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Abstract
To successfully perform autonomous navigation, mobile agents must solve the Simultaneous Localization and Mapping
(SLAM) problem. However, acquiring the map in a single SLAM session may not be possible, thus the map may be incre-
mentally built over multiple sessions. Two solutions could be considered to solve the multisession SLAM problem: (i) the
robot must localize itself in the previously stored map before the new session starts; (ii) it can start a new map and merge it
with the map from the previous sessions. To date, only scenario (i) has been addressed by RatSLAM, an algorithm inspired
by the navigation system in rodent brains. Therefore, this work proposes a multisession solution that solves both scenarios. A
new mechanism merges the data from the RatSLAM structures of the current mapping session with those previously stored
if there are connections between these paths. This approach was tested in four different scenarios, from virtual controlled
environments to real-world environments with two, three, and five sessions. The robot started in an unfamiliar location for
each mapping session, but it also works if the agent starts in a known place, scenario (ii) and (i), respectively. For all exper-
iments, the entire map was consistently obtained. Furthermore, the proposed approach updates and enhances the previous
session’s map in real-world environments. Therefore, the proposed approach may be a multiple SLAM session solution for
the RatSLAM algorithm.

Keywords Mobile robotics · RatSLAM · Multisession SLAM

1 Introduction

Autonomous navigation is one of the fundamental problems
in mobile robotics [1], in which autonomous robots travel in
unknown static or dynamic environments trying to reach a
given objective [2]. While static environments present con-
stant displacement of an object over time, dynamic ones may
change their spatial features along with objects in the envi-
ronment, such as vehicles, people, or other agents,whichmay
move around. In both environments, a relevant and central
issue for mobile robot navigation is to acquire a spatial map
of the environment while simultaneously localizing the robot
on themap,which is known as the SimultaneousLocalization
and Mapping (SLAM) problem [3, 4].

Traditional solutions in the literature, such as extended
Kalman filter SLAM (EKF-SLAM) [3], FastSLAM [5] and
Rao-Blackwellized particle filters [6], solve the SLAMprob-
lem using an engineering approach.
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SLAM algorithms have been applied to several prob-
lems in real-world scenarios, such as: search and rescue
[7–9], autonomous exploration of hazardous areas [10], area
surveillance [11], among others. These are common prob-
lems that involve activities that can be hostile or dangerous
for human-based interventions.

This study is mainly interested in the SLAM approach
inspired by the localization and navigation system in the
mammalian brain [12–15], which includes specialized neu-
rons [16]. For instance, place cells in the hippocampus
activate when the animal is located in a circumscribed region
of space [17].Grid cells in the entorhinal cortex activatewhen
the animal’s location coincides with a vertex of a hexagonal
grid overlaid on the environment [18]. Head direction cells
in several brain regions activate when the animals’ head is
rotated in a distinct direction [19].

Computational models of the neural process underlying
these spatial representation cells have inspired RatSLAM
[20–22]. Visual sensing, robot movement, and pose cells
estimate the robot’s position and orientation while explor-
ing the environment, similar to a conjunctive grid and head
direction cells. The visual representation and odometry input
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activate specific neural network regions that implement a
three-dimensional Continuous Attractor Network (CAN).
The combination of sensing and CAN activity generates an
experience.

RatSLAM has been successfully used to solve indoor
and outdoor SLAM tasks [13, 21–26]. However, RatSLAM
requires improvements to deal with multisession SLAM
problems, i.e. a robot maps along several sessions. Multi-
session is required when the robot cannot map the entire
environment in one session, e.g., in large environments, or
when the robot is shut down and later restarts mapping. It can
also be applied when tracking fails caused by occlusion in
visual SLAM. In multisession SLAM approaches, the robot
can start at a random position in the environment when a new
session begins. This new position may not be stored on the
previously created map. This problem has been defined as
the kidnapped robot [2, 27, 28].

According to [28], two solutions for this problem can be
considered: (i) the robot localizes itself on the previously cre-
ated map before the new session starts, or (ii) the robot starts
mapping the new location with its reference coordinates - it
may merge this new map with the previous ones to generate
a unified map. This work focuses mainly on the latter.

One of the first works in which RatSLAM performs long-
term large-scale autonomous mapping was developed by
Milford and Wyeth [25]. In that work, the robot worked on
delivery tasks for two weeks in two physically separate envi-
ronments. The agent can be shut down and placed in either
environment without notification. When switching from one
environment to another for the first time, the agent attempts
to locate itself on the previous map, and when unsuccessful,
RatSLAM creates a new experience map for this new loca-
tion. The new map shares the same RatSLAM structure but
it is topologically separate from the first built map, i.e., it
keeps multiple local maps in the same RatSLAM structure.
However, in case of a single connection between them, the
odometer error propagation will deform the map due to false
metric representation. Therefore, strictly speaking, it does
not solve the multisession scenario stated in (ii).

In recent work, a new navigation system has been devel-
oped based on the relationship between the hippocampus
and episodic memory for mobile agents to perform mul-
tistep tasks [13]. The approach adopted RatSLAM as the
hippocampus’s spatial navigation mechanism and episodic
memory to recover the steps of a given task. Moreover, the
work proposed an improvement that enables the robot to
localize itself globally in previously familiar areas. In their
global localization module, the robot can be shut down and
restarted in a random position of the environment, i.e., the
kidnapped robot problem. Once the robot restarts and the
global localization module is activated, RatSLAM uses the
robot’s visual input to check whether the new location has
been saved in the stored map. As long as the robot does

not localize itself, RatSLAM does not generate new experi-
ences, as it usually does when fed a new visual input. Instead,
it compares the visual information with the ones from the
stored map. This solution is similar to scenario (i) mentioned
above. Therefore, the approach proposed in [13] only works
when the robot restarts inside the previously mapped area.
Thus, the robot cannot explore distinct regions in multiple
sessions in the global localization mode since no new expe-
riences will be created in this new environment, and so it
does not solve the multisession scenario (ii).

Although not fully encompassed by RatSLAM, multises-
sion mapping has been addressed in many non-biological
SLAM frameworks [28–36]. In particular, the multisession
scenario (ii) is solved by visual/visual-inertial SLAM algo-
rithms such as ORB-SLAM 3 [30] and SLAMM [31]. Both
solutions propose starting a new map when the tracking is
lost. This new map grows with new inputs, and additional
operations continuously compare the current input of the
“active” map with those from different stored maps. If new
input information belongs to the “active” map, the algorithm
performs loop closures; if it belongs to a different map, then
both maps will be merged into a single one, which becomes
the currently “active” map. This merging operation applies
an alignment transformation between the twomatched inputs
and converts the information from the current map to the
stored one.

