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The sensorimotor calibration of visually-guided reaching changes on a trial-to-trial basis in re-
sponse to random shifts in the visual feedback of the hand. We show that a simple linear dynam-
ical system is sufficient to model the dynamics of this adaptive process. In this model, an internal
variable represents the current state of sensorimotor calibration. Changes in this state are driven
by error feedback signals, which consist of the visually perceived reach error, the artificial shift in
visual feedback, or both. Subjects correct for at least 20% of the error observed on each move-
ment, despite being unaware of the visual shift. The state of adaptation is also driven by internal
dynamics, consisting of a decay back to a baseline state and a “state noise” process. State noise
includes any source of variability that directly affects the state of adaptation, such as variability
in sensory feedback processing, the computations that drive learning, or the maintenance of the
state. This noise is accumulated in the state across trials, creating temporal correlations in the
sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor
performance noise, which arises independently on each trial from random fluctuations in the sen-
sorimotor pathway. We show that these two noise sources contribute comparably to the overall
magnitude of movement variability. Finally, the dynamics of adaptation measured with random
feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison
of our results with more traditional blocked-exposure experiments.

Introduction

Subjects exhibit rapid and robust adaptation in the
face of altered feedback in many simple sensorimotor
tasks (Held and Gottlieb, 1958; Miles and Fuller, 1974;
Welch, 1978; Optican and Robinson, 1980). When study-
ing these forms of plasticity a fundamental question
arises: How does sensory feedback drive learning? We
address this problem from a psychophysical and model-
ing perspective using reach adaptation to shifted visual
feedback. Traditionally, studies of reach adaptation have
employed a blocked experimental design, where adapta-
tion is quantified by the difference in performance on two
blocks of test trials, before and after exposure to shifted
feedback (e.g., Held and Gottlieb, 1958; Hay and Pick,
1966; Welch et al., 1974). This blocked design focuses
only on the final effects of adaptation, and so it cannot
reveal the processes that link sensory feedback in a given
trial to the adaptive responses observed in subsequent
trials (Nemenman, 2005; Cheng and Sabes, 2006).

Recently, a number of researchers have used analytic
techniques from engineering to study the trial-by-trial
dynamics of sensorimotor adaptation. These studies
found that adaptation occurs rapidly, on the time scale
of single trials, when a random shift was added to the
visual feedback of the fingertip (Baddeley et al., 2003) or
when perturbing forces were introduced during reaching
(Thoroughman and Shadmehr, 2000; Scheidt et al., 2001;

*Electronic address: chengs@phy.ucsf.edu
TElectronic address: sabes@phy.ucsf.edu

Donchin et al., 2003). However, subjects in these stud-
ies were aware of the experimental manipulations, either
due to explicit instructions regarding the visual shift or to
the presence of noticeable force perturbations. Therefore,
learning likely reflected a combination of automatic sen-
sorimotor processes and strategic cognitive approaches to
the task. These two forms of learning obey very different
underlying learning rules. For example, when subjects
are aware of a shift in visual feedback, they are able to
learn much more complex shift patterns then when they
are not aware of the shift (Bedford, 1993). The goal of
the present study was to quantify the trial-by-trial dy-
namics of the automatic processes of sensorimotor adap-
tation, i.e. the processes that are presumably responsible
for the ongoing maintenance of sensorimotor calibration.
We therefore study the adaptive responses of naive sub-
jects to surreptitious shifts in visual feedback.

As in previous studies, we model the trial-by-trial dy-
namics of learning as a linear dynamical system (LDS).
However, we make use of the analytic methods described
in Cheng and Sabes (2006), which allows us to explore
two issues that were not dealt with in earlier studies.
First, instead of using least-squares regression to per-
form model fits, we take a more general maximum like-
lihood approach. This allows us to build explicit models
of the sources of variability in task performance and to
fit these models to experimental data. As we will show,
such variability plays an important role in the dynam-
ics of adaptation. Second, we consider multiple potential
error-feedback signals and attempt to determine which
of these signals drive learning.

This study focused on the sequence of reach errors in-



duced by a sequence of visual feedback shifts. We view
these errors as a reflection of the underlying state of reach
adaptation. By using a random, time-varying sequence of
feedback shifts, we obtained a statistically rich sequence
of reach errors that was modeled as an LDS (Cheng and
Sabes, 2006). We found that this class of models is suf-
ficient to describe the adaptation dynamics: the LDS
model captures both the changes in the mean reach end-
point as well as the temporal correlations between these
errors and the visual shift.

We draw several conclusions from the resulting model
of adaptation dynamics. First, significant adaptation to
visual feedback shifts occurs on single trials. Second,
we explicitly measure the internal dynamics of adapta-
tion and show that the state of adaptation decays over
time. Third, a significant source of movement variability
is an internal state noise which directly affects the state
of adaptation, and therefore accumulates across trials.
This form of variability only indirectly affects the perfor-
mance on a particular trial. We show that the state noise
accounts for at least a quarter of the overall movement
variability. This offers a very different perspective on the
sources of movement variability.

Finally, to relate these results to previous research us-
ing the blocked experimental design, we used the model
derived from stochastic feedback trials to predict the
sequence of reach errors induced by blockwise-constant
feedback shifts. We find that the adaptation dynamics
generalizes across feedback shift conditions. We conclude
that the dynamics of adaptation are not specific to the
sequence of feedback shifts and that the LDS model can
provide insight into the general mechanisms of reach cal-
ibration.

Materials and Methods
Experimental setup and data collection

This study was approved by the University of Cali-
fornia, San Francisco Committee on Human Research,
and subjects gave informed consent. Ten right-handed
subjects (four male, six female, 18-28 years-old) with no
known neurological history and normal or corrected-to-
normal vision participated in this study. Subjects were
naive to the purpose of the experiment and were paid for
their participation.

The experiment consisted of trials in which subjects
reached toward visual targets with their right arm with
virtual visual feedback (Fig. 1A). Throughout each ses-
sion, the right arm remained on or just above a hori-
zontal table with direct view of the arm (and the rest
of the body) occluded by a mirror and a drape. The
right wrist was fixed with a brace in the neutral, pronate
position, and the index finger was extended and fixed
with a splint. An infrared-light-emitting diode was at-
tached to the tip of the index finger, and its position
was recorded at 200Hz with an Optotrak infrared track-
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FIG. 1 A: Virtual feedback setup. B: Definition of reach and
feedback variables: f, location of unseen fingertip location at
end of reach; ¢, location of visual feedback (cursor); g, target
location; e, true reach error; v, visually perceived reach error;
P, artiﬁcial feedback shift (perturbation).

ing system (Northern Digital, Waterloo, Ontario). Since
the subject’s hand was essentially restricted to a two-
dimensional workspace, we analyzed only two compo-
nents of the recorded positions: the positive z-axis points
right and the positive y-axis points sagittally away from
the subject.

Target positions and virtual visual feedback of the fin-
gertip location (when it was available) were generated
by a liquid crystal display projector (1024 x 768 pixels,
75 Hz) and viewed in the mirror via a rear-projection
screen which was placed so that projected images ap-
peared to lie in the plane of the table, at the vertical
level of the fingertip. In some trials, the visual feedback
was shifted relative to the true location of the fingertip,
as described below. All subjects reported being unaware
of any such feedback manipulation in a post-experiment
questionnaire.

Task design

The purpose of this experiment was, first, to identify
the adaptation dynamics in response to stochastic feed-
back shifts (STOCH-P) and, second, to compare the dy-
namics to those observed in trial blocks with constant
feedback shift (CONST-P), the traditional paradigm for
inducing adaptation.

