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Abstract— Data augmentation techniques have been focused
in recent research as they hold the promise to reduce the
need for extensive data acquisition and to enable systematic
sampling, e.g., in order to examine underrepresented cases. The
question of how and to what extent control over the result is
possible and necessary is still open.

We propose a novel system for license plate substitution in
the wild, which replaces a given license plate within an image
crop by another one with a customized pattern. The system is
based on a CycleGAN architecture, which respects the plate’s
pose and dominant image features, such as lighting and image
sharpness. Most importantly the system is trained on a set of
license plate crops without requiring any label information.

We demonstrate the validity of our approach in two sets of
experiments: First, a license plate recognition system is trained
and evaluated with varying amounts and ratios of synthetic
over real-life data, and second, the realism of image features is
verified by means of a human acceptance study as well as the
Fréchet Inception Distance.

I. INTRODUCTION

Deep neural networks form an integral part of autonomous
driving as their performance in solving sensor processing
problems is unmatched. However, as the training of these
models is almost exclusively data-driven, a demand for large
and meticulously annotated datasets arises. Composing these
datasets remains a laborious and costly task and means for
its automatization have been extensively studied.

A promising approach is perceived in data augmentation
techniques that aim to generate realistic data and annota-
tions within given specifications. Apart from reducing the
general amount of labor, they yield reliable annotations in
complex scenarios while errors in manual labeling become
more frequent. Furthermore, they can avoid recollecting and
reprocessing data in case of a distributional shift. Examples
for this phenomenon include the extension of the operational
design domain, e.g., if the system is to operate in another
country, and temporal domain shifts, which occur, for exam-
ple, if the data correlate to trends and fashions. Depending on
the generation system, partial control over the results can be
granted such that certain sources of variance can be regulated
or sampling can be performed evenly along given semantic
dimensions. In consequence, it is possible to extend the
same image material systematically, e.g., for various types of
weather conditions or any time of day or night. Deploying
a, in this sense, complete dataset then allows for systematic
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Fig. 1. Generated license plate samples. The proposed system is able to
replace existing license plates with synthetic ones while, at the same time,
preserving perspective, lighting condition, and sharpness of the original real-
life image.

evaluation and testing or for the removal of an assumed bias
from the data.

In this paper, we investigate the problem of data augmen-
tation for image-based license plate recognition, i.e., we eval-
uate automatically generated images of German vehicle reg-
istration plates and compare them to real-life samples. This
is executed by an automated system performing a character-
by-character extraction of the license plate information on
a given image patch that has been obtained in a previously
conducted detection process. The image generation pipeline
is extendable and yields visually convincing, life-like results
without the need for any label information. Fig. 1 illustrates
exemplary images generated by our system.

Due to the simple geometry of license plates, it is straight-
forward to manage some properties of the real-life images
that underlie elementary rules, such as perspective rendering
or regulations according to which valid license plate numbers
are chosen. In contrast, the properties related to appearance
are learned from data by use of a style transfer model.

Our contributions in this paper can be summarized as
follows:

• We present and describe in technical detail the data
generation process and the ways in which it enables
the user to control the outcome,

• we provide a comprehensive analysis with the help of
a fully-fledged license plate recognition system using
systematically generated data from our approach, and

• we evaluate the realism of the created results by means
of a user acceptance study and the Fréchet Inception
Distance.

II. RELATED WORK

Life-like automated image substitution is an active field
of research as many data-driven models and applications



based thereon can benefit directly from better performance
at a fraction of the annotation cost. It is to be juxtaposed
with style transfer techniques, which generate images from
a purely synthetic input, and object insertion, which embeds
new objects into an image showing an otherwise empty
scene. Depending on the complexity of the created scene,
with style transfer, the gap between generated and real data
can be anything from negligible [1] to severe [2], [3]. Object
insertion aims to avoid this distributional shift by reusing
real-life image data. Nevertheless, a new challenge arises
from the need for a real-life embedding which aligns well
with the surrounding and the global properties of the given
scene [4].

Image substitution circumvents this demand to some ex-
tent by using objects that are already present in the scene and
exchanging only key features. However, depending on the
type of object or image feature one aims to modify, additional
annotations might be necessary to maintain geometrical and
visual consistency. Alternatively, one may deploy a potent
detector or pose estimator, which in turn has to be trained
from these annotations.