The previous solutions either solve multisession using an
engineering fashion for non-biological SLAM [28–36], or
can only partially solve it for a neuro-inspired SLAM as
mentioned above [13, 25]. However, to fully deal with multi-
session RatSLAM, a solution must consider both RatSLAM
structures and their intrinsic relation. For example, to cor-
rectly reactivate a RatSLAM experience on the map, both
visual input and CAN related to that experience must be cor-
rectly activated onRatSLAM.This issue presents a challenge
in buildingmultisession solutions for RatSLAM, specifically
for its network. This paper proposes a new solution to merge
the RatSLAM Pose Cell Network, keeping the experience
map consistent and performing loop closures correctly after
merging of RatSLAM structures, which was not explored in
other works found in the literature.

This paper proposes merging multisession maps for a
bioinspired SLAM, RatSLAM, improving the flexibility of
mapping and allowing robots to build maps incrementally
with RatSLAM. This method generates a separate partial
map of the environment, which is built with the new experi-
ences in a new session. Once an equivalence between a new
and a previously stored experience is found in a loaded map,
amergemechanism combines these maps (partial and loaded
maps), adjusting internal structures and yielding a newpartial
map, ready to continue the mapping in a new session.

If the new session starts at a known location on the loaded
map, scenario (i), the agent activates the equivalent experience
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on the loadedmap, and themapping proceeds from this point.
Similarly to ORB-SLAM 3 and SLAMM, this work estab-
lishes the matching of RatSLAM’s Local Visual Cells as
bases to find an alignment transformation among RatSLAM
structures. In addition to the solution for (i), the proposed
approach also solves (ii) once it merges the RatSLAM struc-
tures and ensures both the correct metric representation and
the inner relations after the merge operation, which was not
possible in other works found in the literature.

This paper is organized as follows: Section 2 presents the
theoretical basis of the RatSLAM algorithm. In Section 3,
the methodology of this work is depicted. Next, Section 4
presents the experimental setup, that is, the scenarios, robots,
parameters, and other experimental details. In Section 5, the
results are presented and discussed. Finally, the conclusions
of this work and suggestions for future work are presented
in Section 6.

2 RatSLAM foundations

RatSLAM was developed in 2004 by Milford, Wyeth, and
Prasser [20] for general real-world examples of localization
and mapping on mobile robots using a vision system as its
main input sensor. Figure 1 shows the updated RatSLAM
architecture [21]. It is composed of the following modules:

1. TheRobot Vision System acquires the images and sends
them to the other modules.

2. Themodule SelfMotionCues estimates the translational
and angular velocities of robot odometry. This informa-
tion is sent to the Pose Cell Network and Experience

Fig. 1 RatSLAM architecture. The Local View Cells are activated
by the Robot Vision System. The Local View Cells create and acti-
vate templates depending on whether the scene seen by the robot is
new or not. The Self Motion Cues send the odometry information of
the robot to the Pose Cells Network. Since the Robot Vision system
can capture the odometer through visual odometry, an arrow is placed
between these modules. In the Pose Cells Network, each cell represents
the pose of the robot. Excitatory and inhibitory connections link these
cells. The ExperienceMap represents the information learned about the
environment

Map. Moreover, odometry information can be computed
using images from the Robot Vision System using visual
odometry (Fig. 1).

3. The Pose Cells Network is a three-dimensional Con-
tinuous Attractor Network (CAN) of units connected by
excitatory and inhibitory connections. Each cell of the
Pose Cell Network represents the robot’s position (x, y)
and orientation θ .

4. The Local View Cells maintain a list of scenes seen that
are called templates. A new template is created when the
scene sent by the Robot Vision System is new. A link
between it and the activity in the Pose Cells Network is
learned when a new template is created.

5. The Experience Map is a graphical map representing
the environment built and maintained by the information
from the Pose Cells Network, Local View cells, and Self
Motion Cues modules.

The following subsections describe the details of the Pose
Cells Network, Local View Cells, Experience Map, and the
role of the RatSLAM parameters in its function.

2.1 Pose Cells Network

The Pose Cells Network (PCN), denoted by P , is a CAN
arranged in a three-dimensional structure (Fig. 2) and rep-
resents the position (x ′, y′) and orientation θ of the robot.
Excitatory and inhibitory connections link the CAN units.
In addition, the connections among units wrap across all six
faces of the PCN (e.g., red arrows in Fig. 2). With these
wrapped connections, the network can work beyond its fixed
size, i.e., it can represent environments with an area larger
than the areas encoded by the PCN.

Furthermore, local excitatory and global inhibitory con-
nectivity among cells provides inputs to these units and
changes their activity. Over time, this dynamics allows the
CAN to form a cluster of activated cells, known as energy
packet or activity packet [21] (Fig. 2, blue cubes). In addition,
the center of the energy packet (Fig. 2, darker blue cubes) is
the best estimate of the robot’s pose in the environment.

Local excitatory connections increase the activity of
neighboring cells, whereas global inhibitory connections
eliminate the activity of small clusters in the PCN. The
excitatory and inhibitory connectivity are described by the
distribution ε [37]:

εa,b,c = e−(a2+b2)/kexcp e−c2/kexcd −e−(a2+b2)/kinhp e−c2/kinhd (1)

where kp and kd are the variance constants for place and
direction, respectively [21]. The parameters a, b, and c
represent the distances between two cells’ coordinates, con-
sidering the network’s periodic boundary conditions. The
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Fig. 2 Associations among
Local View Cells (LVCs), Pose
Cells Network (PCN), and
Experience Map (EM). The
LVCs inject energy into PCN,
shown as cubes. The activated
cells of the PCN are displayed
as blue cubes, and the most
activated cell of this packet (the
darkest blue) is the best estimate
of the robot’s pose in the
environment. The nodes on the
EM are called “experiences” in
RatSLAM. They compose a
metric-topological map, where
the edges represent the
topological relation between
experiences

distance between two cells with coordinates x ′, y′, and θ

and i , j , k , respectively, is given by:

a = (x ′ − i)(mod nx ′),

b = (y′ − j)(mod ny′),

c = (θ ′ − k)(mod nθ ′), (2)

where mod is the modulo operator. The parameters nx ′ , ny′
and nθ ′ indicate the network size in terms of the number of
cells along each of the X ′, Y ′ and�′ dimensions. The change
of activity in a cell is given by [37]:

�Px ′,y′,θ ′ =
nx ′−1∑

i=0

ny′−1∑

j=0

nθ ′−1∑

k=0

Pi, j,kεa,b,c − ϕ (3)

where ϕ is the global inhibition. The final step in the network
update limits the activation levels in P to non-negative values
and normalizes the total activation to one [37].

