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Abstract. Learning to process visual input for Deep Reinforcement
Learning is challenging and training a neural network with nothing else
but a sparse and delayed reward signal seems rather inappropriate. In this
work, Deep Q-Networks are leveraged by several unsupervised machine
learning methods that provide additional information for the training of
the feature extraction stage to find a well suited representation of the
input data. The influence of convolutional filters that were pretrained on a
supervised classification task, a Convolutional Autoencoder and Slow Fea-
ture Analysis are investigated in an end-to-end architecture. Experiments
are performed on five ViZDoom environments. We found that the unsu-
pervised methods boost Deep Q-Networks significantly depending on the
underlying task the agent has to fulfill. While pretrained filters improve
object detection tasks, we find that Convolutional Autoencoders leverage
navigation and orientation tasks. Combining these two approaches leads
to an agent that performs well on all tested environments.
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1 Introduction

When thinking about an autonomous agent acting in the real world, deep Rein-
forcement Learning (RL) algorithms, that are able to efficiently process visual
input, are of central importance. In order to learn an intelligent behaviour, high
level information about the environment has to be extracted from the input
data. Learning both, feature extraction and policy, from nothing else than a
scalar, sparse and delayed reward signal seems to be inefficient. Especially in
three dimensional environments with an agent that is able to move around, the
state space is huge and impossible to discover completely. Similar to humans and
animals, which learn mostly unsupervised [11], combining unsupervised machine
learning methods with reinforcement learning algorithms into an end-to-end
solution is promising in terms of accelerated training while keeping the training
procedure simple.

We therefore apply several unsupervised machine learning techniques with the
goal to learn meaningful visual filters quickly, so that reinforcement learning can
focus on learning a policy expressed by the higher (dense) layers of the network.
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We compare several unsupervised machine learning techniques in combination
with reinforcement learning in an end-to-end framework for their suitability
towards this goal. As a baseline, a Deep Q-Network (DQN) is trained from
scratch, i.e., with randomly initialized weights and without any auxiliary method,
as in the work of Mnih et al. [19]. As a first step, the opportunities of transfer
learning are explored by pretraining the convolutional layers of the DQN with
real world images in a supervised classification task. Furthermore, we add two
different unsupervised auxiliary objective functions to the DQN: a Convolutional
Autoencoder (CAE) [18] and a gradient-based variant of Slow Feature Analysis
(SFA) [24]. CAEs operate on single images and ignore the rich temporal structure
of visual input. SFA is based on the idea that the most informative signals are
slowly changing over time compared to the raw sensor signals, and hence takes the
temporal structure into account. All three methods affect only the convolution
filters. After initial experimentation, the pretrained filters and the CAE were
found to be most promising, however, for different tasks. Hence, we also explored
the combination of both with a joint feature set.

For reproducibility, the code is publicly available at https://github.com/
shakenes/unsupervised-drl.

The remainder of this work is organized as follows. After discussing related
work we introduce the background and the environments in Sections 3 and 4. We
describe our experiments, present and discuss the results in sections 5, 6, and 7,
and finally draw conclusions.

2 Related Work

The combination of unsupervised learning with reinforcement learning was ex-
plored by several authors.

Unsupervised auxiliary tasks for RL that each yield a reward by themselves
are proposed in [12,21]. However, the visual input is only exploited indirectly
with an additional reward function, in contrast to using established unsupervised
learning algorithms.

The authors of [3] decoupled feature extraction from policy learning. They
proposed two new methods based on vector quantization and sparse coding to
learn the features separately but simultaneously to the policy. Some interesting
results on Atari games were shown as a neural network consisting of only 6-18
neurons was necessary to learn the policy. One may conclude that the actual
RL part is nearly trivial when fed with high level and low dimensional features.
However, the vector quantization methods are unsuitable for quickly changing
scenes of 3D environments like ViZDoom.