An experimental session consisted of four repetitions of
the following sequence of trial blocks: 25 transition trials
(see below), 35 CONST-P trials, 10 transition trials, and
50 STOCH-P trials. Within each CONST-P trial block the
feedback shift was constant, but the shift varied between
the four CoNST-P block. The four shifts were a random
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FIG. 2 An example trial sequence. Visual feedback shifts
(black traces) and reach errors (see key at bottom) along
the X-axis (top panel) and Y-axis (bottom panel) are shown.
Gray vertical bars mark boundaries between blocks of trial
types: STOCH-P: stochastically shifted feedback; CONST-
P: constant feedback shift; transition: trials include reaches
without visual feedback to prevent subjects from noticing on-
set of constant shift blocks and ramping down of shift after a
SToCH-P block.

ordering of the four vectors with +3 cm along both the
- and y-axes. Transition trials with either unshifted vi-
sual feedback or no visual feedback were inserted in order
to minimize the possibility that subjects became aware
of manipulations in the visual feedback. Each CONST-P
trial block was preceded by 15 trials with unshifted feed-
back and then 10 trials without visual feedback. When a
CONST-P block followed a STOCH-P block, the shift was
ramped down to zero over the the first five of these tran-
sition trials. Each CONST-P block was also followed by
10 trials without visual feedback. In total, each session
consisted of 480 trials, with 200 STOCH-P trials and 140
CONST-P trials. An example session is shown in (Fig. 2).

Stochastic feedback-shift sequence. We expect that reach
adaptation will be driven by either the artificial shifts
in visual feedback, the resulting visually perceived reach
errors, or a combination of both. In other words, these
signals will be the “inputs” that drive changes in the state
of adaptation. To identify the trial-by-trial dynamics of
adaptation, these inputs have to be “rich” enough to ex-
cite all the modes of the dynamics (e.g. Ljung, 1999).
Feedback shifts that follow a white-noise sequence would
be ideal, especially because they decorrelate the input
sequence and the state (Cheng and Sabes, 2006). How-
ever, in pilot experiments subjects often became aware of
these shifts, creating the possibility of explicit cognitive
strategies. Therefore, we used a modified random walk
sequence of visual shifts for this study.

From one trial to the next, the shift in visual feed-
back (p, see Fig. 1B) changed incrementally by one of
the following (x,y) vectors, selected with equal proba-
bility: (0,0), (0, sy), (sz,0), or (s, sy)/v/2, where |sz| =
|sy| = 5.2 mm, and the initial sign of sz and sy were
assigned randomly at the beginning of each block. The
maximum magnitude of the feedback shift in either di-
mension was limited to £3 cm. If the increment selected
would have caused the x or y component of the feedback
shift to exceed this range, then the sign of sz or sy, re-
spectively, was reversed (reflecting boundaries). In each
trial block, the feedback shift in the first trial was the
value used in the last preceding trial with feedback. Ex-
ample random walk sequences are shown in the STOCH-P
blocks of Fig. 2.

Reach Trials. Every trial in the experiment consisted of
reaching to a visual target. At the beginning of each
of these trials, subjects were guided to a start position
without visual feedback about either the start location
or their hand (“arrow field” technique, Sober and Sabes,
2005). Specifically, an array of 3 x 3 identical arrows
appeared in a randomized position of the workspace. The
arrows corresponded to the vector from the current finger
position to the start position, with a maximal length of
9 cm. Subjects were instructed to move their finger in the
direction indicated by the orientation of the arrows until
the arrows disappear, which occurred when the fingertip
was within 5 mm of the unmarked start position. The
start position was the same for all trials and was located
a few centimeters in front of the subject, roughly along
the midline.

Subjects were required to hold the start position for a
random delay (0.5-1 s) until the reach target appeared
(an open green circle, radius 6 mm). The target location
g¢ was drawn randomly from a uniform distribution over
a 4 cm square centered 26 cm distally from the start loca-
tion. The appearance of the target together with an audi-
ble tone were the go-signal for initiating the reach. Sub-
jects were instructed to make a single quick and smooth
movement towards the target. The trial terminated when
the velocity of the finger fell below 2 mm/s.

In order to minimize variation in movement speed
across trials, a loose timing constraint was used. The
movement duration was defined as the length of the time
interval between when the finger first moved more than
1 cm from the start location and when the tangential ve-
locity of the finger first fell below 15% of its peak value at
the end of the movement. These landmarks were chosen
to exclude effects of variable reaction time and movement
corrections at the end of the reach. A tone was sounded
if reaches were too slow (movement duration > 500 ms)
or too fast (movement duration < 300 ms). Subjects
generally had no difficulty meeting these criteria.

Subjects received “velocity-dependent terminal feed-
back”. Visual feedback of the finger tip position appeared
only near the end of the movement, when the tangential



finger velocity fell below 15% of the peak value, and feed-
back continued until the end of the trial. This arrange-
ment satisfies two constraints. The feedback appears suf-
ficiently late in the movement so that we are able to assess
the endpoint of the initial reach before visual feedback is
able to drive corrective changes. The endpoint is thus
taken as a measure of the state of the reach adaptation.
However, the brief period of visual feedback while the
hand is still moving provides a richer feedback signal for
learning than would static feedback after the completion
of the movement. Feedback was in the form of a white
disk, 3 mm radius, located at the fingertip or displaced by
the feedback shift p. Finally, subjects were instructed to
correct any reach errors after completing the first reach,
and trials terminated when the finger remained station-
ary within the target circle for 500 ms.

In some transition trials subjects received no visual
feedback of their reaching arm during any part of the
trial. These trials were identical to those with visual
feedback, except that the target was marked by a filled
green circle with radius 6 mm, providing a cue of the
feedback type prior to reach initiation.

Prior to data collection subjects were given sufficient
practice trials to ensure that all task constraints were
met.

Data analysis and a model for the dynamics of adaptation

Velocities were determined by first order numerical dif-
ferentiation of the positional data after smoothing with
a 5 Hz low-pass Butterworth filter. The reach endpoint,
ft, on trial ¢t was defined as the finger position when the
tangential velocity first fell below 5% of its maximum
value on that trial. Typical velocity profiles were uni-
modal bell-shaped curves (cf. Atkeson and Hollerbach,
1985), corresponding to the primary reaching movement,
followed by one or more smaller peaks due to corrective
movements. In a few trials the velocity fell below 5%
criterion only after the second velocity peak. In these
cases visual inspection usually indicated a clear endpoint
for the primary reach (velocity dip and curvature peak),
however, in the rare cases where an endpoint could not
be identified confidently the trial was discarded. The
reach error e; is defined as the difference between the
target position g; and the reach endpoint f; (Fig. 1B),
et = fo — gt

We use a linear dynamical systems (LDS) model to
describe the adaptation dynamics (Scheidt et al., 2001;
Donchin et al., 2003; Cheng and Sabes, 2006). The out-
put of the system, y;, is a noisy readout of the internal
state of the sensorimotor map, x;. Here we define y;
to be the reach error, e;. This means that the internal
state of the system is defined as the mean reach error one
would observe across trials if adaptation could be frozen
in time. Given the limited set of reach vectors used in
this experiment, the state can be described with a single

two-dimensional variable. Formally we write,

LDS Output: y; = x4 + 74, (1a)
where r; is the sensorimotor noise, or output noise, in
trial ¢, assumed to be an independent zero-mean, Gaus-
sian random variable with a covariance matrix R, i.e.
ry ~ N(0, R). We model adaptation as the trial-by-trial
change in z due to sensory feedback on the preceding
trial. Formally,

LDS Update: xy1 = Axy + Bus + g4, (1b)
where wu; are the sensory feedback variables (inputs) driv-
ing adaptation, and ¢; is additive noise in the state vari-
able, assumed to be independent, zero-mean, Gaussian
with covariance @, i.e. ¢¢ ~ N(0,Q). The term Bu,
represents error corrective learning, Ax; represent the
decay of the state of adaptation back to baseline, and
q: represents variability in these two processes. Since
the spatial variables are all two-dimensional vectors, the
parameters of the LDS model, A, B, @, and R are 2x2-
matrices. There are no direct “feedthrough” inputs af-
fecting ¥, since terminal visual feedback prevents online
visual correction and the ongoing reaches were not oth-
erwise externally perturbed.

