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Abstract— The utilization of automatically generated image
training data is a feasible way to enhance existing datasets,
e.g., by strengthening underrepresented classes or by adding
new lighting or weather conditions for more variety. Synthetic
images can also be used to introduce entirely new classes to
a given dataset. In order to maximize the positive effects of
generated image data on classifier training and reduce the
possible downsides of potentially problematic image samples,
an automatic quality assessment of each generated image seems
sensible for overall quality enhancement of the training set and,
thus, of the resulting classifier.

In this paper we extend our previous work on synthetic
traffic sign images by assessing the quality of a fully generated
dataset consisting of 215,000 traffic sign images using four
different measures. According to each sample’s quality, we
successively reduce the size of our training set and evaluate
the performance with SVM and CNN classifiers to verify the
approach. The comparability of real-world and synthetic train-
ing data is investigated by contrasting several classifiers trained
on generated data to our baseline w.r.t. actual misclassifications
during testing.

I. INTRODUCTION

Many state-of-the-art forms of machine learning are highly
data-dependent and new, previously unheard of highs in per-
formance rely in part on huge data acquisition and labeling
projects that try to gather and structure the required amounts
of training and test data, e.g., [1]–[4]. This demand has driven
the development of both generative machine learning (ML)
models and close-to-life simulations, either of which holds
the prospect of superseding this cumbersome task in the
future [5] and, in easier cases with well-known sources of
variance, even today [6]. Apart from fast, cost-efficient, and
life-like data generation, the opportunity of systematic data
coverage instead of real-world, hence randomly sampled,
data acquisition is perceived as a clear advantage. This
applies for both model training and the systematic evaluation
of these usually safety-critical systems.

Unlike human-defined simulations, ML-powered genera-
tion techniques oftentimes lack a straightforward possibility
to control or manipulate the result and, thus, the distribution
of the generated data. This is why a number of hybrid
approaches have tried to combine the strengths of ML
models and simulations [7], [8]. They aim to generate part
of the distribution by learning from real data and the other
part by using hard-coded rules, e.g., provided by a human
programmer. However, both purely data-driven and hybrid
models suffer from outliers and failure cases in which the
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Fig. 1. How useful are these generated training images for later clas-
sification of real-world traffic signs? Human perception can be deceiving
when it comes to assessing well- or ill-suited images for the training of a
machine learning algorithm. The two images on the left received the highest
score with our ACC measure and lead to a more robust classifier. The two
images on the right were given the lowest possible rating with the same
measure and the resulting classifier shows that they are actually harmful to
its performance.

resulting data points are invalid or highly unlikely when
compared to the targeted real-world distribution.

In order to assess the quality of the generated data,
both human acceptance studies and various objective metrics
have been proposed and tested in practice [9], [10]. While
human beings might evaluate individual samples one way or
the other for wrong reasons (cf. Fig. 1), their judgement
is subjective and based on human perception, which can
be misleading when dealing with ML approaches. Still,
many objective metrics compare the generated and real-
world distribution as a whole, ignoring the possible impact
of individual image samples.

In this paper, we propose and investigate several automated
methods for assessing the quality of a single generated data
point. We study these approaches on our recently proposed
system for traffic sign substitution which uses real-world im-
ages of traffic signs and generates a corresponding synthetic
image by exchanging the class identity. The entire hybrid
approach consists of several steps and provides a number of
failure modes in both the rule-based and the ML-driven part.

We identify those failure modes and introduce four quality
measures to automatically overcome prior problems, reduce
the size of a given training dataset, and enhance the overall
quality at the same time. The resulting datasets are evaluated
via accuracy of the classifiers trained on them and by
comparison of misclassified test images with those falsely
classified by a baseline classifier, which was trained on
the training dataset of the German Traffic Sign Recognition
Benchmark (GTSRB) [4].

II. RELATED WORK

For a brief overview of the image generation system that
is the foundation of this paper [11], [12], we refer the reader
to Sec. III-A. Other parts of our approach draw from several



active fields of research for which the related references are
pointed out below:

In the last few years, CycleGANs, as originally proposed
by Zhu et al. [13], have been used for diverse generation
problems. A major asset of CycleGANs is the amount of con-
trol that can be gained over the generation process if complex
image data is transferred to a simple and easy-to-manipulate
domain. In combination with the fact that they can be trained
with unpaired datsets, CycleGANs have become more and
more attractive for a variety of use cases. In 2020, Liu
et al. [14] adopted a CycleGAN architecture for a day-to-
night style transfer in order to amend a highly complex
traffic scene dataset with an immense shortage of nighttime
scenes. In the same year, Mălăescu et al. [15] presented a
CycleGAN-based approach to transfer obtained training data
from a low-resolution driver surveillance camera to resemble
data that were obtained with a newer high-resolution camera
model.

