, blue background, white arrows

Miscellaneous Signs no common features

information. As the major part of the image samples is taken
by the respective traffic sign, its ground color influences the
substitution process. A rather dark-colored direction sign of
a certain illumination will result in a far darker derestriction
sign substitute which no longer fits the chosen background
and is thus a potentially problematic image w.r.t. further
usage. As a matter of fact, images with unique features or
geometry (Yield Way, STOP, Priority Street, One-Way Street)
can only be substituted within the same class. This is a
restriction of our approach, however, we want to point out
that the majority of signs under the Vienna Convention on
Road Traffic share a common geometry and only differ in
their choice of pictograms and designs like font types and
thickness of lines and borders.

IV. EXPERIMENTS

We see our method in two fields of application: As a
technique, first, to extend the number of training examples
for underrepresented traffic sign classes, and, second, to
allow for training classes that are not given in the dataset at
all. In order to objectively assess the aptitude of the generated
images for training, we use a multi-class SVM classifier
[19] on HOG features [20]. This line of experiments is also
in accordance with our previous work [1]. Although state-
of-the-art approaches regularly deploy Convolutional Neural
Networks for multi-class image classification, these methods
might adapt the feature extraction to artifacts of our data
generation pipeline and, hence, skew the results. We have
shown the general success of our method for both SVMs
and CNNs in our previous paper [1] and thus refer to said
publication for more details regarding the evaluation with
CNNs.

As a baseline experiment we trained an SVM on the
GTSRB, i.e., entirely on real-world images, and refer to it as
SVMBase. A number of experiments with full or partial use
of our generated training samples were conducted in order
to assess the quality of our approach. The hyperparameters
for all SVMs were chosen to be C = 100 and γ = 0.1,
without further cross validation on each experiment as we
opted for a proper comparison to previous results with the

TABLE II
COMPOSITION DETAILS OF TRAINING DATASETS FOR THE VARIOUS

SVM CLASSIFIERS USED IN THE EXPERIMENTS

Key Training Dataset Composition

real images, GTSRB training set [2], serves as baseline
SVMBase

high variation in class size, avg. 449 samples per class

SVMPrev
generated images as in [1]

equal distribution of samples (449 per class)
generated images (ours)

SVMGen
equal distribution of samples (449 per class)

SVMImb
generated images (ours)

unbalanced class distribution equal to SVMBase

generated images (ours)
SVM5000

equal distribution of samples (5000 per class)

SVMLev

mixture of real and generated images (ours)
SVMBase dataset plus augmentation of underrepresented

classes with generated samples for leveled classes;
equal distribution of samples (1110 per class)

same hyperparameters rather than peak performance. The
experiments differ only in the training datasets. An overview
of the variations in composition and number of training
samples is given in Tab. II.

All classifiers were tested on real-world samples of the
GTSRB dataset, which is provided with a predetermined
split into training and test set. In accordance with [1] we
further subdivided the training set into two halves for training
the CycleGAN model and for conducting the following
experiments. Likewise the test set was split into two halves
for finetuning the generation pipeline and testing the trained
SVM classifiers.

A. Training on Generated Images for All Classes

In order to evaluate the overall quality of our generated
images, we train SVMGen, SVMImb, and SVM5000 on a purely
synthetic traffic sign dataset featuring all 43 GTSRB sign
classes. SVMGen uses 449 generated samples per class as
a direct comparison to SVMPrev, our previous approach.
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Fig. 4. Performance of different training datasets on the GTSRB test set
with reduced sample sizes. Partitions were generated by random choice of
samples from the respective original dataset.

SVMImb was trained on a highly unbalanced dataset of
generated samples. The number of samples per class cor-
responds to the distribution of the original GTSRB dataset
ranging from 90 to 1110 samples. This experiment thus is
a direct comparison to SVMBase. The fact that we are able
to generate great amounts of data was used in SVM5000, in
which we generated a dataset with 5000 samples for each
class. Finally, SVMLev is the only experiment in this set,
which combines real-world and artificial samples. In order to
show that our generated images can improve existing datasets
by complementing underrepresented classes, we have taken
the complete training dataset from the baseline classifier
SVMBase and evened out the number of samples per traffic
sign class to fit the most prominent one with 1110 samples.
The results are juxtaposed with SVMBase and SVMPrev in
Tab. III.