An important variable in the LDS model of Eqn. 1 is
the feedback signal that drives adaptation, u;. Our ex-
perimental design makes the selection of candidate sig-
nals easier, since visual feedback is given only near the
end of the movement, and it only represents the location
of the index fingertip (Fig. 1B). Under these conditions,
there are two likely candidates for the input signal: the
visually perceived error v defined as the difference be-
tween the position of the visual feedback at the reach
endpoint and the target position, v; = ¢; — g3, and the
artificial feedback shift, p; (Fig. 1B). We also consider
the reach error, e, as a potential input signal. Note that
the three error signals are linearly related: e; = vy — ps.
Therefore, any model which includes two of these vari-
ables effectively includes the third one as well.

Given a sequence of inputs wu; and outputs y,

the maximum likelihood estimate of the model
parameters A,B,Q, and R are determined us-
ing an expectation-maximization algorithm (EM)

(Shumway and Stoffer, 1982; Ghahramani and Hin-
ton, 1996; Cheng and Sabes, 2006). Matlab routines
for performing this analysis are freely available at
http://keck.ucsf.edu/~sabes/software/. The algorithm
takes into account that data was collected in separate
blocks by resetting the state to an initial Gaussian
distribution (with the necessary additional model pa-
rameters) at the beginning of each block. The EM
algorithm is only guaranteed to converge to a local
maximum of the log likelihood. In fact, however, we find
that the parameter estimates were robust to running
the estimation algorithm with different sets of initial
values, suggesting that no local minima exist close to
the identified parameter estimates.



Model comparisons and goodness-of-fit

The EM algorithm will find a maximum likelihood
model for any input and output sequence. Therefore,
it is important to be able to assess model performance.
We begin with model selection, asking whether particu-
lar model parameters, in this case input signals, provide
significant explanatory power. We then describe two ap-
proaches to quantifying whether the best-fit model is suf-
ficient to account for important statistical features of the
input-output sequences. These analyses are described in
detail below.

Likelihood Ratio Test for model selection. To determine
whether the inclusion of a particular input variable or
other parameter provides significant explanatory power
we use the generic likelihood ratio test (LRT) for maxi-
mum likelihood estimation (Stuart and Ord, 1987). Con-
sider a model class M; with v; free parameters and a
second model class, My, with a subset of free parame-
ters, vy < v1. For example, M, could be the model with
a particular two-dimensional input variable u;, and My
could be the null model with no input variables. My has
four fewer free parameters, since it has no input weight-
ing matrix B. Given each model class, we can find the
maximum likelihood model parameters and the values of
likelihood they achieve, L; for model M;. The inclusion
of additional model parameters will always result in a
better fit to the data, i.e., L1 > Lg. However, under the
assumption that the data come from a model in M, the
distribution of gains in log likelihood due only to overfit-
ting is known in the limit of large datasets:

Ly 9
2log L—O ~ Xy —vo- (2)

Using this distribution, the LRT either accepts or rejects
the additional parameters.

Predicting the statistics of the reach errors. The most di-
rect approach to assessing model sufficiency would be to
compare the empirical output sequence y; with the out-
puts predicted from the model and the input sequence.
However, the outputs depend heavily on the specific se-
quence of state noise terms, ¢;, which are not directly
observable. Instead, we determine how well models are
able to predict the statistics of the sequence of reach er-
rors and its relationship to the sequence of visual shifts.

The sequence of reach errors is characterized by two
measures, the variance o and the autocorrelation p.(7),
which is a function of the time lag 7 at which the autocor-
relation is measured. Similarly, the statistical relation-
ship between the reach error and the visual shift vector
is characterized by two measures, the covariance o, and
the cross-correlation function pe, (7). These measures are

defined as follows:
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where T is the total number of trials, a represents the
mean value across trials, and a'b represents the inner-
product of the vectors a and b.

The statistics defined above provide a summary of the
adaptive response of the reach endpoint to the shifted
visual feedback. These statistics were not used explicitly
when performing the maximum likelihood model fitting.
Thus, if the model is able to accurately predict these
statistics, then it is sufficient to capture the key elements
of the response. The model predictions for these statis-
tics are obtained using a Monte Carlo approach. Given
the LDS model parameters and actual sequence of visual
shifts experienced by the subject in a given trial block,
we simulate a sequence of state and output variables us-
ing Eqn. 1, with state and output noise terms generated
independently for each simulated trial. For each subject,
we compute the desired statistics from 100 combined runs
of these Monte Carlo simulations and compare the values
to those obtained from the empirical data.

One-step-ahead prediction and the portmanteau test. Our
second approach to assessing sufficiency is to test whether
an LDS model is demonstrably insufficient to account for
the second-order statistics of the sequence of reach errors.
We start with the one-step-ahead predictor g, which is
the expected value of y; given a model and all the inputs
and outputs up to trial ¢-1. The ¢; are obtained from
the Kalman filter using the estimated model parameters
(Anderson and Moore, 1979; Shumway and Stoffer, 1982).
However, if the LDS model being used to predict the same
dataset on which it was fit, a cross-validation procedure
is used: the one-step-ahead predictions g; for each block
of 25 trials are computed using a model fit to the dataset
with that block excluded.

If the model captures the adaptation dynamics well,
then the one-step-ahead prediction residuals y; — ¥
should be free of temporal correlations, i.e., the resid-
uals should be a white noise sequence. We can compare
this null hypothesis to the alternative (significant resid-
ual correlations exist) using a portmanteau test for serial
autocorrelations (Hosking, 1980). This test is based on
the autocorrelations of the prediction errors at a lag of 7
trials:

Jr = <(yt+‘r — Jegr) (e — ??t)/> : (4)



The m™ portmanteau statistic combines the autocorre-
lation at lags up to m trials:

Hf#WEZTiTH(ﬂLfLJf) (5)

T=1

Under the null hypothesis, the model captures the sta-
tistical structure of the output sequence, and so the J,
and (thus) the P,, should be smaller than if the model
were not sufficient. In the case of no inputs to the sys-
tem and in the limit of large T, P, is x? distributed
under the null hypothesis (Hosking, 1980). When there
are inputs to the system, as is typically the case here,
the theoretical distribution of the portmanteau statistic
is unknown. Therefore, we use Monte Carlo simulation
to estimate the distribution of the portmanteau statistic
under the LDS model, given the known sequence of feed-
back shifts p;. First, we simulate 1000 artificial datasets,
as described in the previous section. For each of these
artificial datasets we compute the portmanteau statistic,
P,,. This yields an empirical distribution of 1000 samples
for P,, under the assumption of the LDS model. If the
portmanteau statistic calculated from the actual data is
larger than the 95th percentile of this distribution, then
we reject the null hypothesis and say that the model is
not sufficient to account for the sequence of reach errors.