In [1,16] an autoencoder is used for dimensionality reduction of visual input
data and learning a policy based on the encoded data. However, the study aimed
for a bottleneck as small as possible, while we only aim for efficient training of
the convolutional layers. Similarly, in [15] the CAE features are used to predict
the immediate rewards and to compute the Successor Representation for each
possible action.

https://github.com/shakenes/unsupervised-drl
https://github.com/shakenes/unsupervised-drl
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3 Theoretical Background

3.1 Reinforcement Learning

Many sequential decision making processes can be formulated as a Markov
Decision Process (MDP) defined by the state space S, the set of possible actions
A, the state transition probability P(st+1|st, at), the reward function R(s, a)
and the discount factor γ ∈ (0, 1], which represents the preference of immediate
rewards over future rewards. An agent receiving ego-perspective visual input in a
three dimensional environment can only observe the state partially. The future
discounted reward at time t is Rt =

∑T
t′=t γ

t′−trt, where T is the time step at
which the MDP terminates and rt is the reward received in time step t.

The most prominent class of deep RL algorithms are temporal difference
methods, in particular Q-Learning [25]. Key to Q-Learning is approximating the
optimal action-value function, that returns the expected Rt after seeing some
state s, taking an action a and following a policy π thereafter:

Q∗(s, a) = max
π

E [Rt|st = s, at = a, π] (1)

For high-dimensional visual inputs, this function can be approximated with a
CNN, which makes it dependent on the network weights θ [19]: Q∗(s, a; θ). The
Q-Learning loss is then:

Li(θi) = E
[
(yi −Q(s, a; θi))

2
]

(2)

with the target

yi = E
[
r + γmax

a′
Q(s′, a′; θi−1|s, a)

]
(3)

In this work, double Q-Learning [9] is applied to avoid overestimation of the
Q-values.

3.2 Transfer Learning

The general idea of transfer learning is to gain knowledge about one task and
exploit it in a different but related task. In the case of a CNN, instead of training
it from scratch with randomly initialized weights, it can be pretrained on an
arbitrary visual task. The weights, especially the last layers, are then fine-tuned
with respect to the new task. This is more data efficient and often leads to better
performance and faster convergence than training from scratch [8,20,29,28]. This
fact suggests that the features extracted by a CNN are generic and not specific
for any task.

3.3 Convolutional Autoencoders

An autoencoder is a neural network with a small central layer, which is used to
learn a low-dimensional representation of high-dimensional input data. To achieve
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this, the autoencoder is trained to approximate the identity function in a least
squares sense. It can hence be thought of as a non-linear extension of principal
component analysis for dimensionality reduction. Since the central layer is smaller
than the input and output layers, it acts as an information bottleneck, which
forces the encoder to transform the input into a low dimensional representation.
The decoder needs to back-transform the data such that the output data is as
similar as possible to the input data [10]. For visual data, it makes sense to
exploit the local correlation between the pixels by using (stacked) convolutional
layers [18].

3.4 Slow Feature Analysis

Slow Feature Analysis follows the intuition that the most informative features
are slowly changing over time compared to raw input/sensor signals [26,27]. It
was shown that SFA is able to encode and disentangle object identity, rotation
and position in visual tasks [5], as well as position and orientation from visual
first person recordings [6].

SFA can be formally described as a sequence of optimization problems. Consid-
ering a time series {xt} ∈ Rd with t = 0, . . . , τ , SFA aims at finding input-output

functions gi : Rd → R that minimize
〈

(gi(xt+1)− gi(xt))2
〉
t

where 〈·〉t being

the average over time. To avoid the trivial constant solution, to ensure normal-
ization and to avoid redundant features, zero mean 〈gi(xt)〉t = 0, unit variance〈
gi(xt)

2
〉
t

= 1 and decorrelation, 〈gi(xt)gj(xt)〉t = 0 are enforced.
Schüler et al. [24] proposed a method for gradient-based end-to-end training of

SFA. In order to do that, a differentiable loss as well as a differentiable whitening
procedure enforcing the constraints (zero mean, unit variance and decorrelation)
are designed.