In addition, the direction in which the energy package
changes is driven by odometry information, which represents
the robot’s movement, and energy injection by the templates
stored in LVC, which might move the activity packet to a
different location in the PCN [21].

2.2 Local View Cells - LVC

TheLocalViewCells, V , form an array of templates, denoted
by Vi . Each template represents a distinct visual scene of the
environment captured by the Robot Vision System. When
a template is created, a short learning excitatory link β is

established between it and the center of the dominant activity
packet in the PCN [21]. This β link associates the dis-
tinct view from that location with the robot’s estimated pose
encoded by the PCN. The link is given by [37]:

β t+1
i,x ′,y′,θ ′ = max(β t

i,x ′,y′,θ ′ , λVi Px ′,y′,θ ′) (4)

where λ is the learning rate, and the variable i denotes which
template Vi is activated. The x ′, y′, and θ ′ are the coordi-
nates of the center of the dominant energy package in the
PCN. Note that β t+1

i,x ′,y′,θ ′ only creates a new link with value
λVi Px ′,y′,θ ′ if a previous association was not already learnt,
i.e. β t

i,x ′,y′,θ ′ does not exist, yet.
Moreover, when a loop closure occurs, i.e., the robot

returns to a location it has already mapped, a consecutive
sequence of previously stored templates are activated in the
correct order. When the template Vi is activated, it injects
energy in the PCN at (x ′, y′, θ ′) coordinates via its learnt
link (4) [21]:

�Px ′,y′,θ ′ = δ
∑

i

βi,x ′,y′,θ ′Vi (5)

where δ is the constant, determining the influence of visual
features on the estimated robot’s pose [21]. When the PCN
receives a constant injection of activity, this changes the dom-
inant energy package and, consequently, the re-localization
of the robot.

2.3 Experience Map - EM

The Experience Map (EM) is a graph combining pose cells
and templates information to estimate robot poses in a
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two-dimensional map. A node in the EM is defined as a 3-
tuple [21]:

ei = {Pi , V i ,pi } (6)

where Pi and V i are the activity states in the PCN and LVC,
respectively, at the time the experience node is created, andpi

is the robot pose in the experience map space. Furthermore,
a new experience node is created when the states Pi and V i

do not closely match the state of any existing experience.
A link li, j is created and savedwhen the robot moves from

a previous experience ei to the new experience e j [21]:

li, j = {�pi, j ,�t i, j } (7)

where �pi, j is the relative odometry pose between the two
experience nodes, and �t i, j is the time taken by the robot
to move between the nodes. The temporal information can
be used to perform the path planning from a specific expe-
rience to the desired goal. As exemplified in [21], Dijkstra’s
algorithm can be used to find the shortest path between two
nodes.

As long as there is no loop closure, the EM is based on
the robot’s odometry. Loop closure activates the robot’s re-
localization in the map and distributes the odometry error
throughout the graph using a relaxation algorithm, chang-
ing experience poses. Changes in experience locations are
obtained as follows [21]:

�pi = α

⎛

⎝
N f∑

j=1

(p j − pi − �pi, j ) +
Nt∑

k=1

(pk − pi − �pk,i )

⎞

⎠

(8)

whereα is a correction rate constant set to 0.5, N f is the num-
ber of links from the experience node ei to other experiences,
and Nt is the number of links from the other experiences to
the experience ei .

2.4 Role of RatSLAM Parameters

The RatSLAM has parameters responsible for the algo-
rithm’s appropriatemapping performance. The parameters of
Local View are responsible for template operations, such as
comparison, size dimension, andwhen new templates need to
be created. ThePoseCells parameters influence the dynamics
and dimensions of the network, e.g., values for local excita-
tion, global inhibition, and energy injection when a scene
is revisited. Finally, Experience Map parameters define the
number of executions of the graph relaxation algorithm (8).

In addition, The Self Motion Cues module (Fig. 1) provides
odometry information computed from the Robot Vision Sys-
tem. In this case, Visual Odometry parameters are set to
correctly determine the robot’s translational and rotational
velocities. However, the Visual Odometry parameters can be
ignored if this information comes from a separate source,
such as wheel encoders.

3 Methodology

At the end of each session of a multisession mapping, the
robot generates a map of the environment using RatSLAM
and stores it. In the next mapping session(s), this map is
loaded by the robot (loaded map). The robot is assumed to
receive no information about its position on the loaded map.
In the new session, the robot builds a new map called partial
map. If a common path that links the partial and the loaded
maps is found, they aremerged into a single RatSLAM struc-
ture, i.e., the merging results in a single LVC, PCN, and EM
to represent the environment. This process is described in
detail below.

It is assumed that the partial map has more than one expe-
rience before the merge procedure, i.e., the agent starts the
new session in a nonmapped area of the environment. If the
robot starts at a known location of the loaded map, the algo-
rithm could activate the equivalent experience on the loaded
map, and the mapping proceeds from this experience.

The merge process is triggered if the agent creates a tem-
plate in the partial map that matches a previously stored
template in the loaded map (Fig. 3), i.e., the agent entered
a location that is represented by both maps. To compare
templates, the same process that compares the templates in
RatSLAM is employed, i.e., a new template of the partial
map is compared to all templates of the loaded map. When a
match occurs, both the LoadedMap and thePartialMap con-
sist of RatSLAM’s structures as shown in Fig. 2, where V , P ,
E , lm and pm stand for Local View Cell, Pose Cell Network,
Experience Map, loaded map and partial map, respectively.
The new template of the partial mapmatches a template from
the loaded map V pm

nvp = V lm
u (Fig. 3), where nvp is the num-

ber of templates of V pm. In addition, the views V pm
nvp and V

lm
u

are linked to the center of the activity packet, displayed as
the green cubes, Ppm

z and P lm
u , respectively. However, even

though the templates represent the same place, their activ-
ity packets may activate different coordinates (x ′, y′, θ ′) in
the respective PCN, Ppm and P lm. Similarly, for the Experi-
ence Map, the templates and activity packets are allocated to
experiences epmz and elmu (Fig. 3, green nodes), where these
experiences may have different poses coordinates.