When addressing face swapping, most approaches rely
on positions for facial landmarks to insert a face with
a fitting pose and expression. Widely available annotated
data [5] as well as public and commercial interest drive
the research in this field. Ren et al. [6] propose a system
for adversarial face swapping with two goals: minimum
probability of re-identification and maximum performance
for action recognition. An investigation of a close-to-market
system was presented last year by Sümer et al. [7], in which
the authors assess a real-time image and audio processing
system for the anonymization of video calls in a challenging
classroom scenario. Here, detected faces are, however, auto-
matically blurred and not substituted. A recent approach by
Hukkelås et al. [8], termed DeepPrivacy, aims at replacing
faces without altering the position of facial landmarks in the
process.

One of the main applications for these approaches is the
automated anonymization of image material to avoid legal
regulations concerning storage and use. This intention also
motivates approaches covering the detection and blurring of
vehicle registration plates, such as [9]. While data protection
is not the prime objective of our research, the system we
propose has no principal restriction, e.g. regarding runtime
or reliability, which would preclude it.

Another purpose of image substitution is the generation
of training data, in order to strengthen underrepresented
classes or introduce special cases to existing datasets. Spata
et al. [10] and Horn et al. [11] demonstrated the usefulness
of automatically generated image data for training purposes
w.r.t. the task of traffic sign recognition. Their CycleGAN-
based approach has no need for detailed annotations but takes
advantage of simple geometric relations that are immanent
in traffic sign images, i.e., a planar foreground and a rather
large distance to any background.

Generating license plate image has been covered in recent
research as well. Liu et al. [12] present a general-purpose

image generation system that learns separate representations
for the image content, e.g., the license plate number, and its
style. They provide results on several image datasets, among
these Chinese license plate images. However, additional
labelling, the plate number, is required for each image that
is used in generator training. Wang et al. [13] demonstrate
training a license plate classifier with generated images
only. These are obtained via a style-transfer from artificially
rendered Chinese license plates. As the authors use the style-
transfer in one direction only, they describe several measures
against mode collapse.

In the proposed method, we avoid relying on additional
annotations. Instead we use a hybrid approach to: 1) in-
corporate formal knowledge, like the character patterns that
form a valid license plate, 2) use well-established image
processing routines to derive the key geometrical properties
like scale and orientation of the license plate, and 3) embed
the generated number plate into a real image inheriting its
key characteristics and preserving the variance of the target
dataset.

III. METHOD

The method presented in this paper is an extension to the
approach by Horn and Houben [11], which uses a CycleGAN
to perform a bidirectional style transfer on traffic sign images
between cartoon and life-like domain. Their key idea is the
transfer of real-life images into the cartoon domain, in which
content can be easily replaced, such that a manipulated image
transferred back to the life-like domain results in a realistic
looking image with altered content. The cycle consistency
inherent to CycleGAN training enforces the model to encode
style information of real-life images such as background,
illumination, and texture into barely visible intensity pertur-
bations in the corresponding cartoon images while preserving
image structures. The uniform background color encodes
the appearance of the image background during CycleGAN
training aiming to separate the generation of the license plate
and its surrounding. The method has been adopted in this
work to address the problem of exchanging license plates
in camera images. The CycleGAN is further extended to
additionally output a segmentation mask, which separates
the license plate foreground from the image background.
This mask is required to precisely reinsert only the license
plate into the original image, and in comparison has been
performed as an additional segmentation step in the original
pipeline by Horn and Houben [11].

A. Generation Pipeline Overview

The proposed pipeline for exchanging license plates in
camera images is illustrated in Fig. 2. Initially, a pre-trained
object detector [14] is used to localize license plates in
images of vehicles in arbitrary poses. Each detected license
plate is cropped and resized to match the input resolution
of the CycleGAN, i.e., 256 × 256 pixels. The license plate
crop is propagated through the cartoon generator of the
CycleGAN, which outputs a cartoonized version of the
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Fig. 2. Pipeline overview: For a given input image a license plate is detected, cropped and fed into the CycleGAN, which outputs a cartoon version
of the input image as well as a binary license plate segmentation mask. The mask is used to determine the corners of the license plate, which are then
adopted to render a new license plate template with a customized string, such as “ITSC 2021”, in the same orientation on top of the cartoonized image. At
the same time a second mask is derived from the detected edges, which is united with the original segmentation mask to achieve a more stable reinsertion
process. The modified cartoon and mask are fed into the CycleGAN and the result is smoothly reinserted into the original image. Finally, a matching score
between the two binary masks is calculated to serve as additional quality measure.

crop and an additional segmentation mask that separates the
license plate foreground from the vehicle background.