During the past decade, the task of image-based traffic sign
recognition has been subject of several research projects. A
number of datasets were published covering traffic signs of
different countries [4], [16]–[18], but the variety of traffic
sign locations makes them hardly sufficient to train robust
classifiers. The variance in lighting and weather conditions
as well as smaller changes in coloring and style leave traffic
sign recognition to be a challenging problem but at the same
time a prime example for image data generation since the
geometry is simple and perspective changes can be com-
puted straightforwardly. Luo et al. [19] have demonstrated
this early on by a style transfer and randomly cropping
background information. Our own methods aim to create
realistic backgrounds from scratch [11] or purely reuse those
background and recording conditions that have been featured
in the underlying real-world dataset [12] to allow more
realism and fewer necessary training examples.

The approach in this paper is built around different meth-
ods for uncertainty estimation. These intend to enable a
trained model to recognize when a given input is dissimilar to
other examples from its original training distribution. We cite
the survey by Ovadia et al. [20] for a concise introduction
into the field.

III. METHOD

As this paper extends our earlier work, we briefly intro-
duce our generation pipeline for synthetic traffic sign samples
in Sec. III-A. In Sec. III-B, we identify remaining failure
modes of the generation process before elaborating on the
measures with which we rate the quality of individual image
samples to enhance a given dataset in Sec. III-C.

A. Previous Work

The generative pipeline at the center of this study consists
of a CycleGAN architecture as its core mechanism which
performs a style transfer between life-like images and car-
toon representations of traffic signs. The CycleGAN was
trained on the GTSRB and an unpaired set of cartoon images

Fig. 2. Overview of the general CycleGAN approach. A real-world sample
(top left) is transferred to its cartoon representation (bottom left). Information
on background, illumination and blurriness of the original is encoded in the
unicolored background of the cartoon sample. By changing the background
color in the cartoon domain and transferring it to the life-like domain, the
CycleGAN creates new surroundings for the given traffic sign. (Figure as
seen in [12])

featuring a traffic sign icon in a random but life-like pose
and a homogeneously colored background [11].

As expressiveness of the CycleGAN is limited, it often
fails to create a real-life background from a uniformly col-
ored one (cf. Fig. 2). For this reason, we pursue a substitution
approach [12] in which a real-life traffic sign is replaced
by one of the same category but not necessarily the same
class. To this end, the original image is transformed into
its cartoon pendant. This representation provides an almost
homogeneous background but encodes background structure
in minuscule variations. The pose in this simplified version is
estimated by fitting an icon of the original class and replacing
it with an icon of the target class transformed to the same
pose. Finally, performing a style transfer into the real-life
domain retains the background from before but replaces the
traffic sign with the selected one.

B. Failure Modes

The presented system suffers from three main failure
modes (cf. Fig. 3) that do not occur particularly frequently
but prohibit fully automated use:

1) Pose estimation fails, usually due to inaccurate key-
point matching: This may happen by cause of an
imperfect style transfer from real-world to cartoon
domain. Other reasons are traffic signs that display
uncommon iconography or fonts that differ from the
ones used on the fitted template.

2) Style transfer fails: As the CycleGAN was trained
under the side constraint of retaining class identity,
in rare cases icons are added to or inpainted in the
transferred cartoon image. This can also happen if the
image quality is insufficient or the background holds
a similar color as the sign.

3) Embedding of the substituted sign is not life-like:
The entire approach builds on the assumption that
important information for a realistic embedding is
encoded in the background of the cartoon images, e.g.,
lighting, weather, and contrast. At times, however, the
manipulated cartoon image does not correspond to a
life-like image in which foreground and background
agree.
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Fig. 3. Ranking examples according to chosen quality method: All images from our data generation pipeline are arranged according to each of the
proposed quality metrics. The column heading states the absolute and relative position of the respective example within the particular arrangement (0 being
the one with lowest and 214, 999 the one with highest quality evaluation). Examples with prominent failure modes during substitution are pointed out: (A)
unusual poses or failure of pose estimation, (B) failure of style transfer, (C) chosen style does not fit surrounding. Please note that for the reduction of
the training sets as described in Fig. 4 selection was performed for each class individually, hence, balancing the number of examples for all classes. This
overview disregards class information.

C. Quality Measures for Synthesized Images

In order to measure the quality of generated images we
construct four metrics that each operate on single data points,
i.e., individual image samples. Three of these are based on
the uncertainty estimation resulting from the use of Monte
Carlo (MC) Dropout, as described in [21]. With this method,
all Dropout layers of a neural network, i.e., layers in which
neurons are randomly set to zero output, are activated not
only at training but also at testing time to provide a statistic
on the network’s predictions. To estimate a measure of the
uncertainty of an image, the result of T forward passes
through the network is averaged.