A relevant information for merging also relies on the prior
position before encountering the matching view in the partial
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Fig. 3 Condition for the merge procedure between two RatSLAM
structures. The left structure shows Loaded Map, i.e., the RatSLAM
structure that has been previously created and saved. The right structure
is the Partial Map, which is the current RatSLAM structure being used
in the mapping. The relation among LVC, PCN, and EM is displayed in
each structure. The condition tomerge both structures is to find a similar
local view cell in both Loaded and Partial Maps, shown in the green

spheres V lm
u = V pm

nvp . Note that these view cells are linked with activity
packets Plm

u and P pm
z and experiences elmu and epmz in their respec-

tive structures. Furthermore, in the Partial Map, the relation between a
previously learned local view, V pm

k (red), its associated activity packet
P pm
k and experience epmz is displayed. The activity packets P pm

z and
P pm
k are in a distance d and there is a topological link between the

experiences epmk and epmz

map, which corresponds to the location in the previous time
step k = nvp − 1. Note that the linked centers of the activity
packets Ppm

z and Ppm
k are spatially separated by a distance

d. Likewise, their associated experiences epmz and epmk have
link information (7) that encodes the distance information
between their poses.

At merging, the structures of the partial RatSLAM map
and their relations are inserted in the loaded map in four
operations (Fig. 4): i) the LVC are merged (Fig. 4a), ii) the
matching view in the partial map V pm

nvp is linked to a new
PCN activity packet location, which corresponds to a shift
(Fig. 4b), iii) the associations between all LVC and PCN are
shifted by the same amount (Fig. 4c), and iv) the EM are
merged (Fig. 4d). In the following subsections, these opera-
tions are described in more detail. Finally, at the end of the
merge procedure, a single RatSLAM structure is obtained
(Fig. 4e) and used in the remainder of the current mapping
session.

3.1 Merging Local View Cells

The merge of LVC aims to join all the templates from the
loaded and the partial map into a single LVC structure. The
templates of the partial map are concatenated into the LVC of
the loadedmap, except for the last acquired template because
it is already present in the loaded structure:

V lm = [V lm,1, ..., V lm,nvl ,Vpm,1, ...,Vpm,nvp−1] (9)

where nvl is the number of templates of V lm .

In the last stage of the LVC merge, the template that rep-
resents the actual robot’s view scene V lm

u is activated in the
V lm (Fig. 4, green sphere).

3.2 Pose Cells Network Activation

After merging the LVC, the activated template is V lm
u , which

needs to be associated with the units in the PCN at right.
This injection of activity should occur at the coordinates of
P lm
u because it is associated with V lm

u . Before the merge
procedure, the last activated packet in the partial map was
Ppm
z (Fig. 4B, light green cube). Thus, a change of activity

from Ppm
z to P lm

u is required and can be seen as a shift of
activity in the P lm

u (Fig. 4B, green arrow). The difference of
coordinates between Ppm

z and P lm
u is defined as:

�x ′ = x ′
p + x ′

l ;
�y′ = y′

p + y′
l ;

�θ ′ = θ ′
p + θ ′

l . (10)

where (x ′
p, y

′
p, θ

′
p) and (x ′

l , y
′
l , θ

′
l ) are the coordinates of

activity packets Ppm
z and P lm

u , respectively.

3.3 Shifting Association between LVC and PCN

All associations between LVC and PCN in the partial map
must be updated to be consistent with the associations in
the loaded map. As an example, we consider the penulti-
mate view in the partial map. Ppm

k must be shifted to keep
the previous distance d to P lm

u (Fig. 4C, red arrow). The
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c d

a b e

Fig. 4 Merging partial and loaded RatSLAM maps. The merge
procedure is divided into four operations: (i) merge LVC; (ii) change
activation in the PCN; (iii) shift the associations betweenLVCandPCN;
and (iv) merge the EM. These are illustrated in the first four panels. a)
All templates of the V pm (Fig. 3) are inserted in the LVC structure
V lm , except the last template of the partial map (green circle of V pm in
Fig. 3), because this template is equivalent to V lm

u , which becomes the
current active template at the end of step (i). b) The activity packet is
associated with the active template at the end of (i) Plm

u (Loaded Map
in Fig. 3). In addition, before the merge procedure, the activity packet
encoding the robot’s pose in the partial map was P pm

z . However, after
the merge, the similar energy packet that encodes the robot’s pose in the
PCN is Plm

u . This change of activation can be seen as a shift of coor-
dinates in the Pose Cell Plm , and it is represented by the green arrow

from P pm
z to Plm

u . c) The coordinates of the association between LVC
and PCN of the partial map are changed when they are inserted into the
loaded map. As illustrated, the energy packet of the partial map, P pm

k ,
is shifted (red arrow) to keep the same distance d (dashed line) to the
active energy packet Plm

u as it had with P pm
z in the partial map (Fig.

3). Note that the shift applied to P pm
k is the same computed in (ii). d)

The experiences from the partial map’s ME are inserted into the EM
of the loaded map, as shown by the dotted red circles. A function that
transforms the coordinates of the epmz (green node) in the Elm to the
coordinates of it equivalent experience elmu (green node) in Elm is com-
puted, and the shift is applied to all experiences of E pm , except epmz .
A final link between epmk and elmu is introduced to connect the inserted
experiences from the E pm to Elm . e) The final RatSLAM structure after
the merge

transformation function that shifts the activity packet Ppm
k to

P lm
k is defined as f ():

f (x ′
u, y

′
u, θ

′
u) = (x ′

s, y
′
s, θ

′
s);

x ′
s = (x ′

u + �x ′)(mod nx ′);
y′
s = (y′

u + �y′)(mod ny′);
θ ′
s = (θ ′

u + �θ ′)(mod nθ ′). (11)

where (x ′
u, y

′
u, θ

′
u) are the coordinates of P

pm
k . The (x ′

s, y
′
s, θ

′
s)

are the shifted coordinates of P lm
k in the loaded map.

Once this shifted operation is carried out, the excitatory
links β lm must be updated as follows:

β lm
nvl+i, f (x ′,y′,θ ′) = β

pm
i,x ′,y′,θ ′ , i = {1, ..., nvp − 1}. (12)

where (x ′, y′, θ ′) are the coordinates of the energy packets
from Ppm.

3.4 Merging Experience Maps

Before the experiences of Epm can be merged into E lm, the
experiences in the partial map have to be map consistent
with those in the loaded map. Before the merge, the experi-
ence epmz represented the robot’s actual pose and it is linked
with epmk in Epm, as shown in Fig. 3. epmz is equivalent to
elmu in the the loaded map. As previously mentioned, epmz and
epmk encodes the last and penultimate robot’s poses in the
partial map, respectively. The topological-metric relation
between epmk and epmz must be kept between epmk and elmu
after the merge process by applying the same transformation
on epmz and epmk . epmk after the transformation is denoted as
elmnel+k (see notation in (16)) and it is shown in the merged

EM E lm in Fig. 4D where the dashed red line indicates the
transformation.