While the portmanteau test can be used for any max-
imum lag m, the statistical power of the test decreases
with the lag (Davies and Newbold, 1979). On the other
hand, larger lags need to be included in the portmanteau
statistic to test for long-range residual auto-correlations.
As a compromise, we will present the portmanteau statis-
tic for maximum lags m up to 8 trials, although no sub-
stantial differences were noted for for maximum lags up
to 20 trials.

Results

We are primarily concerned with the trial-by-trial se-
quence of reach errors, which reflects the changing state
of reach adaptation. A sequence from a typical session
is shown in Fig. 2. Two salient features of these plots
highlight the key elements of the the dynamics of adap-
tation. First, over the course of a block, the reach errors
are strongly influenced by the direction of the visual feed-
back shift: the error appears to roughly track the inverse
of the shift. This is the general pattern that is expected
when subjects adapt to the shifted feedback. Second,
there is considerable variability in reach error from one
trial to the next trial, even when there is no time-varying
feedback shift.

The goal of this work is to quantify and characterize
how such error sequences arise from a combination of er-
ror corrective learning processes and the various sources
of variability, including a stochastic component of the
internal dynamics of adaptation. In the rest of this pa-
per we employ the LDS model of adaptation in order to
accomplish this goal.

Myp
p>0.58 A p>0.15
p <0.001
Yp>035
p<10* p<10"*

FIG. 3 Hierarchical model selection. Arrows represent com-
parisons between nested model classes (boxes) made with the
likelihood ratio test (LRT) on STOCH-P data. Each test had
four degrees-of-freedom, corresponding to 2x2 matrix param-
eters. p-values for the LRT, shown next to the appropriate
arrow, apply across all 10 subjects and were highly consistent.
Thick lines represent comparisons for which the additional in-
put variable resulted in a significant improvement

Error Corrective Learning

We begin by determining which feedback signals, if
any, drive error corrective learning. In terms of the LDS
model, this means identifying the inputs that lead to a
significantly better fit to the data. The three candidate
inputs signals each have a corresponding LDS update
(learning) equation,

M,: Tip1 = Amt + Buy + qt
My: w41 = Az + Bpy + (6)
Me: 441 = Az + Bey + g4,

that represent three classes of LDS models. Two addi-
tional model classes are also considered: the null model
class,

M@: Tip1 = Axy + qt, (7)

which has no error feedback, and the M,, model class,
in which both v and p contribute to reach adaptation.
Since v, p, and e are linearly related, M,, is equivalent
to any model that includes at least two of the three in-
put signals. Together, these five model classes form the
hierarchy shown in Fig. 3.

We use the likelihood ratio test (LRT) to compare each
pair of models that differs by the inclusion of a single
variable (arrows in the hierarchy of Fig. 3). For each
subject, each model class was fit to the sequence of 200
reach errors from the 4 STOCH-P trial blocks. Both the
visually perceived error v and the feedback shift p sig-
nificantly improved the fit over the null model for every
subject. In contrast, including the reach error e did not
significantly improve the model for any subjects. These
results indicate that the trial-by-trial changes in reach er-
ror are not simply the result of a random walk. Rather,



M, M,

A | [0.970.89] + [0.030.09] | [0.77 0.52] + [0.13 0.23]
B |[-0.36 -0.18] = [0.18 0.10] |[-0.38 -0.18] = [0.18 0.10]
Q: [8.74.2] + [4.42.4] (6.2 2.5] & [3.41.18]
Rz | [12.39.1] + [5.1 3.2] [14.6 11.0] + [5.5 4.1]

TABLE I Mean (+ std.) eigenvalues for the LDS model pa-
rameters. Eigenvalues for each 2 X 2 matrix parameter were
sorted in descending order and then averaged across subjects.
For @ and R, the square-root of the eigenvalues was used,
and so the parameters represent standard deviations and have
units of mm. A and B are dimensionless.

we observe an error-corrective adaptation process driven
by either the visually perceived error, the feedback shift,
or a combination of both.

The relative contributions of these two feedback signals
could, in principle, be quantified with the LDS approach.
However, there is not sufficient statistical power to ac-
complish this when there is a strong correlation across
trials between the two signals. In our case, the visually
perceived error and the feedback shift are related by the
expression v; = e; + p¢, and so we expect them to be
correlated. Indeed, across subjects the mean (£ std.)
correlation coefficient between v and p in the STOCH-P
trial blocks is 0.35 & 0.12. It is, therefore, not surprising
that while both the M, and M, single-input models are
significant, the two-input model M,,, does not yield a sig-
nificant improvement over either. The same qualitative
results is obtained when the model selection procedure is
applied to artificial data generated with the best-fit M,
or M, model, underscoring the lack of power to quantify
the relative roles of the two feedback signals. Thus, in
the remainder of the paper we will analyze both the M,
and M, model classes.

Model parameters

We next consider the maximum likelihood parameter
values for the M, and M, model classes (Fig. 4). We
will show that the learning rates are quite large, with
subjects correcting for about one-third of the error feed-
back after each trial. We will also show that the parame-
ters governing state decay (“forgetting”), state noise, and
output noise suggest an important role for each of these
processes. Finally, we will show that while the values for
these latter parameters differ between the M, and M,
model fits, the two model classes are nearly equivilant
from the perspective of these datasets.

The best-fit values of the of the learning parameter, B,
agree quite well between the two model classes (Fig. 4).
In order to interpret these 2 x 2 matrices, we consider
the first (second) eigenvalues of B, which represent the
maximum (minimum) fraction of the error feedback that
is corrected for, depending on the direction of the error
vector. The mean and standard deviation of the eigen-
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FIG. 4 Maximum likelihood LDS model parameters. Best fit
parameters for the M, and M, models. Each panel represents
the values of a 2 X 2-matrix parameter (see label on y-axis),
with values for all subjects clustered by the matrix compo-

nent: [3]32]. Bar colors correspond to subjects (n = 10).

values of B (and the other model parameters) are shown
in Table I. They represent a per-trial correction of the
respective error signals (v or p) in the range of 20-50%,
across subjects, a rapid pace of learning.

The most pronounced difference between the two
model fits is in the value of the “decay” parameter, A.
The values of A are larger for the M, model than for
the M, model, and there is markedly greater consistency
across subjects for the M, model. The first (second)
eigenvalues of A represent the maximum (minimum) frac-
tion of the state x; that has not decayed back to the
mean by the next trial, ignoring the inputs u. A value
of 1 means no state decay (no forgetting), and a value
of 0 means a complete reset of the state after each trial
(complete forgetting). For the M, model, the maximum
eigenvalue of A is 0.97 on average, corresponding to a



state-decay half-life of 23 trials (Table I). For the M,
model, the eigenvalues are smaller, with a half-life for
the first eigenvector of just three trials.

The parameters Q and R represent the state and out-
put noise, respectively. The best-fit parameter values
differ across the two model classes (Fig. 4). However, in
both cases the magnitude of the state noise is compara-
ble to that of the output noise. For example, in the M,
model fit, the standard deviation of the state noise along
its most variable axis (first eigenvalue) is 8.7 mm, com-
pared to 12.3 mm for the output noise (Table I). We will
return to this comparison later in the paper.