Simultaneously, an alternative license plate number (e.g.
“ITSC 2021”) is rendered on a planar 2D template for
German license plates using the official German license plate
font. The template consists of a blue European registration
plate with the letter D for Germany on the left-hand side and
circular placeholders for the vehicle inspection and region
identification stickers in the central part of the template.
Notice that the license plate template and font varies across
different countries and therefore requires localization for
international use.

Based on the segmentation mask the four corners of
the license plate are estimated by applying the Douglas-
Peucker algorithm [15] on the mask’s foreground. The al-
gorithm extracts the contours of the license plate which
are then propagated to a Shi-Tomasi corner detection [16].
The estimated corners are used to homographically project
the customized license plate template onto the corners of
the original one. The projected and filled template is then
rendered on top of the initially cartoonized license plate crop
and the segmentation mask for the template is generated.

Notice that we also tried to estimate the full 8-DOF
perspective transformation of the license plate, which should
lead to more accurate results but turned out to be unstable
if estimated from a single image.

The cartoonized crop with the inpainted license plate
template and the union of the original and the derived
template segmentation masks are transferred back to the
real-life image domain using the corresponding CycleGAN.
The union of the segmentations ensures that the resulting
segmentation mask covers the entire license plate content
even if the template and the original license plate do not

fully align.
Finally, the segmentation mask is filtered with a Gaussian

kernel and used as an alpha blending mask in order to
smoothly reinsert the generated license plate into the orig-
inal image. This form of gradual inpainting prevents edge
artifacts that can occur at the boundaries through contrast
differences between the generated and the original image.

Additionally, a matching score is calculated as intersection
over union between the segmentation masks of the original
and the template license plate. It quantifies how well the
original and the template license plate are aligned in size,
position, and perspective and therefore serves as an indicator
for the success of the license plate substitution. We manually
investigated matching scores with corresponding generated
images and observed that scores above 0.85 usually reflect a
sufficient alignment of the two masks. Approximately 68 %
of the training data match or exceed this score. Following
a traffic light scheme, we rated their confidence level as
green. A matching score between 0.85 and 0.75 still leads
to good results in many cases, but there is an increase of
mismatched perspectives of inpainted license plate and back-
ground, which simplifies the identification of these images
as generated ones. A confidence of yellow is assigned to
those images, which covers approximately 18 % of the data.
Finally, approximately 14 % of the data has a matching score
below 0.75, which usually leads to a wrong perspective of the
generated license plate and thus to inaccurate substitutions,
so that a red confidence is given to those images.

B. Data Preparation and Model Training

The CycleGAN training requires two datasets, one with
camera images of license plate close-ups and the other one
with similar cartoon license plates. In real-world images, the



license plates were automatically cropped using the same
pre-trained object detector [14] as used to localize the license
plates in the proposed pipeline. This resulted in a total of
29,000 license plate close-ups, which vary in resolution,
sharpness, contrast, lighting conditions, size, and perspective.
Note that, as the license plate number is protected by data
privacy regulations, the dataset cannot be made publicly
available, but some examples with already replaced license
plate numbers are shown in Fig. 1.

To generate the second dataset, the size, position, and
orientation of all previously captured license plate close-
ups were determined by estimating the homography between
each license plate close-up and the corresponding generated
image of the planar license plate template, which showed
the same license plate number as the camera image. All
successful estimations were stored and the license plate
template subsequently used to render artificial cartoon license
plate close-ups in perspective by randomly choosing one
of the estimated homographies as well as an artificial, yet
valid, German license plate number. Note that the latter is
composed of a city code with up to three letters including
umlauts, followed by one or two arbitrary letters, and a
maximum of four digits. In order to generate the license
plate cartoons, the values are sampled uniformly under the
restriction that the final license plate number consists of at
least four characters and eight characters at the most. The
background color of the generated images is adapted to the
mean intensity of a randomly chosen camera license plate
close-up, which often results in a gray cartoon background.
This approach ensured that the generated cartoon data fea-
tures the same variations in size, position, and perspective
as the real-life image dataset, but at the same time samples
the space of possible license plate patterns more uniformly.