For a better understanding on how the number of training
samples influences our results for the different approaches,
we have conducted a number of experiments with subsets
of the SVMBase, SVMPrev, SVMGen, and SVMImb datasets.
Fig. 4 depicts the results.

B. Training on One Unseen Generated Image Class

To gauge the aptitude of our technique for generating
images from new and fully unseen traffic sign classes, we
conducted three further experiment series in which either of
the classes No Entry (Trucks), Slippery Road, and Pass Right
is removed from the training datasets of the CycleGAN.

Subsequently, a set of generated images of the previously
removed class was added to the different dataset composi-
tions in order to mimic generating a completely unknown
traffic sign class. Besides our baseline classifier SVMBase
and SVMPrev, resulting from a former publication, we have
conducted these experiments with the dataset compositions
from SVMGen, SVMImb, and SVM5000, i.e., the number of
added samples for only the replaced traffic sign class varies

TABLE III
CATEGORY-WISE CLASSIFICATION ACCURACY FOR DIFFERENT

TRAINING DATASETS. REFER TO TABLE II FOR DATASET COMPOSITION

DETAILS. ALL CLASSIFIERS WERE TESTED ON THE SAME PARTITION OF

THE GTSRB DATASET. BEST RESULTS ARE HIGHLIGHTED.

Classification Accuracy (%)

Category SVMBase SVMPrev SVMGen SVMImb SVM5000 SVMLev

Warning 78.16 75.76 74.75 76.20 79.54 83.16

Restriction 87.44 72.21 75.23 78.53 80.07 88.35

Derestriction 80.87 86.34 84.15 83.06 90.71 86.34

Direction 94.37 85.86 89.77 90.46 91.03 94.37

Miscellaneous 98.65 96.62 98.36 97.87 97.97 99.13

Total 88.01 79.27 81.17 82.96 84.70 89.75

TABLE IV
CLASS-WISE CLASSIFICATION ACCURACY FOR SUBSTITUTION OF

TRAFFIC SIGN “NO ENTRY (TRUCKS)” (1st ROW). UNMENTIONED

TRAFFIC SIGN CLASSES SHOW NO ALTERATION. HIGHLIGHTED ENTRIES

DIFFER FROM THE BASELINE CLASSIFIER. FOR SVMBASE AND SVMIMB

THE NUMBER OF SAMPLES FOR CLASS “NO ENTRY (TRUCKS)” IS 210,
FOR SVMPREV AND SVMGEN 449, AND FOR SVM5000 5000.

Replacement of Class “No Entry (Trucks)”
Classification Accuracy (%)