Lastly, we analyze the differences between the M, and
M, model fits. It might seem odd that the models agree
so closely on the learning parameter B, which is applied
to different input signals in the two models, while they
disagree on the state decay parameter A. Yet, these dif-
ferences are expected given the relationship between the
visually perceived error v and the feedback shift p. To
show this we rewrite the state update equations for the
two models (Eqn. 6) using the LDS output (Eqn. 1a) and
the fact that e; is the LDS output:

My: mp1 = Az + Byve + ¢

Mpl Ti41 = Aprt + Bppt + qt (8)

= Apl‘t + Bp(’Ut — et) + qt
= (Ap — By + Byvy — Bpry + i,

where subscripts have been added to the parameter vari-
ables for clarity. When the noise term B,r; is relatively
small, the two models are essentially the same if the two
equalities B, = B, and A, = A, — B, hold. Even if B,r;
is not small, however, that term only contributes to the
effective state noise, and so these equalities should hold
whenever the M, and M, models are fit to the same
dataset. Indeed, the best fit values of B for the two
model classes are nearly identical (Fig. 4 and Table I),
and across subjects the mean (£ std.) value of the ex-
pression A, — (A, — Bp) is

0.01 0.00 " 0.03 0.04

0.00 0.01 0.01 0.01 |
This analysis shows that the M, and M, model classes
are essentially equivalent, formally differing only in struc-
ture of the noise terms. Since in the following we focus on
these noise terms, we will continue to present results for
both model classes, as they represent endpoints in the

continuum of models in which both signals contribute
with varying strengths.

Model sufficiency

In the two previous sections, we showed that the vi-
sually perceived reach error and/or the visual feedback
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FIG. 5 Sample model predictions. Reach errors and one-step-
ahead model predictions for one subject in the STOCH-P trial
blocks.

shift drive a large and significant adaptive response. Here
we ask whether our LDS models of that response are suf-
ficient, that is, whether they do “good enough a job” of
explaining the trial-by-trial sequence of reach errors.

Sample data. Figure 5 shows the sequence of reach er-
rors in the STOCH-P trial blocks for a single subject. In
addition, this figure shows one-step-ahead model predic-
tions for three different models, i.e. the predicted reach
errors for each trial given the actual inputs and outputs
up to the previous trial. The one-step-ahead predictions
of the best-fit M, and M, models (Fig. 5, red and blue
traces, respectively) largely overlap each other, as ex-
pected. These predictions appear to track the errors well,
capturing the general trends in the data. However, two
other features of these traces should be noted. First,
while according to the LRT the M, and M, models fit
the data significantly better than the null model, M
(black trace), the difference in the one-step-ahead pre-
dictions are rather small. This is due to the fact that the
predictor is using all inputs and outputs up to a given
trial to predict the output on the next trial. Second, all
three models leave a large residual of unpredicted reach
error in this sample dataset.

In the remainder of this section we present two ap-
proaches to assessing model sufficiency, one addressing
the shortcomings of the one-step-ahead predictor and
one aimed at the prediction residuals. First we deter-
mine how well the models predict the statistical relation-
ship between the reach error and the visual shift. Unlike
the one-step-ahead predictor, these predictions are made
without access to the real sequence of reach errors, mak-
ing them a much more stringent test of model sufficiency.
Secondly, we examine the one-step-ahead residuals in or-



der to determine whether they are as good as can be
expected, given the levels of state and output noise, or
whether there is still some “signal” to be accounted for.

Predicting reach error statistics. Our first test of model
sufficiency is how well a model predicts the statistical
structure of the adaptive response to shifted feedback.
As described in the Methods, we chose four statistical
measures: the variance and autocorrelation of the reach
errors and the covariance and cross-correlation between
the reach errors and feedback shifts (Eqn. 3d). For each
subject, we computed these measures from the empirical
sequence of reach errors in the STOCH-P trial blocks. We
also computed the measures from 100 combined Monte
Carlo simulations of that sequence, generated from the
best-fit LDS model and the true sequence of visual feed-
back shifts (see Methods).

We first observe that the M, and M, models provide
a nearly perfect account of the reach variance and auto-
correlation (Fig. 6A,B). However, the null model My per-
forms just as well by these measures. This result shows
that the state decay A, state noise @), and output noise
R parameters of the LDS are sufficient to account for the
second-order statistics of the reach errors. Furthermore,
it shows that the maximum likelihood fitting procedure
implicitly fits these quantities.

Next we consider the relationship between the reach
errors and the sequence of visual feedback shifts. For
all subjects, there is a large negative covariance between
these variables (Fig. 6C), as expected when subjects
adapt their reach error to the visual shift. The pre-
dicted covariance under the best-fit M, and M, models
are nearly identical to each other. While there is a slight
downward bias (weaker correlation) in the model pre-
dictions, discussed further below, the predicted and em-
pirical values are strongly correlated across subjects. In
contrast, the null model predicts essentially no covariance
between the reach error and visual shift. The M, and M,
model models also provide an excellent prediction of the
cross-correlation function between the sequences of reach
errors and visual shifts (Fig. 6D).

The close agreement between the empirical and pre-
dicted error-shift cross-correlation functions raises the
question of how sensitive a measure this is. We want
to be sure that the predictions depend on the details
of the model and are not, for example, dominated by
the sequence of visual shifts. Therefore, we performed a
sensitivity analysis to quantify how the predicted cross-
correlation function depends on the model parameters.
We generated Monte Carlo simulations with individual
parameters altered from their actual best-fit values. The
predicted cross-correlations were found to be sensitive
to all four parameters, and even fairly small parameter
changes can produce large discrepancies between the data
and model predictions (Fig. 6E, only results for M, are
shown).

Residuals of one-step-ahead predictions. If the one-step-
ahead model predictions captured the full dynamics of
adaptation, then the residual errors should have no statis-
tical structure, i.e. they should be white noise. This can
be assessed by the portmanteau test for serial autocor-
relations. If significant correlations existed in the model
prediction residuals, then the model would be insufficient
to account for the dynamics of adaptation, and the model
would be rejected. For all subjects, the one-step-ahead
predictions of both the M, and the M, model leave no
significant residual correlations in a cross-validation test
for the STOCH-P trial blocks (portmanteau test, p > 0.05,
max. lag m = 8).

These results suggest that the LDS models are suf-
ficient to capture the trial-by-trial dynamics of adap-
tation. However, since the portmanteau test pools all
residuals and all time-lags into a single statistic, it has
relatively low statistical power. This means that more
subtle model inaccuracies might not be detectable with
this approach. Detecting such inaccuracies is especially
important when interpreting the state and output noise
terms, since model inaccuracies will appear in our model
fits as additional noise. Therefore, we performed a vari-
ety of additional analyses on the model residuals, testing
for violations of normality, stationarity, and model lin-
earity. We found no significant evidence for any of these
effects, as described in detail in the Appendix.

Together, these analyses suggest that the LDS models
considered here are indeed sufficient to explain the dy-
namics of reach adaptation in the STOCH-P trial blocks.

State noise

The two sources of variability in the LDS model, the
state noise and the output (or sensorimotor) noise, are
conceptually quite different and both will contribute to
the overall variability in any measure of performance.
While the output noise is uncorrelated across trials, state
noise is accumulated in the state and, hence, its contri-
bution to the reach variability is correlated across trials.
Given that the state noise is often overlooked in models
of motor variability, we want to confirm here that the
level of state noise is indeed significant.

We use the LRT to compare the M, or M, model class
to a null hypothesis class with no state noise. In practice,
@ cannot vanish entirely, or the parameter estimation al-
gorithm would become unstable. Hence, for the null hy-
pothesis we use a model with the state noise covariance
fixed to a negligible value (Q = 0.1mm?) relative to the
output noise covariance R. The LRT shows that the ad-
dition of state noise significantly improves the model fit
in the STOCH-P condition for both learning models and
for all subjects (M,: p < 107%; M,: p < 0.003; N = 10).