This transformation is defined as the combination of trans-
lational and rotational operation in two dimensions. Let
pl = [xl , yl , θl ]T and pp = [xp, yp, θp]T be the poses
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of the equivalent experiences elmu and epmz , respectively.
The function t transforms the pose pp to the pose pl , i.e.
t(xp, yp, θp) = xl , yl , θl , and is defined as follows:

t(xp, yp, θp) = [H(xp, yp), θp + �θ ]T . (13)

where �θ = θl − θp and H(xp, yp) is defined by:

H(xp, yp) =
[
cos(�θ) − sin(�θ)

sin(�θ) cos(�θ)

] [
xp − �x
yp − �y

]
. (14)

where �x = xl − xp and �y = yl − yp. Once function t is
defined, itmust be applied on the poses of Epm experiences so
they could be inserted on themerged E lm,which is carried out
through operation T , defined below. In addition, operation
T also changes the information of the new experiences in
E lm with their correspondent template and energy packets
according to operations (i) and (iii) loaded map’s structures
V lm and P lm.

elmnel+i = T (epmi ), i = 1, ..., nep − 1;
= {V lm,i+nvl , P lm,i+nvl

f (x ′,y′,θ ′), t(p
pm,i )}. (15)

where epm is an experience from E lm. The nel and nep are the
number of experiences in E lm and Epm maps, respectively. It
is important to mention that epmz is not added in E lm because
it is already equivalent to elmu . Then, the new experiences are
inserted on the merged E lm.

E lm = [elm1 , ..., elmnel , e
pm
nel+1, ..., e

pm
nel+nep−1] (16)

The last step (iv) is to connect, through links, the added
nodes on the E lm as follows:

li+nel , j+nel = {�p(i+nel )( j+nel ),�t i, j } (17)

i = 1, ..., nep − 2 and j = 2, ..., nep − 2, which is similar
to (7). As epmz is not inserted its equivalent, elmu , has to be

connected to epm*
k through (17) with i + nel being k and

j + nel is u.

3.5 Merge Algorithm

Themerge algorithm is summarized in theAlgorithm1, high-
lighting the equations that make up each step. Complexity
analysis can consider the match and the merge routines sep-
arately. Considering that the merge process is triggered from
a matching between a template in the partial map of size nvp

and a template of size nvl , stored in some of the previous
sessions κ , the computational complexity can be given by:

• Matching routine: depending on the search implementa-
tion, it could be κ×O(1), κ×O(log(nvl)) or κ×O(nvl);

• MergingLocalViewCells(line 2): O(nvp);
• ComputeDeltasPCN(line 3): O(1);
• P lm updating (line 4): O(1);
• ShifitingAssociationLvcPcn(line 5): O(nvp);
• ComputeTransformation (line 6): O(1);
• MergeExperiencesMaps (line 7): O(nep).

Algorithm 1Merge of RatSLAM structures.

1: procedure merge(Vlm,Vpm,Plm,Ppm,Elm,Epm)
2: V lm ← MergingLocalViewCells(V lm, V pm) � Eq. 9
3: �x ′,�y′,�θ ′ ← ComputeDeltasPCN(P lm

u , Ppm
z ) � Eq. 10

4: P lm
current = P lm

u � PCN activation
5: P lm ← ShifitingAssociationLvcPcn(βpm

x ′,y′,θ ′ , f (x ′, y′, θ ′)) �
Eq. 12

6: t() ← ComputeTransformation(elmu , epmk ) � Eq. 13
7: E lm ← MergeExperiencesMaps(Epm, t()) � Eq. 15,16,17
8: end procedure

In summary, the complexity of the merge algorithm does
not exceed the linear behavior concerning the Local View
Cells (in both partial and loadedmaps) andExperienceMap
sizes.

4 Experimental Setup

Four different environments are explored in this study. For
each environment, datasets of video streams or image frames
have been captured during tours performed by real and virtual
robots. Briefly, the four environment datasets are: i) videos
generated by a virtual robot from an ellipse-shaped tour,
named Virtual Tour dataset; ii) videos generated by a real
robotic platform during a tour inside a research lab called
Lab Tour dataset; iii) frames extracted from the “iRat” Aus-
tralian dataset; and iv) frames extracted from the The New
College Vision and Laser dataset. The latter two were used
to validate the OpenRatSLAM implementation [21]. Each
environment is detailed in the following subsections.

To evaluate the proposed multisession approach, single-
session and multisession maps are compared using Iterative
Nearest Points (ICP) [38]. The ICP solves the registration
problem by finding a transformation matrix that approx-
imates the two maps as closely as possible in iterated
executions. As a criterion for the evaluation of the transfor-
mationmatrix, the ICP computes the root mean square errors
(RMSE) to the corresponding node distances in both maps.
The ICP stops the iterated executions when either the RMSE
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is lower than a defined threshold or the algorithm executes
the maximum number of iterations. Therefore, by returning
the RMSE over the distances of the correspondent nodes, the
ICP provides a single value that evaluates the overall trajec-
tory of themultisession and single-sessionmaps, with RMSE
equal to 0 being a perfect match between them. This article
uses the Libicp algorithm [39].

The RatSLAM algorithm requires a specific set of param-
eter values for each environment [21, 24]. These parameters
are required in all the main structures, i.e. LVC, PCN, and
EM. The parameters values for each environment are dis-
played in Table 1. In both the “iRat” and New College
datasets, odometry information is obtained from the robot’s

wheel encoders, so theVisual Odometry parameters were not
used.

The multisession RatSLAM source code was imple-
mented using Python 3.6 and is available at https://zenodo.
org/badge/latestdoi/568248424.

4.1 Virtual Tour Experiment

In the Virtual Tour experiment, the robot takes an ellipse-
shaped tour in a virtual environment (Fig. 5). Both the
environment and the robot were modeled in a simulation
framework developed to study biomimetic models of rodent
behavior in spatial navigation learning tasks [40].