As there are different methods to interpret the output we
construct three quality metrics: PROB, STD, and ACC. A
CNN classifier trained on the training dataset of the GTSRB
consisting of only real images serves as our model. By
estimating the uncertainty of generated images using the
real-trained classifier, unrealistic synthetic images may be
identified.

Initially, the model’s output, i.e., the softmax vector over
43 traffic sign classes as defined by the GTSRB dataset, is
averaged over all T forward passes. The highest probability
then gives the value of the PROB metric. In doing so, a
large value is interpreted as the model being certain about
its prediction regardless of whether or not it corresponds to
the correct class. A low value therefore indicates low output
of all classes and thus an uncertain decision.

The STD metric is composed by determining the standard
deviation over all T passes of the class with the highest
softmax output. A large value results from a large variation
in the output and thus is interpreted as an uncertain classi-
fication. Again, the correctness of the classification is of no
importance to the results of this measure.

As we have not taken into account if the predicted class is
actually the correct one, we construct the third metric, which
we denote by ACC, using an accuracy score by checking if
the correct class has the highest output in each of the T runs.
A high accuracy thus may represent the presence of many
realistic properties in the image as the classifier is able to
“easily” classify it.

The fourth quality metric, the DISCR metric, is not based
on a measure of uncertainty but uses the discriminator of
the above introduced CycleGAN (cf. Sec. III-A), which was
trained to tell apart real-world images from those transferred
from cartoon to real-life domain by the corresponding gen-
erator network. The discriminator, thus, assesses the realism
of the given image.

IV. EXPERIMENTS

For all experiments we use the generated images of the
same dataset for training. It consists of 43 different traffic
sign classes with 5, 000 samples per class, adding up to a
dataset size of 215, 000 in total. The dataset was adopted
from our earlier work [12], however, all generated images
were scaled from the original 128 × 128 to a resolution of
48× 48. We found this to be in line with other experiments
in the literature [16] and, while matching the previous per-
formance, classifier training routine speeds up considerably.

In order to evaluate the quality of the four measures
introduced in Sec. III-C, we use their assessments of each
image sample from the training dataset to prune it in a
predefined way. In three series of experiments, we reduce
the dataset size by removing the worst rated images, the
best rated ones, or images from both ends of the spectrum.
This is done in steps of 5 percentage points for each
metric, resulting in relative dataset sizes of 95% to 5%.
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d) CNN results: worst rated samples removed
from training set
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Fig. 4. SVM and CNN results for partial datasets. From left to right: Dataset reduction by removal of worst rated samples, removal of best rated samples,
and symmetric removal of worst and best rated samples w.r.t. a certain measure. CNN results were averaged over 10 runs for each measure and dataset
size. Plot d) shows the standard deviation of the CNN classifiers for the ACC measure for better understanding. All experiments feature the same spread of
around ±1% which is not shown for reasons of readability. The red dashed line depicts the respective classifier performance trained with the full training
set.

While the removal of the worst rated images is a rather
intuitive approach to eliminate weak or even unfavorable
data from the training set, the elimination of the best images
follows another train of thought: Generated images can raise
difficulties if they are too immaculate, as they have lost the
noise and imperfections of real-world samples. Thus, they
might be perfectly classified and therefore highly rated by
our measures but ultimately lead to a weaker classifier for
the real world as the overall distribution of images loses
variance. In order to investigate the impact of too perfectly
generated samples, we have chosen the dataset size reduction
by removal of the best rated samples, as well. The third series
of experiments combines the concepts and thus strengths of
the first two sets.

In order to maintain balanced classes for each reduced
dataset, pruning has to be class-wise. Without this restriction,
more complex traffic sign classes might be underrepresented
or even vanish completely from the training set.

Each experiment is conducted with both CNN classifiers
and SVM classifiers based on HOG features. The SVM and
CNN specifications resemble those used in [11], however,
the CNN classifiers were given an adaptive learning rate,

depending on the size of the training dataset, in order to
achieve invariance of the dataset size. As the training process
of CNNs is heavily initialization dependent and thus their
performance can vary remarkably, the displayed results were
averaged over 10 runs each.

We use half of the original GTSRB test set for all
experiments, as specified in [11], amounting to 6, 315 real-
world images. As with the training data, we resize all test
samples to 48× 48 for the CNN classifiers, but maintain the
various given GTSRB sample sizes for all SVM classifiers.

V. RESULTS

The described experiments give rise to manifold interpre-
tations: In Sec. V-A the focus is set to the overall quality of
the partial training sets reduced according to given measures
and in three different ways. While the performance of the
resulting classifiers is the main interest in training data
generation, another question is the proximity of the generated
data to the real-world reference training set, i.e., the GTSRB
training set. In Sec. V-B misclassified test images of several
reduced datasets are compared to the baseline. The higher
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a) SVM results: Misclassifications of classifiers trained on GTSRB training set (dark blue) and trained on full or partial generated dataset
(dark blue and light blue). Partial datasets were obtained by neglecting worst rated samples conforming to ACC measure.
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b) CNN results: Misclassifications of classifiers trained on GTSRB training set (dark green) and trained on full or partial generated dataset
(dark green and light green). Partial datasets were obtained by neglecting worst rated samples conforming to ACC measure.