We confirm this result by applying the portmanteau
test to the best-fit null hypothesis model (i.e. the best
model with @ = 0.1mm?). These models could not cap-
ture the temporal structure of the reach errors: the resid-
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FIG. 6 The linear dynamical system (LDS) model is sufficient to predict the statistical structure of the adaptive response to
shifted feedback. A: Comparison of empirical reach error variance o2 and the predicted variance under the best-fit M, (black),
M, (green), and My (red) models. Datapoints represent values for a single subject (symbols overlap), and thick lines represent
a linear regression of empirical data on prediction (p < 0.05). B: Reach error auto-correlation function p.(7) for time lags 7 =
1-8 trials. The dark gray band represents mean + sem. across subjects. Model predictions are shown in three lines representing
mean + sem. across subjects: M,, green; M, black; My red. C: Comparison of empirical values and model predictions of the
covariance o.p between reach errors and visual shifts. Symbols as in A. D: Cross-correlation function pe,(7) between reach errors
and feedback shifts, along with the Monte Carlo model predictions. Symbols as in B. E: Sensitivity analysis: how predicted
cross-correlation functions depend on model parameters. The gray band (data) green line (M, model predictions) are the same
as those in panel B. The other colored lines represent the cross-correlations predicted by the best-fit M, model with selected
parameters altered, as indicated by the legends. Only the diagonal elements of the parameter matrices A and B were varied,

while in the case of @ and R the entire matrix was scaled.

uals were significantly correlated across trials (M, re-
jected in 10/10 subjects, M, rejected in 7/10; p < 0.05,
max. lag m = 8). These results establish that state noise
contributes significantly to the trial-by-trial sequences of
reach error.

Next, we assess the magnitude of the state noise by
comparing it to the output noise. As a measure we choose
the ratio of the largest eigenvalues of the state and output
covariance matrices, vg and vg respectively, (see also

Table I):
k= \/’UQ/UR. (9)

For all subjects, the two noise terms are on the same or-
der of magnitude, although the output is typically larger
by about a factor of two (Fig. 7, open bars). To assess the
statistical significance of the ratio k, we compared these
values to the 95% confidence values obtained by sepa-
rately fitting the LDS models to each of 1000 Monte-
Carlo simulations run with @ reset to 0.lmm? (Fig. 7,
filled bars). The k ratio obtained in these simulations
are quite small (Fig. 7, filled bars), significantly smaller
than the values obtained from the true data. This under-
scores the conclusion that the state noise is an important
feature of the data, and not an artifact of the fitting pro-
cedure.
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FIG. 7 Magnitude of estimated state noise relative to output
noise (open bars) for two model classes fit to the STOCH-P
data. vg and vgr are the largest eigenvalues of the state and
output noise covariances, respectively. Filled bars represent
the 95% confidence value under the null hypothesis of negli-
gible state noise determined from 1000 Monte Carlo simula-
tions.

Finally, we consider the contribution of state noise to
the overall reach error variability. It is not difficult to



show that in the case of no visual feedback shift, the
LDS models predict an overall reach variance of

oo

M, : Var(e) = R+ > (A+B)’Q(A+ B)T
s=0

+> (A+B)*BRBT(A+ B)*"
s=0

oo
M, : Var(e;) = R+ Z ASQAST,
5s=0

We computed the values of these expressions numerically
from the best-fit models. We then quantify the fraction
of the overall reach variability that is due to the output
noise (the second term in the equations above), as op-
posed to the state noise (the first term). For the M,
model there is also a third term corresponding to the ef-
fects of feeding the reach error back into the LDS via the
input v. On average, the estimated contribution of state
noise to the overall reach error variability was 23% for
the M, model and 38% for the M,; error feedback in M,
contributes another 7%. Therefore, while output noise
accounts for more than half of the overall reach endpoint
variability, state noise represents a sizable component as
well.

Adaptation Dynamics Generalizes to Constant Feedback Shift

Up to this point we have only examined the adapta-
tion dynamics in the STOCH-P trial blocks. One concern
that might arise is that the results we have found, e.g.
the magnitudes of the learning rates and state noise, are
specific to the stochastic sequence of feedback shifts. It
is important to verify that the conclusions drawn from
studies using these dynamical systems techniques will
generalize to other experimental paradigms, in partic-
ular to the blocked exposure design traditionally used
in studying reach adaptation. Therefore, we quantified
how well LDS models that were fit to the STOCH-P data
predict the results of the CONST-P condition, which is
similar to a blocked exposure design. We focused on pre-
dictions of the steady-state of adaptation, the statistics
of the sequence of reach errors, and the residuals of the
one-step-ahead model predictions.

In general, LDS models predict that adaptation should
converge to a “steady state” when the input is held con-
stant. However, due to the presence of state and output
noise, there will be random fluctuations in both the state
and the output even after this convergence has occurred.
The LDS model predicts both the magnitude of this
steady state reach error and the fluctuations around it.
We compared these model predictions to values obtained
from the data. The M, and M, models make nearly iden-
tical predictions for the steady state error magnitude,
and these values correlate well with the empirical data
across subjects (Fig. 8A). There is, however, a small bias:
the models consistently predict a slightly smaller steady
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FIG. 8 Comparison of empirical and predicted steady states
of adaptation. Predictions were derived from the M, (e, solid
lines) and the M, (o, dashed lines) models fit to STOCH-P
data. Empirical values were averaged over the last 10 trials of
each CONST-P trial block. A: Magnitude of the steady state
of adaption with a 30 cm magnitude shift along each axis.
Empirical values are averages of the x and y error coordinates.
The expression for model predictions is given in Cheng and
Sabes (2006). Linear regression of the measured values on
the model fits shown in bold lines (M,: R? = 0.52, p = 0.02;
M,: R?* = 0.50, p = 0.02). B: Standard deviation of the reach
error during steady state (af in Eqn. 3a). Model predictions
come from Monte Carlo simulations (see Methods). Linear
regression in bold lines (M,: R® = 0.79, p = 0.007; M,:
R? =0.81, p = 0.006).

state error than what is empirically observed (mean bias
is 2.7 mm for M, and 2.8 mm for M,). Both models
make accurate predictions for the standard deviation of
the reach error during the steady state (Fig. 8B).

Next, we consider how well the M, and M, models
fit to the STOCH-P data can predict the statistics of the
reach errors across the CONST-P trial blocks. Both mod-
els provide a good prediction of the variance and auto-
correlation of the reach errors as well as the covariance
and cross-correlation between the reach errors and the
sequence of visual feedback shifts (Fig. 9A-D). This gen-
eralization across tasks is not solely due to the nature of
the CONST-P shift sequence, as the model predictions are
sensitive to the parameter values (Fig. 9E).

Finally, however, we note that the generalization is not
perfect. We performed the portmanteau test for serial au-
tocorrelations on the residuals of the one-step ahead pre-
dictors (models fit on STOCH-P data, tested on CONST-P
data). For a minority of subjects, the models were unable
to fully account for the temporal structure of the reach
error sequence (M,: fits for 4/10 subjects rejected; M,:
2/10 rejected; p < 0.05 and max. lag m = 8).

Taken together these comparisons suggest that the dy-
namics of adaptation largely generalizes from a stochas-
tic sequence of visual shifts to a constant shift paradigm.
Furthermore, the LDS model fit to the stochastic shift
data are able to quantitatively predict the key features
of the of the blocked exposure paradigm.
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FIG. 9 The dynamics model identified from STOCH-P data can also account for adaptation to constant visual shift. Plotting
convention is the same as in Fig. 6. A: Reach errors variance vs. Monte Carlo model predictions. B: Auto-correlation function

of reach errors for time differences of 1-8 trials and Monte Carlo model predictions.