Class SVMBase SVMPrev SVMGen SVMImb SVM5000

No Entry (Trucks) 97.18 88.73 100.00 100.00 100.00

Speed Limit 20 72.73 72.73 72.73 78.79 72.73

Speed Limit 30 86.97 86.70 86.97 84.57 86.97

Speed Limit 50 89.45 89.45 89.45 88.65 89.45

Speed Limit 60 81.66 81.66 81.66 80.79 81.66

Speed Limit 70 94.48 94.48 94.48 93.90 94.48

Speed Limit 80 77.29 77.29 77.29 76.03 77.60

Derestrict 80 87.01 85.71 87.01 87.01 87.01

Speed Limit 100 74.44 73.99 74.44 74.44 74.44

Speed Limit 120 76.04 76.04 76.04 73.73 76.50

Proh. Overtaking 99.58 99.58 96.67 98.75 93.33

Proh. Overtaking (Trk) 96.82 96.82 96.82 97.13 97.13

Right of Way 78.89 78.89 78.89 79.90 78.89

One-Way Street 98.86 98.86 98.86 98.86 97.71

Danger 86.55 86.55 86.55 85.96 86.55

Att. S Curve 56.60 54.72 56.60 54.72 56.60

Att. Slippery Road 67.11 67.11 67.11 65.79 67.11

Att. Road Will Narrow 78.05 78.05 78.05 75.61 78.05

Att. Construction Site 87.70 87.70 87.70 88.52 87.70

Att. Traffic Lights 74.23 74.23 74.23 75.26 74.23

Att. Pedestrians 28.12 28.12 28.12 25.00 28.12

Att. Playing Children 80.00 80.00 80.00 81.25 80.00

Att. Bicycle 85.11 85.11 85.11 87.23 85.11

Att. Snowfall 52.86 52.86 52.86 51.43 52.86

Roundabout 70.45 72.73 70.45 70.45 72.73

Derestrict Overtaking 84.85 84.85 69.70 72.73 63.64

Total 88.01 87.87 87.85 87.62 87.73



TABLE V
CLASS-WISE CLASSIFICATION ACCURACY FOR SUBSTITUTION OF

TRAFFIC SIGN “ATTENTION SLIPPERY ROAD” (1st ROW).
UNMENTIONED TRAFFIC SIGN CLASSES SHOW NO ALTERATION.

HIGHLIGHTED ENTRIES DIFFER FROM THE BASELINE CLASSIFIER. FOR

SVMBASE AND SVMIMB THE NUMBER OF SAMPLES FOR CLASS “NO

ENTRY (TRUCKS)” IS 240, FOR SVMPREV AND SVMGEN 449, AND FOR

SVM5000 5000.

Replacement of Class “Attention Slippery Road”
Classification Accuracy (%)

Class SVMBase SVMPrev SVMGen SVMImb SVM5000

Att. Slippery Road 67.11 60.53 94.74 94.74 100.00

Speed Limit 30 86.97 86.70 86.97 86.97 86.97

Derestrict 80 87.01 85.71 87.01 87.01 87.01

Right of Way 78.89 78.89 78.89 78.89 78.39

Att. Rd Curves Left 37.93 37.93 41.38 41.38 37.93

Att. Rd Curves Right 81.58 81.58 78.95 78.95 76.32

Att. S Curve 56.60 54.72 56.60 56.60 56.60

Att. Construction Site 87.70 87.70 88.11 88.11 87.70

Att. Traffic Lights 74.23 74.23 74.23 74.23 73.20

Att. Bicycle 85.11 85.11 85.11 85.11 87.23

Att. Snowfall 52.86 52.86 52.86 52.86 51.43

Att. Deer Crossing 98.56 98.56 97.84 97.84 93.53

Total 88.01 87.89 88.35 88.35 88.23

with each dataset version according to the chosen guideline
while images for all other classes are taken from the GTSRB
dataset. Refer to Tab. II for details on the composition of
training datasets.

The test dataset is the same as described in Sec. IV-A,
consisting entirely of natural image data from the GTSRB.
Test performance for the three generated classes is given in
Tab. IV, V, and VI, respectively.

V. RESULTS

In Tab. III we compare the performance of a general
classification approach on one of six traffic sign datasets
featuring real data, data generated by our previous method
[1], and data generated by the newly proposed pipeline in
four different compositions. While all our fully artificial
datasets reveal a minor drop in performance of less than
7 percentage points compared to the real counterpart, all
datasets created by our newly proposed algorithm outperform
SVMPrev.

A category-wise comparison shows that all generative
approaches surpass the real dataset in underrepresented
categories such as Derestriction, scaling with the amount
of samples given by the respective dataset composition.
However, they fall short in other categories that contain
most of the remaining classes and samples. While SVMImb
shows a performance drop in all categories w.r.t. to SVMBase,
which uses the same amount of training samples per class,

TABLE VI
CLASS-WISE CLASSIFICATION ACCURACY FOR SUBSTITUTION OF

TRAFFIC SIGN “PASS RIGHT” (1st ROW). UNMENTIONED TRAFFIC SIGN

CLASSES SHOW NO ALTERATION. HIGHLIGHTED ENTRIES DIFFER FROM

THE BASELINE CLASSIFIER. FOR SVMBASE AND SVMIMB THE NUMBER

OF SAMPLES FOR CLASS “NO ENTRY (TRUCKS)” IS 1020, FOR SVMPREV

AND SVMGEN 449, AND FOR SVM5000 5000.