A main change to the CycleGAN implementation as
originally proposed by Zhu et al. [17] is the removal of the
identity loss, which is owed to the fact that the loss expects
the same number of channels for the generator input and
output – a prerequisite that is no longer matched as a result
of the additional segmentation masks. Following the original
publication, a batch size of 1 in combination with instance
normalization has been used. The model was trained on the
entire dataset with 29, 000 cartoon and 29, 000 real-world
images using the ADAM optimizer (β1 = 0.5, β2 = 0.999)
with a learning rate of 0.0002 for 23 epochs. The stopping
criteria was determined by calculating the Fréchet Inception
Distance [18] between the set of all generated images and the
set of all training images. The score dropped from initially
252.3 with random weights to 21.8 after five epochs, 21.4
after 15 epochs, and 19.5 after 25 epochs. The lowest score
of 17.4 have been reached after 23 epochs.

IV. EXPERIMENTS

The proposed pipeline can generate an arbitrarily large
amount of realistic license plate images with custom license
plate numbers, which can be used for data augmentation, e.g.,
when training systems to recognize license plates numbers.
If only a small amount of manually labeled training data

is available, we expect such a system to reach much higher
recognition rates with additional artificial image data. To test
this assumption we have trained artificial neural networks to
recognize license plate numbers either on real-life images,
generated images, or a combination of both. Moreover, at
least for a small amount of vehicle images in which the
license plate has been exchanged, humans should not be
able to recognize manipulated images. Therefore, a user
acceptance study has been performed in which humans are
asked to decide whether an image with a possibly exchanged
license plate number is manipulated or real.

A. Automatic License Plate Recognition

For supervised training of the artificial neural networks, a
total of 45,000 real-world images with German licence plate
strings as labels are available. In the dataset, the same license
plate might appear more than once with shots taken from
different angles, so that the number of unique license plates
in the dataset amounts to 22, 000. 5, 000 images with differ-
ent licence plate numbers have been randomly selected as
an independent test set. From the remaining data all images
showing the same license plate number as the one selected
for the test data and images with a pipeline confidence level
of red have been removed, so that in total 30,090 images
remained for training. For augmentation we generated 60,000
images, processing each real-life image twice with random
but valid license plate numbers, using the proposed pipeline
on the entire training data and additional unlabeled data,
in which only generated images with confidence green and
yellow have been selected.

The network for license plate recognition is based on the
pre-trained Xception architecture [19], from which the last
convolution layer is selected and a mean average pooling
layer followed by a fully connected layer is added. The
output consists of eight softmax layers – one for each
license plate character position. Each softmax layer is 39-
dimensional, in which each dimension is representing one of
the characters [A-ZÜÖ0-9] or a white space.

Several experiments are conducted to compare the perfor-
mance on the 5, 000 test images with unique license plate
numbers. Three sets of experiments cover training subsets
of real-life images, generated images, as well as mixed data
origins. For all experiments we measured the total categorical
accuracy, i.e., the accuracy of recognizing all characters
without mistake. Considering the possible variance immanent
to the training process, displayed results refer to the mean
of ten training routines each.

B. User Acceptance Study

The acceptance study was performed with 48 participants
in total, each of whom was shown 50 real-life images featur-
ing vehicles in perspective view with their original license
plates and 50 manipulated images in which the license plates
had been substituted. The real-life images were selected
randomly from the previously defined test data, with the
restriction that images were rejected manually beforehand if
they were obviously outside of the desired input domain, i.e.,



grayscale images, images under extreme lighting conditions,
or heavily blurred images. In these cases inpainting would
have easily been identified by the participants, facilitating
their decision process by elimination. This preselection con-
cerned two percent of the images.

For the generated images, only those with a green match-
ing confidence were selected. In these cases the pose esti-
mation of the license plates worked rather well, reducing the
chance of artifacts that occur when the template does not
fully hide the original license plate. All images were resized
such that the height equals 512 pixels as it would otherwise
be possible to identify a manipulated image only based on the
resolution difference between high resolution original images
and the inpainted generated license plate crops, which have
a native resolution of 256× 256 pixels.