C: Covariance between reach errors

and feedback shifts for individual subjects vs. Monte Carlo model predictions. Linear regression of subject data on model
prediction was marginally significant: p = 0.06 for the M, model (green circles and green regression line) and p = 0.07 for
the M, model (black circles, thick black regression line). D: Cross-correlation function between reach errors and feedback
shifts for time differences of 1-8 trials, along with the Monte Carlo model predictions. E: Sensitivity analysis of how predicted

cross-correlation functions depend on model parameters.

Discussion

We have shown that the trial-by-trial dynamics of
reach adaptation to shifted visual feedback is well de-
scribed by a simple linear dynamical system. In this
model, there are two forces driving changes in the state
of adaptation. Firstly, learning is driven by error correc-
tive feedback, with the state of the system correcting for
at least 20% of the error observed in the preceding move-
ment, on average. The data presented here are consistent
with two candidate error signals: the visually perceived
reach error and the artificial visual shift. Secondly, adap-
tation is driven by the internal dynamics of learning, in-
cluding a decay back to a baseline state and the accumu-
lation of an internal “learning” or state noise. Finally,
the LDS model generalizes from the case of stochastic
feedback shifts to the more traditional case of constant
feedback shifts.

Sufficiency and Generalization of the LDS model

One finding of this paper is that simple LDS models are
sufficient to describe the dynamics of adaptation. If our
model captured all the temporal structure in the data,
the model prediction residuals should be a white noise se-
quence. We, therefore, analyzed the correlations among,
and between residuals and various key task variables. We
found no significant evidence for auto-correlations in the

model residuals, non-stationarity and non-linearities in
the dynamics, or non-Gaussian noise.

Yet, another indication that the LDS models are in-
deed capturing the dynamics of adaptation is the fact
that the models generalize from stochastic to constant
feedback shifts. While the bulk of our analyses sup-
port this conclusions, there are three deviations from the
model predictions that should be considered. First, the
predicted covariances between reach errors and feedback
shift were systematically smaller than the empirical val-
ues (Fig. 6A). Second, the models predicted a slightly
smaller steady-state adaptation in the CONST-P condi-
tion (Fig. 8A). Third, the portmanteau test for general-
ization to the to the CONST-P case failed for a minority
of the subjects.

All three of these observations could be explained by
an underestimate of about 10% to 20% in the magnitude
of the learning rate B. The learning rate controls how
much the external input affects the state of adaptation,
and so a more negative B would increase the covariance
between reach error and feedback shift in the STOCH-P
condition. In addition, the magnitude of the steady-state
error in the CONST-P condition depends only on the de-
cay parameter A and the learning rate B. Increasing the
magnitude of either parameter would lead to a larger pre-
dicted steady state (Cheng and Sabes, 2006). Similarly, if
the estimated magnitude of B is low, there will be a per-
sistent bias in the one-step-ahead prediction of the reach
error in the CONST-P trial blocks, resulting in a signifi-



cant correlation in the prediction residuals across trials.
This would explain the occasional failure of the portman-
teau test for generalization to the CONST-P condition.
Visual inspection confirms that predictions of CONST-P
reach errors are indeed biased in the very cases for which
the portmanteau test failed (data not shown). Finally, a
higher learning rate (more negative B) would not signif-
icantly degrade the predictions of the cross-correlations
between reach errors and feedback shifts (Figs. 6E and
9E).

Why might the learning rate B have been underesti-
mated? One obvious reason would be a bias in the maxi-
mum likelihood fitting procedure. However, we found no
evidence for such a bias in control analyses in which we
estimated the LDS parameters from artificial data gener-
ated from a known LDS (data not shown). Another pos-
sibility is that adaptation is a higher order system, i.e.
subjects maintain a memory of more than just the imme-
diately preceding input, and these older error signals also
influence learning. To address this possibility, we fit the
stochastic shift data with augmented models in which
learning is driven by the two preceding inputs. This
model yielded a significant improvement for some sub-
jects (LRT, M, 2/10 subjects, M, 6/10, with p < 0.05).
Since both the feedback shift and the visually perceived
error had sizable autocorrelations at a lag of one trial,
this analysis had limited power. Therefore, it is plausi-
ble that such second order effects are present in all of our
datasets. This extra source of input would explain the
prediction errors described here, even in the absence of a
fitting bias.

A second explanation for imperfect generalization to
the constant-shift data could be the presence of multi-
ple time-scales of reach adaptation (Smith et al., 2006).
Suppose that there were two state variables that con-
tribute to the trial-by-trial task performance, one that
learns on the fast times-scales described above and one
with a much slower learning rate. The effects of the slow-
learning system would not be apparent when the visual
feedback shift changes on a trial-by-trial basis, since its
effects would average out across trials. However, when
a constant feedback shift is used, the slow learning sys-
tem would contribute to the state of adaptation. This
contribution could account for the discrepancies we ob-
served between the constant shift data and the model
predictions.

State noise

We have found that state noise accounts for at least
a quarter of the overall trial-by-trial variability in reach-
ing, after discounting the changes due to our artificial
feedback shifts. The presence of significant state noise
implies that sensorimotor calibration is changing contin-
ually, even without exogenous driving inputs. This model
offers a strong counterpoint to the traditional view of mo-
tor variability as arising largely from limitations in the
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sensory and motor peripheries (Gordon et al., 1994; Har-
ris and Wolpert, 1998; van Beers et al., 1998; Messier
and Kalaska, 1990; Thoroughman and Shadmehr, 2000;
Donchin et al., 2003; Osborne et al., 2005). Neglect-
ing the presence of such state noise in studies of sen-
sorimotor variability can lead to overestimates of those
variances. Also, since state noise leads to correlations
in movement variability across trials, the application of
statistical models that assume independent noise across
trials (e.g., Thoroughman and Shadmehr, 2000; Donchin
et al., 2003) may lead to incorrect conclusions (Cheng
and Sabes, 2006).

There are several potential sources for the state noise
we have observed: variability could arise in the sensory
processing of the error feedback signals; variability could
be injected into the state during the process of adapta-
tion, i.e. as a by-product of the computations that under-
lie learning; or variability can be introduced in the mem-
ory or maintenance of the state across trials. In fact, it
is likely that at least some of the state noise comes from
each of these sources. Quantifying the relative impor-
tance of sources of variability is a direction for further
research.

An alternative explanation for the apparent state noise
is that our LDS models are deficient in some respect. The
resulting error in the state update would then be sub-
sumed into the state noise when estimating the LDS pa-
rameters. In the Appendix, we argue that the state noise
is unlikely to be due to non-linearity, non-stationarity, or
non-normal noise in the true process of adaptation. Of
course, those analyses would be unable to detect high-
order non-linearity or rapid non-stationarity. As an ex-
treme example, consider the case where the neural circuit
that underlies adaptation is made up of a large number
of deterministic, non-linear “units” that combine to ap-
proximate a linear learning rule. This circuit is deter-
ministic, but there will be many small fluctuations about
the linear learning rule. While such variability may in
fact be “deterministic”, from a practical perspective we
may view it as “noise”.

Another model assumption that could potentially be
incorrect is that there is a single process giving rise to
the adaptation we study here. We tested whether mul-
tiple processes with different time scales (Smith et al.,
2006) could account for the state noise. In fact, when we
fit the data with a two-timescale model, the state noise
was still significant for all but one subject (likelihood ra-
tio test). Furthermore, despite having many extra model
parameters, the best-fit state noise in the two-timescale
model was appreciably lower only in three subjects (data
not shown), and even in those cases the state noise co-
variance was within the range of values found for other
subjects with the single-timescale model. We conclude
that the existence of multiple timescales could not ac-
count for the state noise that we have observed.