Table 1 Parameter of
RatSLAM’s to each tested
environment

name value
Virtual Tour Lab Tour iRat New College

# Visual Odometry

vtrans_image_x_min 0 80 – –

vtrans_image_x_max 256 560 – –

vtrans_image_y_min 0 240 – –

vtrans_image_y_max 64 360 – –

vtrans_scaling 10.0 10 – –

vtrans_max 0.1 0.1 – –

vrot_image_x_min 0 80 – –

vrot_image_x_max 256 560 – –

vrot_image_y_min 0 240 – –

vrot_image_y_max 64 360 – –

camera_fov_deg 360 50 – –

camera_hz 1 1 – –

# Local View module

vt_panoramic 0 0 0 1

vt_match_threshold 0.05 0.04 0.035 0.059

vt_shift_match 5 4 4 4

vt_step_match 2 1 1 10

vt_normalisation 0.5 0.5 0.5 0.5

vt_active_decay 1.5 1.0 1.0 1.5

template_x_size 128 80 50 60

template_y_size 32 60 30 10

# Pose Cell module

pc_vt_restore 0.05 0.05 0.05 0.05

pc_dim_xy 80 80 11 80

pc_vt_inject_energy, δ 0.06 0.5 0.6 0.06

pc_dim_th 35 36 36 35

exp_delta_pc_threshold 4.0 1 2.0 4.0

pc_cell_x_size 1 1 0.015 1.0

# Experience Map module

exp_loops 250 250 20 20

exp_initial_em_deg 140 90 140 140
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Fig. 5 Virtual Tour environment setup. The experiment is divided
into two mapping sessions. a) Sample frame captured by the robot. b)
Ellipse path travelled by the agent. In the first session, the agent maps
the path of the 3/4 turn represented by the blue line, starting and ending
at the blue cross and blue diamond, respectively-the map generated by
the robot in the first session loaded in the second session. The robot
travels almost three laps (yellow lines) in the video stream used for
the second session. The agent starts and ends mapping at the yellow
cross and diamond symbols, respectively. In addition, the partial map
of the second session is the path that starts at the yellow cross and ends
before the start of the blue cross. The merge between the partial map of
the second session and the loaded map occurs when the robot reaches
the start point of the first session (blue cross) in the second session (red
circle). The merge procedure results in a single RatSLAM structure that
holds both the loaded and partial map. Furthermore, after the merge,
there is a non-mapped section of the path (dashed yellow line). The robot
maps this area when it moves from the blue diamond to the yellow cross

This experiment is divided into two mapping sessions.
First, the robot performs a 3/4 lap through the environment
(Fig. 5b, blue line).When the robot reaches the endof thefirst
session path (blue diamond), the experience map is saved. In
the second session, the virtual agent loads this map. Since
it is positioned at a novel location (Fig. 5b, yellow cross),
the agent starts mapping with a new experience map (partial

map). The robot performs almost three complete laps (yellow
line) and eventually travels on the same path as it did in the
first session.

The merge between the partial map in the second session
and the loaded map of the first session occurs when the agent
first encounters a view that was stored in the loaded map
(Fig. 5b, red circle). After the merge, the virtual robot con-
tinues the mapping, using the merged RatSLAM structure,
until the end of the second session.

Note that the video frames that generated the map in the
first session are part of the video frames used in the second
session. Specifically, the video of the first session is embed-
ded in the video used in the second session. Thus, when
the agent passes the merge point in the second session, the
following frames are the same ones collected in the first ses-
sion. Therefore, no new experiences should be created by
RatSLAM when the agent moves through the path that was
covered by the agent in the first session (blue path).

Moreover, aftermerging, there is a section of path between
the end of the first and the start of the second sessions (dashed
yellow line between the blue diamond and yellow cross).
Such a session has not been mapped in either session. The
agent i n to close the loop of the ellipse path fully.

4.2 Lab Tour Experiment

In the Lab Tour experiment, a research laboratory (Fig. 6a) is
mapped by a real robot platform, called RoboDeck1 (Fig. 6b).
The robot platform is equipped with a monocular camera
with 640×480 resolution. Since only the robot’s camera was
used to create the video streams used in this experiment, the
odometry informationwas extracted by visual odometry. The
RoboDeck obtained the video streams of this experiment in
a manually driven tour of the room. The robot trajectory is a
rectangular path, resembling a figure eight (Fig. 6c).

In the first session, the robot performs two counterclock-
wise laps along the small rectangle (Fig. 6c, blue line). The
robot starts and ends at the blue cross and diamond loca-
tions, respectively. In the second session, the robot performs
almost two counterclockwise laps around the large rectangle
(Fig. 6c, yellow line), starting and ending at the locations
marked by the yellow cross and diamond, respectively. The
merge between the maps is expected where the two paths
first meet (Fig. 6c, red circle). After the merge, a final loop
closure is expected when the robot returns to the start point
of the second session (yellow cross).

4.3 iRat Experiment

The iRat 2011 Australia dataset was used to validate the
multisession approach with more than two mapping sessions,

1 http://www.xbot.com.br/
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Fig. 6 Lab Tour experiment setup. a) Physical laboratory environ-
ment. b) The robotic platform RoboDeck. c) The paths travelled by
the robot in the two mapping sessions. In the first session, two laps
are performed, starting and ending at the blue cross and blue diamond,
respectively. The gray arrows show the direction of movement. In the
second session, the robots start at the yellow cross, perform almost two
complete laps, and end at the yellow diamond. The red circle marks the
merge point for the partial and loaded map. Additionally, a final loop
closure is performedwhen the robot reaches the start point of the second
session at the start of the second turn

focusing on consistency in more than two sessions. The
dataset was obtained while a small mobile robot called iRat,
similar in size and shape to a large rodent [21], explored
an outdoor road tour (Fig. 7a). As main sensors, iRat was
equipped with an overhead camera and dead reckoning sen-
sors to provide images and odometry data.

The complete dataset composes a video of approximately
16 minutes long [21], during which the robot explores the
environment moving without any pattern between the roads.
However, only part of the dataset frames were used in the
experiment, corresponding tofivemapping sessions. Thefirst
four sessions are internal laps of the environment. The last
session corresponds to the external lap (Fig. 7b) and therefore
merges the four internalmaps into a single onewhen it travels
through their common areas.

Asmentioned, themap from onemapping session is trans-
ferred to the next as the loaded map. Once the partial map
session overlaps with the loaded map, they can be merged.
This process is then repeated in the next mapping session.
Figure 7c illustrates the merge points between the fifth and
first sessions (red circles), and the fifth and second sessions,
respectively.

sessions
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5th

start
end

direction

lst session

2ndsession

3rdsession 4thsession

5thsession

start

startstart

current
end

5thsession
1stsession

5
nd

session
2

th

session

a b

c

start

end

merge 
point

merge 
point

current

Fig. 7 The iRat experiment setup. a) Top view of the iRat environ-
ment. This experiment is performed in five mapping sessions. b) The
experiment is composed of 5 mapping sessions. In each session, the
robot performs a complete lap over internal and external paths, which
should ensure a loop closure by the RatSLAM algorithm. The arrows
give the direction of movement. c) The left panel depicts the merge

of the maps from the fifth (partial map, yellow) and the first (loaded
map, blue) mapping sessions. Once it encounters a previously mapped
location (red circle), the two maps are merged and become the updated
partial map. The agent continues mapping until finding a correspondent
match in the second session (right panel). This process continues until
the end of the fifth session
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4.4 New College Experiment

The New College Vision and Laser is a full-scale long-term
dataset collected from a robot completing several loops out-
doors around the New College campus in Oxford [41]. The
data includes 360◦ image (Fig. 8a), odometry, and laser scan
information. Similarly to the iRat dataset, the New College
has been used to validate the openRatSLAM implementation
[21]. Due to its complexity, this experiment aims to validate
the multisession approach with full-scale long-term data.