The 100 test images were shown in the same random
order to each participant, who had 1.5 seconds to observe
each image and decide afterwards whether the current image
was real or generated. Similar to [2], a time restriction was
introduced as – given enough time – it is almost always
possible to find small artifacts or inconsistencies in images
that are artificially generated by GANs. This is the case even
if the model is significantly more complex and relies on more
training data such as the StyleGAN1 [20], for example. We
therefore decided to limit the time given to force participants
to rely on the overall visual impression rather than scene or
expert knowledge, e.g., that the vehicle inspection sticker
is always on the rear license plate in Germany – a piece of
information not present in the used training dataset. The time
restriction also prevents the participants from zooming into
the image to actively search for those artifacts. Furthermore,
to prevent people from identifying a generated license plate
just by an unlikely configuration of letters, the city code was
sampled from the training data and random alphanumeric
codes were added such that the total length of the license
plate string varied in a range of 6-8 characters.

V. RESULTS

A detailed discussion on both experiment types is given
in the following. While the license plate recognition results
mainly support findings from other research in this field, e.g.
[11], the user acceptance study provides a differentiated view
of the human perception of generated vehicle registration
plates.

A. Automatic License Plate Recognition

The results of the automatic license plate recognition
experiments are summarized in Fig. 3, in which a gradual
increase of the training set size accompanied by a grow-
ing test accuracy can be observed. The curves show the
average total accuracy on 5, 000 real test images and the
corresponding standard deviation, averaged over 10 trials.
The networks were trained on either real, generated, or a
balanced combination of both image sets.

1For a user acceptance test for faces generated with a StyleGAN see
https://www.whichfaceisreal.com
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Fig. 3. Evolution of the total accuracy, i.e., the proportion of license
plates for which every single character was correctly predicted. Accuracy
and standard deviation for each depicted data point are based on 10 trials.
The models were trained on either real-life, generated, or a balanced
combination of real-life and generated images and evaluated on the same
test set consisting of 5, 000 real-life images.

The figure clearly illustrates that using a training set size
of 2, 500 or less is not sufficient for any of the networks.
Those trained on 5, 000 images, on the other hand, already
achieve accuracies of 22%, 33%, and 37% for generated,
real and a combination of both types, respectively. When
the generated images are used in combination with real ones
for training, the performance is mostly comparable to the
networks trained entirely on real images. However, for less
than 15, 000 samples a combination of real-life and generated
images is more favorable to the resulting accuracy than a
pure real-life sample approach. This advantage cannot be
maintained for bigger datasets, although accuracies of real-
life and mixed training data differ only slightly for the same
training set size. When comparing both curves with respect
to the amount of real-life images within the datasets, e.g.,
comparing 30, 000 mixed images with 15, 000 real-world
samples, augmentation of the training data with generated
images leads to a significantly better performance. This
trend is continued, e.g., when 30, 000 real-life images are
augmented with another 30, 000 generated ones leading to a
performance increase of approximately 3%.

In comparison, networks trained only on generated im-
ages achieve significantly lower total test accuracies. This
indicates that the generated images, although beneficial in
augmentation, do not fully cover the distribution of real-life
images. A possible reason is the fact that only generated
images with a matching score of at least 0.85 are selected
for training data generation, which excludes difficult per-
spectives and lighting conditions. However, those challenging
images are still present in the real-world training samples and
are also part of the test set, so that the network requires at
least some amount of real-life images in training to be able
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to deal with those difficult samples. A clear advantage of
using generated images in training is the additional variety
in character combinations and thus increased robustness of
the resulting classifier for rare cases.

To further investigate the effect of limited real-world data
in training, multiple experiments on either 625, 1, 250, 2, 500
or 5, 000 real-life images in combination with a variable
amount of generated samples have been performed. The
results are summarized in Fig. 4, showing that all four
variants perform better when the training set size is increased
by additionally generated data. A higher amount of real-
world images stabilizes the distribution w.r.t. to the test set
and thus leads to higher accuracies, as well. With a relatively
small effort of labeling only 625 images an accuracy of 76%
is already achievable, which is 14% higher than training
merely on generated images, and which further increases to
83% when labeling 5, 000 images. This tendency can still be
observed for vast amounts of real-world samples, as depicted
in Fig. 3. Even for 30, 000 real-life images, the addition of
generated data further improves the test performance to 89%
illustrating the value of the artificial data generated with the
pipeline.