4 Environments

Our experiments were carried out on five ViZDoom [13] environments which are
described in this section. Screenshots are given in Fig. 1. The simplest environment
is Basic where the agent is supposed to hit an immobile enemy with a gun while
moving only left and right. If hit, the episode terminates and a reward is given.
Missing the enemy, timeout and time passing are punished. To solve the task, the
agent only needs to detect the target object’s location on a static background,
which is quite easy.

In Defend the Center, the agent is spawned in the center of a circular room
together with several enemies. The agent cannot move around, but only turn left
and right. The goal is to kill the monsters before they reach the agent. Each kill
is rewarded while dying is punished. Here, the agent has to detect the locations
of multiple objects at once on a static background. Additionally, since enemies
might be behind the agent, it has to keep track of its complete surrounding area.

Health Gathering consists of a rectangular room with an acid floor that
damages the agent over time. To survive, the agent has to gather health packs
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that are randomly distributed on the floor. Increasing the health by collecting
such a health pack is rewarded. In contrast to the preceding environments, the
agent has three degrees of freedom instead of one. Therefore, the agent needs
to actually navigate in the room and detect objects on a dynamically changing
background.

Health Gathering Supreme is similar to Health Gathering except for maze-like
walls in the room. That means, simple (input ignoring) policies like running in a
circle become useless. Additionally, there are poisonous potions that lower the
agent’s health when collected. This constellation makes navigation much more
challenging and demands the ability to distinguish between different kinds of
objects.

The environment My Way Home places the agent in a maze with several
connected rooms. A green vest is placed as a target in one of the rooms. The
agent is spawned in a random room facing in a random direction. When the
agent finds the vest, it gets a reward. Navigation and orientation by recognizing
the rooms are the key challenges in this environment.

(a) (b) (c) (d) (e)

Fig. 1. Screenshots of the environments: (a) Basic, (b) Defend the Center, (c) Health
Gathering, (d) Health Gathering Supreme, (e) My Way Home.

5 Experiments

We carried out experiments aiming to answer the following research question: can
unsupervised methods exploit the rich visual data to quickly evolve useful visual
filters and speed up reinforcement learning? And if so, which method works best?

To this end, five experiments were carried out in each environment. As a
baseline, the DQN was trained from scratch, i.e. with randomly initialized weights
without any auxiliary method. The feed-forward CNN contains two convolutional
layers with 32 7 × 7 filters and 4 × 4 strides in the first, and 32 5 × 5 filters
with 2× 2 strides in the second layer. They are followed by a dense layer with
1024 units. Each layer has a ReLU activation, f(x) = max(0, x). The last layer
is dense (fully connected) with as many units as there are possible actions in the
environment with linear activations representing the Q-values. The DQN is fed
with 128× 128 px grayscale images.

In order to exploit the capabilities of transfer learning, the convolutional
layers of the DQN are pretrained on a subset of the ImageNet data set [22] in a
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supervised classification task. The data set contains real world images of animals
and objects. The evolved convolutional filters form the initialization of the DQN.
The fully connected layers are initialized at random.

To combine a CAE with the DQN, the decoder branch is placed on top of
the last convolutional layer (Fig. 2a). Two dense layers with 1024 and 1282 units,
respectively, reconstruct the input image and propagate their gradients into the
encoding convolutional layers. The DQN branch stays unaltered. Both branches
are trained alternately. The training of the CAE is stopped after some time to
prevent overfitting.

Convolutions

Dense

Input image

Reconstruction

Dense Dense

DQN

CAE
Dense

(a)

ConvolutionsInput image Dense Dense

DQN

SFA
Dense

Whitening

Slow
 features

(b)

Fig. 2. Visualization of the CAE (a) and SFA (b) architecture.