The experiment is divided into three mapping sessions.
The first two sessions covered the entire environment in two
different areas (Fig. 8b, blue and green paths). The third
session aims to merge the two loaded maps into a single
one (yellow path). In addition, in this session, considerable
amounts of new visual information are added to the map-
ping. These new inputs will test the approach’s capability
to maintain consistent mapping for a long period after the
merge operations.

In thefirst session, the robot completes three laps inside the
ellipse shape in the clockwise direction (upper blue arrow).
Subsequently, the agent leaves towards the intermediate area
between thefirst and second sessions and returns to the ellipse
area, covering its fourth lap, but in a counterclockwise direc-
tion (bottom blue arrow). In the second session, the agent
travels through the different regions of the environment in a
total of two clockwise turns.

The third mapping starts at a known position within the
map of the first session (Fig. 8, yellow cross). The robot

merge 
point

sessions
1st
2nd
3rd

start
end

direction

lst session
2nd session

merge 
point

3rd session

a

b

Fig. 8 TheNewCollegeOxford experiment setup. a)A sample frame
of the dataset. b) The experiment is composed of 3 mapping sessions.
In the first two sessions, the robot completes laps over distinct areas.
The third (partial map) session merges both (loaded) maps on the merge
points (red circle) and adds substantial new input for the RatSLAM. The
arrows give the direction of movement

travels through the entire environment in counterclockwise
laps. In particular, the robot’s last counterclockwise lap
within the area corresponding to the second session adds
novel information for the mapping.

5 Results

In this section, the results of the Virtual Tour, Lab Tour, iRat,
and New College experiments are presented. To compare
the multisession solution with the standard RatSLAM pro-
cess, the EMs for both multiple mapping and single mapping
sessions are shown, respectively. Note that after the merge
procedure, the resultingRatSLAMstructure (LVC, PCN, and
EM) is similar to the standard RatSLAM one.

5.1 Virtual Tour Results

5.1.1 Virtual Tour Experience Map

For comparison, the EM for the single RatSLAM mapping
is displayed in Fig. 9a. The link between the start and end-
point of the EM shows that the loop is closed in the map. The
result of the multisession mapping is presented in different
stages to show the evolution of the EM, starting at the end of
the first session (Fig. 9b). Figure 9c depicts the second ses-
sion with the partial map (yellow), alongside the loaded map
(blue), at the moment when the agent found an experience on
its EM that matched with an experience in the loaded map,
thus triggering themerge process. After themerge procedure,
the experiences of the partial map were transformed (trans-
lation and rotation) and joined into the loaded map (Fig. 9d).
Once the agent completed a full lap in the second session, the
EMs of the first and second sessions formed a closed loop
(Fig. 9e). As expected, the number of EM nodes in the sin-
gle and multiple sessions is the same, meaning that no new
experiences were created after merging the maps. Therefore,
the merge operations made the creation of new experiences
unnecessary. Neither new templates nor new activity packets
on PCN were added to the EM.

Figure 9f displays the final merged EM of both the first
and second mapping sessions. As displayed, a path correc-
tion is performed by RatSLAM over the EM. This correction
on the merged EM shows that after operation iv), the nodes
are linked in such a manner that they influence each other
when the relaxation algorithm distributes the odometry error
throughout the graph. Therefore, this path correction demon-
strates that the RatSLAM works as expected after the merge
procedure.

Finally, the ICP comparison of both single and multises-
sion maps shows strong similarities between the paths after
the transformation of the merged map to fit into the single-
session map (Fig. 10). RMSE = 0.00773327.
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Fig. 9 Experience Maps (EM) of the Virtual Tour experiment. a)
The path is generated in a single mapping session after the agent per-
forms two turns and a half. b) EM of the first mapping session. c) EM
in the second session when the agent finds a corresponding experience
in the loaded map, and the merge condition is met. d) EM after merging
the loaded and partial maps. The red circle represents the merge point.

e) EM after the loop closure triggered when the agent completed a full
lap. Note that new experiences are not generated when the agent travels
in a previous path (blue dots and lines), i.e., no yellow experiences are
plotted over the blue map. f) Path correction performed by RatSLAM
after the loop closure in e

5.1.2 Virtual Tour Pose Cells Network

In this part, the behavior of the PCN is analyzed during the
merge process. The Virtual Tour PCN was chosen because it
has a simplified behavior due to the pathmapped by the agent,
i.e., the PCN is fully activated in the� axis (robot orientation)
because of the ellipse-shaped laps. This behavior can be seen
after the endof a singlemapping session (Fig. 11a). It isworth
mentioning that the second and third laps done by the virtual
agent have the same frames and speed information as the first
one. Hence, the PCN units from the first lap are reactivated
in these next ones. Therefore, we define start and end for the
first and last energy packets created in the single mapping
session.

The PCN for the multisession is partially stored in the
loaded and partial map structures. As the loaded map has
not completed a full lap, its PCN is partially filled on the �

axis (Fig. 11b). Likewise, the partial map also has only part
of its PCN activated. Nevertheless, its last activation (blue)
corresponds to the start LM activation of the loaded map
(Fig. 11c). Through operation (iii) in the merge, the activities
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Fig. 10 ICP comparison for Virtual Tour experiment. The final
merged experiencemap (EM) from themultiple session (orange) closely
matched that from the single mapping session (purple). RMSE =
0.00773327
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Fig. 11 Pose Cells Network
(PCN) activation in the
Virtual Tour experiment. a)
PCN activation for the single
mapping session. The �′ axis
activity represents the robot
orientation change over the
ellipse-shaped lap. Since the
path is a closed loop, the �′ axis
is completely activated. The first
and last energy packets created
during the map are represented
by the start and end dots. b)
PCN activity of the loaded map
in the first mapping session. c)
PCN activity of the partial map
in the second session before the
merge procedure. The last
activity packet created in c
(blue) is equivalent to start LM
in b. d) PCN activation after the
merge procedure. Once the blue
activity in c must match the
start LM through operation ii),
the energy packets of the partial
map PCN are shifted (operation
iii). Part of partial map activity
packets is moved to the top of
the network once they reach the
network boundary on the bottom
face. Like the single mapping
session, the multisession PCN is
activated completely in the �′
axis, corresponding to its
closed-loop EM
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of the partial map are shifted tomatch the blue activity packet
with the start LM in the loaded map. Note that part of the
partial map PCN activity packets is shifted to the network’s
top face after reaching the bottom face’s boundary.