The LDS models would also be deficient if they were
missing a significant input signal. Two candidate signals
come easily to mind. One candidate is the error feedback



from earlier trials, as discussed above. However, the esti-
mated state noise is qualitatively unchanged when these
earlier inputs are included in the model (data not shown).
Another variable that we did not include in our models is
actual the position of the reach target, which was drawn
uniformly from a 4cm square for each trial. However,
adding the target position improved the M, model fit
in only two subjects (LRT, o = 0.05) and lowered the
estimated state noise covariance only marginally.

Finally, we recall that the distinguishing difference be-
tween state and output noise in the LDS model is the
fact that the state noise creates variability which is cor-
related across trials (a random walk), while the output
noise in uncorrelated (white noise). Therefore, noise in
the sensory or motor periphery would mimic state noise
if it were correlated across trials (on the order of tens of
seconds to minutes). While we know of no evidence for
such correlations, they might exist and could account for
some fraction of our observed state noise.

Error driven learning

One clear result from this study is that the trial-by-
trial dynamics of reach adaptation are well modeled by
an error corrective learning rule. Furthermore, the rate
of learning is quite rapid, with an average correction in
the state of at least 20% of the last error following each
movement. These rapid adaptation dynamics appear to
be inconsistent with slower models of learning, such as
those based on Hebbian learning rules (Salinas and Ab-
bott, 1995; Hua and Houk, 1997).

What is less clear, however, is the specific sensory sig-
nal that drives learning. We have shown that the visually
perceived error and the artificial feedback shift provide
equally good explanations of the trial-by-trial changes in
reach performance. Indeed, the two models classes cor-
responding to these input signals are largely equivalent
with respect to the present dataset (see Eqn. 8). From
a biological perspective, however, these input signals are
quite distinct. Determining the feedback shift, for exam-
ple, requires a comparison between visual and other sen-
sory modalities, while the visually perceived error can be
computed entirely from retinal signals. Thus, it should be
possible to design experiments using the LDS modeling
approach that better distinguish between these feedback
signals. For example, by using small, undetectable jumps
in the target position (Magescas and Prablanc, 2006), one
can dissociate the visually perceived error from a shift in
visual feedback.

The LDS model and the mechanisms of adaptation

We have shown that the LDS model provides a concise
and accurate description of the trial-by-trials dynamics
of reaching. However, we do not believe that this simple
class of models can capture the full complexity of sen-
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sorimotor adaptation. For example, it is well recognized
that there are multiple components of prism adaptation
(Harris, 1963; Welch et al., 1974; Redding and Wallace,
1988; Redding et al., 2005), and evidence for multiple
learning and decay rates exists as well (Taub and Gold-
berg, 1973; Choe and Welch, 1974; Hatada et al., 2006;
Smith et al., 2006). Furthermore, multiple brain areas
have been implicated in the process of prism adaptation
(Baizer and Glickstein, 1974; Clower et al., 1996; Baizer
et al., 1999; Kurata and Hoshi, 1999). Rather, we see
these models as a powerful analytic tool for quantita-
tively characterizing the dynamics of adaptation in the
face of artificial sensorimotor perturbations, the natural
and ongoing processes of sensorimotor calibration, and
the relationship between these processes. For example,
some parameters, such as the state decay, showed lit-
tle variance across subjects, while others, such as the
learning rate, showed more variability. Understanding
the forces that shape these parameter values over both
the short term (i.e. due to the details of the experimental
conditions) and the long term would provide valuable in-
sight into the general mechanisms for the maintenance of
accurate sensorimotor control. Finally, the tools devel-
oped here can be used not only to relate sensory feedback
signals to behavior, but also to relate these psychophysi-
cal variables to the underlying patterns of neural activity.
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APPENDIX: Analysis of model prediction errors

In this appendix, we test for subtle inaccuracies in
the best-fit models with a range of statistical tests on
the one-step-ahead prediction residuals. Specifically, we
ask whether the residuals are normally distributed, and
whether there is evidence for non-stationarity or non-
linearity in the true dynamics of learning.

Non-Gaussian noise The LDS models used in this paper
assume that both the state noise ¢; and output noise
r¢ have Gaussian distributions. Under this model, the
one-step-ahead prediction errors should also be Gaus-
sian. Deviations from normality in these prediction er-
rors could arise in two ways: the true underlying noise
processes could be non-Gaussian, or there could be in-
accuracies in the model of learning dynamics. For ex-
ample, if there were non-linearities or non-stationarities
in the true dynamics of learning, or if we had neglected
to include an important additional input signal, then we
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FIG. 10 Examples of statistical analyses performed on the
model prediction errors. A: Normal probability plot for
the only residual component (z-component, Subject 8) that
showed significant deviations from normality (N=199, Lil-
liefors test, p = 0.04). Data-points are represented by crosses;
Gaussian data fall on a straight line. Without the single large
outlier (top-right of graph), the deviation from the Gaussian
distribution is not significant (p > 0.2). B: Example of signif-
icant non-stationarity (linear regression, F-test, p = 0.036) in
the model-fit residual (y-component, Subject 1). C,D: Exam-
ple plots of model-fit residual (y-component, Subject 1) vs.
visual shift on the prior trial (C) or reach error on the prior
trial (D). Linear regression shows no significant effect in either
plot (F-test, p = 0.79 and p = 0.69) and no clear non-linear
relationships are discernible.

would not necessarily expect the model residuals to look
Gaussian. Therefore, we performed a test of normality
on the model prediction residuals. Since subjects per-
formed reaches in a 2-dimensional environment, the resid-
uals are 2-component vectors. Here, and in subsequent
tests, we tested each component separately for a total
of 20 tests (10 subjects x 2 components). Of these 20
tests, only one showed a significant deviation from Gaus-
sianity (Lilliefors test, & = 0.05). Even this deviation
was only due to a single outlier point (Fig. 10A); without
the outlier the residual component was not significantly
non-Gaussian (p > 0.2). Except for the outlier point, the
normal probability plot shown in Fig. 10A is typical of
that observed for other subjects. We conclude that the
model residuals are normally distributed.

Non-stationarity If the true learning dynamics were non-
stationary, then we would expect our stationary LDS
models to fit better at some times during the experi-
ment and worse at other times. Therefore, we plotted
the residuals as a function of trial number, and looked for
changes across trials. Out of 20 such plots, three showed
a significant linear dependence of residual on trial num-
ber (linear regression, F-test, « = 0.05). An example
of a significant effect is shown in Fig. 10B. While these
effects were observed slightly more often than expected
by chance (3/20 = 15%), the significant comparisons had
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weak correlations (r? < 0.034) and were never found in
both residual components of the same subject. Across
subjects there are no discernible non-linear trends in the
residuals, nor were there any apparent changes in the
variance of the residuals across trials.

Non-linearity If the true learning dynamics were non-
linear, then the LDS prediction errors would contain a
component that was a deterministic function of one of
the key variables driving learning. Therefore, we exam-
ined whether the model-fit residuals across trials covary
with either of the key variables that influence the dynam-
ics of learning, the visual shift and the reach error from
the previous trial. Not one of the 20 comparisons showed
a significant linear dependence of residual on either the
previous visual shift or the previous reach error (linear re-
gression, F-test, a = 0.05). Representative examples are
shown in Figs. 10C and 10D. As in these examples, there
were also no discernible non-linear relationships between
the residuals and the task variables.
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