Similar to the CAE architecture, a dense layer with 16 units and the power
whitening layer [24] are placed on top of the convolutional layers (Fig. 2b). In
contrast to previous work [17] the slow features are not fed into the value function.
Their slowness just serves as an objective function for training more powerful
filters. Note that the batches for DQN and SFA differ, because the SFA needs
data from consecutive time steps.

Initial experiments showed that the pretrained filters and the CAE show
the most promising results, however, on different environments. Therefore, we
implemented a combination of both methods. Our architecture contains two
parallel filter banks, one with pretrained filters and one trained by the CAE
(which does not impact the pretrained filters). The dense layers connect to both
filter banks, allowing the DQN to decide which set of features to use for which
task – or to use both simultaneously. This architecture is referred to as the
Combination in the following.

6 Results

6.1 Reward

All proposed methods improve the performance of the agent in terms of reward in
the Basic environment as shown in Fig. 3a. They all manage to learn a sensible
behaviour after less episodes than the baseline method which stagnates in the
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beginning. This scenario is mostly an object detection task as the agent can only
move left and right and needs to align its gun with the still standing enemy to
shoot it.

In Defend the Center, the Combination and the pretrained filters alone
improve the performance greatly (Fig. 3b). The CAE and the SFA are not able to
bring any benefit. Here, the agent solves an object detection task with multiple
enemies that need to be shot in order to survive. However, the agent stands in a
circular room and can only turn itself left and right, so there is no navigation
involved.

In contrast to Basic and Defend the Center, the agent faces the challenges of
an ego perspective 3D environment in Health Gathering, where it can move freely
through the room. Here, training from scratch, the CAE, and the Combination
work well. Surprisingly, SFA and the pretrained filters harm the performance
significantly. The DQN apparently learns to choose the features from the CAE
branch to determine the policy, as the pretrained filters have a far worse perfor-
mance (Fig. 3c).

In Health Gathering Supreme the same task has to be solved in a maze like
environment. The agent also has to distinguish between health kits and poisonous
potions. The CAE improves the agent’s performance, while the Combination
shows the same performance as the baseline. Again, the pretrained filters and
the SFA lead to a worse result (Fig. 3d).

In My Way Home, the agent needs to navigate through a labyrinth. The
Combination of CAE and pretrained filters is the only method that really improves
the agent’s performance compared to the baseline (Fig. 3e).

6.2 Convolutional Filters

Since our central aim was to evolve filters quickly so a policy can be learned
on top, we investigate the filters of the convolution layers in more details. Big
differences between methods and environments can be observed. When trained
from scratch without any auxiliary method, the DQN did not evolve a meaningful
structure in the convolutional layers, see Fig. 4a. A more detailed investigation
showed that they only changed negligibly compared to their initialization.

The pretrained filters behave similarly. Although minor changes are visible,
their overall structure remains the same during the training procedure (Fig. 4b).

In the challenging environments Health Gathering and Health Gathering
Supreme, the CAE encodes the features using well structured filters (Fig. 4c). One
can observe edge detectors, centre-surround filters and cross-shaped structures,
suitable for the detection of health packs. In contrast, the filters after training on
Basic and Defend the Center are quite unstructured. The second convolutional
layer still lacks meaningful structures.

As the only method, the SFA develops filters in both convolutional layers
(Fig. 4d). However, their functional “meaning” is not obvious from visual inspec-
tion. The slowness loss drops significantly throughout the training, showing that
the CNN successfully evolves slow features.
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Fig. 3. The mean reward per episode with standard deviation over 15 runs.
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As expected, the combination of pretrained filters and CAE develop similar
filters compared to the individual approaches, because they cannot interfere with
each other.

(a) (b) (c) (d)

Fig. 4. Examples of evolved filters after training. The upper mosaics show the filters of
the first convolutional layer while the lower mosaics belong to the second layer.