Replacement of Class “Pass Right”
Classification Accuracy (%)

Class SVMBase SVMPrev SVMGen SVMImb SVM5000

Pass Right 95.87 78.47 88.50 88.50 93.22

Speed Limit 30 86.97 86.70 86.97 86.97 86.97

Derestrict 80 87.01 85.71 87.01 87.01 87.01

Stop 92.36 93.06 93.06 93.06 93.06

Att. S Curve 56.60 54.72 56.60 56.60 56.60

Turn Left 100.00 100.00 100.00 100.00 98.31

Forward or Right 96.92 98.46 98.46 98.46 98.46

Total 88.01 87.06 87.65 87.65 87.89

SVMImb still clearly outperforms SVMPrev and SVMGen in
strong categories, e.g., Restriction. This is due to the fact,
that SVMPrev and SVMGen use a fix number of 449 samples
per class, while SVMImb copies the class distribution of
SVMBase, resulting in an average of 712.5 samples per class
for the category Restriction. The importance of overall class
sizes can also be seen in Fig. 4, in which all datasets show
similar performance for the same amount of size reduction,
regardless of the dataset composition.

All fully generated datasets seemingly carry over some
of the variance in image composition from which small
categories can profit, but fall short in achieving en-par figures
for the main categories. Our only dataset consisting of both
real and synthetic images, however, matches or outperforms
even our baseline classifier. This emphasizes the fact that
our approach can improve existing datasets by augmenting
underrepresented categories.

Replacing a single traffic sign class within a dataset
consisting of otherwise natural images is covered in Tab. IV,
V, and VI. Again, performance on the original GTSRB
dataset is juxtaposed to our previous and new data gen-
eration approaches. The classifiers exhibit similar overall
performance in all five experiments. Our new approaches
outperform the previous one for each artificial class, even
clearly outperforming the use of real data samples for the
classes No Entry (Trucks) and Slippery Road. Apart from
minor deviations, the discrepancy in performance of the
underrepresented classes, e.g., Derestrict Overtaking when
replacing No Entry (Trucks) is prominent. This effect scales
with the number of generated samples. We attribute this to
the skewed distribution after adding a significant number
of images to the dataset replacing smaller classes with 210
(No Entry (Trucks)) and 240 (Slippery Road) samples.



Fig. 5. The depicted traffic signs show the ability of our method to generate realistic looking images from arbitrary (including fictitious) traffic sign icons.
Resulting images show adaptation in illumination, pose and motion blur as would be expected from natural traffic sign images.

On the contrary, replacing one of the most frequent
classes, Pass Right, with originally 1020 training images and
effectively cutting the number of samples down to less than
one half for SVMPrev and SVMGen as well as scaling them
to 5000, and thus even extending the overall status as highly
frequent class, does not show this effect and only leads to
minor deviations in the performance of all other classes.

VI. CONCLUSIONS
In this paper we have presented a fully automated image

substitution technique for traffic signs. It is able to generate
images of traffic signs with arbitrary pictograms (cf. Fig. 5)
that exhibit the variance of real-life backgrounds and record-
ing artifacts. In doing so, this case study can represent
a number of recognition problems found in natural image
data with simple geometric constraints but highly varying
appearance due to recording conditions, design, or natural
occurrences.

For future work we will look into some of the remaining
shortcomings of the newly proposed generation process: Im-
ages of low quality or minor size (smallest image samples for
substitution were only 25×25 pixels of size), lead to poorly
generated cartoons by the CycleGAN. As a consequence,
also the pose estimation and background segmentation might
be deficient and the overall generation procedure cannot
lead to satisfying results anymore. Opening the currently
possible substitutions to inter-class substitutions might lead
to more variance in background / traffic sign combinations
and ultimately produce a more stable training dataset. If and
how these caveats and restrictions can be remedied has to be
examined closely.
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