Fig. 5. Misclassifications of SVM and CNN classifiers trained on partial datasets created in compliance with ACC measure. Rows denote 5% steps
in dataset size reduction, with classifiers trained on GTSRB training set and full generated dataset on top for direct reference. Darker shades refer to
misclassifications by classifiers trained on real data, lighter shades to misclassifications only committed by classifiers trained on generated data.

the overlap of misclassified samples, the closer the generated
data to the real-world dataset.

A. Performance of Measures
The performance of SVM and CNN classifiers for partial

datasets is depicted in Sec. 4. The dataset sizes range from
95% to 5%; the performance of the full sized generated
dataset is given by a red dashed line. Plot d) additionally
shows the exemplary standard deviation of 10 CNN runs for
the ACC measure. For all experiments this spread is around
±1% and is therefore disregarded.

Both classifier types show a significant increase in test
performance for ACC when removing the worst rated sam-
ples from the dataset (cf. Fig. 4a,d). In this case, the overall
dataset size could be reduced to 40% for the SVMs and to
a mere 5% for the CNNs without losing accuracy. While no
other measure profits from a dataset reduction for the SVMs,
the CNNs result in a performance increase for all measures
when reducing the size by up to 30%. CNNs, thus, seem

to be easily confused by badly generated samples, SVMs
based on HOG features, in comparison, show a more robust
behavior.

For the other two reduction approaches, all measures
show similar performance within a classifier and reduction
type and results do not increase significantly over the full
sized dataset. As the ACC measure in combination with
the removal of worst rated samples clearly outperforms any
other measure or reduction technique for both classifier
types, this setup is investigated further w.r.t. proximity of
misclassifications to the baseline.

B. Comparison of Misclassifications
A side product of the experiments described above are lists

of misclassified images for each single setup. In order to gain
a deeper understanding of the failure case composition and
thus the comparability of our generated training datasets to
the baseline, the distributions of these misclassifications are
compared as well. Fig. 5 shows the respective results for the



SVM and CNN classifiers produced by the ACC measure.
For CNN results out of 10 available runs per experiment a
random one was chosen for display.

Each row depicts the misclassified training samples of a
certain classifier, with the baseline always on top, followed
by a descending order w.r.t. dataset size for the classifiers
trained on generated images. Each horizontal bar reduces
the respective dataset size by 5 percentage points. The two
colors divide misclassifications w.r.t. the performance of the
baseline classifier. If a test sample was misclassified by the
baseline classifier, it is depicted in a darker shade. Was the
sample classified correctly in the baseline case but misclas-
sified in any of the generated training set cases, a lighter
color has been used to clearly mark the difference. This
type of plot displays how the sets of misclassified examples
overlap among classifiers, i.e., whether reducing the training
set size results in substantially the same or significantly
different misclassifications. Furthermore one might regard
misclassifications by the baseline classifier as forgivable and
investigate the classification for these examples in all other
deployed models.

A direct comparison of both plots shows that while the
misclassifications of the CNNs are less in number their
occurrence is rather scattered both w.r.t. the real-world train-
ing data and other generated datasets. They seem to falsely
recognize different images with every new run, resulting in a
noisy graph. The SVMs on the other hand give a more unison
impression of misclassifications. These classifiers trained on
different amounts of the same generated dataset show a
tendency to misclassify the same test samples and also the
comparison to the baseline depicts a certain concordance of
test sample (mis-)understandings.

VI. DISCUSSION AND FUTURE WORK

For all proposed metrics, we use a surrogate task to decide
whether or not a given image is significantly different from
the distribution of real images. The three approaches based
on MC Dropout aim to take advantage of the fact that un-
realistic images may bear features of several of the possible
classes which in turn should impede robust classification. The
DISCR metric is trained to tell fake and real images apart
but is tuned to the most discriminative, i.e., most unrealistic,
features of the particular generator with which it had been
paired.

We have shown that the ACC quality measure provides a
useful ranking of generated images: It allows the selection
of images with failure cases without reducing the overall
variance in the training set overmuch. Removing a percentage
of the lowest-ranked images leads to an increase in perfor-
mance and enables the reduction of the necessary training
set size. However, since ACC is based on a measure of
spread in traffic sign classes present in the real-world dataset,
it remains to be investigated whether generating entirely
new classes, i.e., classes with new symbols that the original
dataset lacks and the base classifier has therefore not seen,
will bias the quality measure.
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