7 Discussion

The results show that unsupervised auxiliary methods can accelerate the training
of a DQN significantly. The impact highly depends on the method and the
environment. None of the methods works well in isolation across all environments.
However, the proposed Combination of pretrained convolutional filters and a
CAE seems to be a good and universally applicable choice. This can be explained
by the joint set of features that specialize in different tasks: the pretrained filters
perform better in object detection tasks, which is unsurprising because that is the
task they were initially trained on, while the CAE focuses on global properties of
the scene, which helps the agent to navigate in three dimensional environments.

The fact that the filters did not change during training and stayed as initialized
implies that the DQN on its own is not able to generate useful gradients to develop
actually meaningful filters. This suggests that it is important to somehow solve
the problem of feature extraction when attacking complex reinforcement learning
tasks. This is underlined by the findings of [3]. Their work implies that the
reinforcement learning part itself is rather easy when there is a well suited
representation of the input data.

The SFA shows disappointing results. Although it seems beneficial to exploit
the temporal characteristics of the input signals, the used method was not able
to develop a well suited representation for reinforcement learning. It is worth
noting that the authors of [24] use far deeper architectures than we did.

Taking a closer look at the evolved filter kernels in the convolutional layers, one
can conclude that unsupervised methods do help to develop more powerful filters,
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with the CAE showing the most impressive results. At this point two questions
have to be answered: First, how is the quality of a filter kernel determined?
And second, how should one interpret the still random looking filters in the
second layer, and in the first layer when training from scratch? To answer the
first question, filters from the literature are investigated [30,14]. Well evolved
filters in CNNs often show some kind of structure with the weights being locally
correlated. They usually can easily be distinguished from the randomly initialized
ones. Similar to filters used in computer vision, it is often possible to assign
functions like edge detection or templates to good filters. However, the results of
this work show that even random looking filters can lead to a good performance
in visual RL. As [23] stated, CNNs can perform surprisingly well with random
filters, nevertheless outperformed by a pretrained and fine-tuned one. They
showed that random filters are frequency selective, which might already be a
decent enough feature in our case. Another explanation can be the findings
of [2]. They investigated Random Projections of high dimensional data onto a
lower-dimensional subspace using a random matrix. This does usually not distort
the data in a significant way. Possibly, the filters stayed random looking due to a
too high number of parameters of the model, which would suggest to lower the
number of hidden units in the network, for example by decreasing the number of
filters in the second layer. A short, qualitative study on this hypothesis shows
that scaling the number of filters in the second convolutional layer in our DQN
down by a factor of two leads to results comparable to the full network. Training
time and maximum performance only suffer slightly, but the method based on
SFA becomes quite unstable. However, it is worth mentioning here that [19] used
even three convolutional layers with 32, 64 and 64 filters in their DQN, while
testing their algorithm on Atari 2600 games, which are less challenging in terms
of exploiting visual input than the ones explored in this work. We therefore
hypothesize that their results could possibly also be achieved with a DQN with
fewer parameters.

8 Conclusion

Returning to our initial question, it is now possible to state that unsupervised
auxiliary methods can actually improve deep RL from visual input. While pre-
trained convolutional filters accelerate the training in environments that mostly
require object detection and localization, CAEs greatly improve the performance
in three dimensional worlds where it is crucial for the agent to fulfill navigation
tasks. The Combination of both shows good results on all tested environments.
Although these methods are completely unsupervised and can therefore not know
which features are useful for the task, they still help developing meaningful filters
to extract features that are well suited to learn sensible behavior.

An explanation for the poor performance of the DQN is given by pointing
out that it was not able to develop meaningful filters on its own. Therefore, the
importance of a powerful feature extraction stage for RL on complex problems is
emphasized.
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In future work we will develop our approach further by considering additional
feature sets that are generated by objective functions aiming for monocular depth
or optical flow estimation, since these take the spatial properties of the three
dimensional environments into account [7,4].
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3. Cuccu, G., Togelius, J., Cudré-Mauroux, P.: Playing atari with six neurons. In:
International Conference on Autonomous Agents and MultiAgent Systems. pp. 998–
1006. International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2019)

4. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., v. d.
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