B. User Acceptance Study

The previous experiments have shown that generated im-
ages with a matching score above 0.85 are beneficial for data
augmentation when training neural networks. However, this
does not necessarily mean that those generated images are
realistic from a human perspective, which in fact is not even
required since neural networks are rather robust against small
image artifacts, like those possibly inserted by the GAN. The
human visual perception, in comparison, is very sensitive to
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Fig. 5. Comparison of all test images ordered by their user acceptance
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whether it is real (light blue) or generated (dark blue).

small inconsistencies even if the overall impression of the
image is considered to be realistic. The user acceptance study
has therefore been performed to estimate the realism of the
generated images and investigate how often generated images
are accepted as real.

Fig. 5 shows the average acceptance rate, i.e., the percent-
age of participants accepting a given image as real, regardless
of whether it is actually real (light blue) or generated (dark
blue) in increasing order. On average, 76% of the real-life
images are correctly identified as real, while 44% of the
generated images have been classified as real, as well. Thus,
there is a gap of 32% in order to reach the Nash equilibrium,
in which participants cannot differentiate between real and
generated images anymore. The difference in performance
for real and generated samples can also be identified from
the location of the respective samples on the abscissa. Most
of the generated images have a lower score and are located
toward the left-hand side, while the real-world ones are
located with a higher score toward the right-hand side of the
diagram. In case of the Nash equilibrium, real and generated
images would be distributed uniformly across the acceptance
rates. It is noteworthy that on average 24% of the real images
– in the presence of generated images – are falsely classified
as generated. This gives evidence that the decision might be
rather subjective than objective in a number of cases, i.e., not
based on inconsistencies arising from the generation process
but on the overall impression of an image.

Some of the generated images appear to be more realistic
than others as their acceptance rates vary significantly from
the average. In an extreme case, a generated image has been
classified as real by 77% of all participants, which, after
manual investigation, appeared to be very realistic to the
authors, as well. On the other hand, the two real-life outliers
with 32% and 34% acceptance rate appeared to be rather
unrealistic to the authors due to unusual lighting conditions,
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which might explain why most of the participants classified
these images as generated. It also shows that the decision
of whether an image is generated or not does significantly
depend on the conditions a photo has been taken in.

Besides the varying results of the individual images, the
performance of the participants differs due to their level of
experience with generated data. The ascending order of the
average test accuracy of each participant is shown in Fig. 6,
which also illustrates the cumulated results of correctly clas-
sified real and generated images. On average a test accuracy
of 66% is achieved, with a peak performance of 84% and a
minimum of 38%, showing indeed a substantial difference
in performance across the participants. Furthermore, none of
the participants could identify all generated images or all
real-life images.

In order to further understand the difference in perfor-
mance, some of the best and worst performing participants
have been asked, which features they were focusing on for
their decisions. While participants with a good performance
clearly named artifacts produced by the GAN, such as
missing details on the European registration plate, wrong
coloring of the vehicle inspection sticker, or blurry edges
caused by the inpainting, participants with a low performance
mainly focused on the overall plausibility of the image such
as unreasonable contrast variations. This further emphasizes
our assumption that human beings are good in identifying
small inconsistencies in images generated by GANs, which,
however, does not necessarily mean that the images do not
appear realistic as a whole. Nevertheless, there is still room
for improvement, especially with regards to the level of detail
during generation in our proposed pipeline.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated that the manipulation of image data
in the cartoon domain is a viable way to guide the results of

the proposed image generation process. At the same time, a
careful embedding of the altered image crop into the original
image enables the user to adopt key characteristics from an
individual image and, by extension, sources of variance from
the entire underlying dataset. User acceptance studies have
indicated a high level of realism while experiments with
the recognition system showed that the global distribution
of features necessary for training have been retained.

Some rare failure modes, e.g., inpainting with misesti-
mated plate poses, as well as a more accurate but also much
more challenging pose estimate based on more than the
four license plate corners, remain to be addressed. However,
we are positive that the system will reach a reliability that
renders it close to full automation. This and the fact that
the approach shows potential for real-time applicability open
up the possibility for further areas of applications: Real-
time license plate anonymization would enable the storage
and widespread use of traffic cameras whose recordings are
otherwise protected by data protection regulations in many
countries worldwide. Being able to openly provide or access
these data sources, possibly live, would mean a boost in
traffic safety, intelligent transportation research, and smart
city management as a whole.
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