Similar to the single SLAM session, the final merged map
of the Virtual Tour is a closed-loop ellipse. Consistently,
the final PCN is activated through the complete � axis after
the merge (Fig. 11c). These results show that our method
changes both EM and the PCN coherently, and their final
results resemble the ones from a single mapping session.

Finally, to demonstrate the influence and impact of the
PCN operation on the merge process, multisession mapping
was carried out without shifting the PCN activities of the par-
tial map (operation iii). As expected, new experiences were
created due to the incorrect association between templates
and PCN activity (Fig. 12). Therefore, as demonstrated, the
merge operations on the PCN are necessary for RatSLAM to
perform correctly.

5.2 Lab Tour Results

Compared to the Virtual Tour, the Lab Tour experiment is
more complex in two regards. It was performed in a physical
environment using a robot in a more complex environment’s
topology. Due to the robustness of RatSLAM, the EM for the
single mapping session nevertheless correctly represents the
environment’s topology (Fig. 13a). So, does themultisession
mapping, which we discuss step-by-step? After the first ses-
sion, the EMonly reflects one of the loops in the environment
(Fig. 13b) since the agent only had experiences in the smaller
loop. Up until the merge, conditions are met (Fig. 13c), the
loaded and partial maps are not aligned, and their relative
positions are random. This changes when the two maps are
merged (Fig. 13d). Note that the nodes of the partial map had
been concatenated at the merge point (red circle).

Figure 13e displays a path correction of the start and end
nodes (blue cross and diamond symbols) of the first session
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Fig. 13 Experience maps (EM) of the Lab Tour experiment. a) EM
of the single mapping session. The cross and diamond, respectively,
represent the start and end of this map. b) Partial map (blue) produced
in the first session (see Fig. 6b). c) The loaded map (blue) and partial
map (yellow) were in the second session when the conditions for the
merge procedure were met. d) The two EMs maps merged in a single

RatSLAM structure. e) Path correction in the second session after the
merge procedure, i.e., the loaded map start and endpoint distance have
changed in the second session. f) Final map produced at the end of the
second session. Additionally, there was a loop closure after the robot
completed the second session’s larger lap
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Fig. 14 ICP comparison for Lab Tour experiment. The final merged
experience map (EM) from the multiple session (orange) closely
matched that from the single mapping session (purple). RMSE =
0.00883269

map. Path correction over an alreadymapped place reinforces
the expected execution of RatSLAM after the merge proce-
dure since both maps are linked in one single structure. Thus,

all the nodes should be affected if changes are needed in the
EM after the merge. Besides that, this result shows that the
merge approach could improve the mapping in multisession.

The final EM at the end of the second session exhibits the
results of the second loop closure when the robot completes
a full lap in the second session path Fig. 13f. This final map
is similar to the EM generated in the single session (Fig. 14).
RMSE = 0.00883269.

5.3 iRat Results

The iRat experiment is challenging since it requires merging
maps infive sessions.Nevertheless, single-sessionRatSLAM
performs very well, generating an accurate EM (Fig. 15a).
Note that the robot continuously moves through the environ-
ment in a singlemapping session. This continuousmovement
influences the behavior of RatSLAM’s relaxation algorithm
(8) since the path correction depends on the connection
among the nodes.

The results of themultisessionmapping show that the fifth
session seamlessly connected the loaded EMs of the previous
sessions. (Fig. 15b-f). Unlike single-session mapping, mul-
tisession maps are not generated through continuous robot
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Fig. 15 Experience maps (EM) of the iRat experiment. a) EM of the
singlemapping session. The start and end points of themap are depicted
as the cross and diamond symbols, respectively. b–f) The Experience

Map produced in the fifth mapping session (see Fig. 7b). After merging
the partial map with a loaded map (blue), the resulting map becomes
the partial map (yellow)
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Fig. 16 ICP comparison of EM for iRat experiment.Despite a noted
scale difference, the final merged experience map (EM) from the mul-
tiple session (orange) closely matched that from the single mapping
session (purple), RMSE = 0.0126932

movements, that is, each session generates its map indepen-
dently. In addition, the mapping of the fifth session covers
only the external area of the environment. Therefore, the
existing links between the loaded and partial maps are their
regions corresponding to this external path. Without linking
the internal nodes with the external ones, no path corrections
can be made on the final map. This may have influenced the
highdistances shown in the internalmaps compared to single-
session EM (Fig. 16). Nevertheless, the ICP comparison
between the final multisession EM with the single-session
EM shows clear visual similarities between the internal paths
and the overall map. (Fig. 16). RMSE = 0.0126932.

5.4 New College Results

The New College experiment is the biggest challenge since
it involves mapping an even more complex environment, and
the multisession version requires the merging of large maps.
The single-session EM closely matches the physical struc-
ture of the environment (Fig. 17a). Similarly, the first and
second sessions show similar maps for the different areas
(Fig. 17b-c).
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Fig. 17 Experience maps (EM) of the Oxford New College experi-
ment. a) EM of the single mapping session. The start and end points of
themap are depicted as the cross and diamond symbols, respectively. b–
c) The Experience Map produced in the first–second mapping sessions.
d– f) The Experience Map produced in the third mapping session. The

red circle shows the partial map merged into the first session loaded
map. Red squares depict path correction after the merge within the sec-
ond sessionEM.Green circles show loop closures comparisons between
multisession and single-session EMs
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Fig. 18 ICP comparison of EM forOxfordNewCollege experiment.
Despite the visual difference between the final merged and single-
session mapping EM (purple), both resemble to correct environment
structure. RMSE = 85.4687

The partial map of the third session is quickly merged
since it starts in a known place inside the first session loaded
map (Fig. 17d, red circle). After completing its trajectory in
the first session area, the resulting map is merged into the
second session loaded map at its expected location (Fig. 17e,
red circle).

As can be observed, in continuing the mapping, the Rat-
SLAM algorithm applied an inconsistent path correction at
the second merge point, which affected the final map (red
squares, Fig. 17e–f). This inconsistency led to a clear dif-
ference between single-session and multisession maps when
compared by ICP (Fig. 18, RMSE = 85.4687). However,
despite this inconsistent correction, the final multisession
mappresents a sufficient similarity of structures that compose
the environment path (see Fig. 8). Notably, the multisession
map correctly closed loopswhere the single-sessionmapping
failed to perform it. (green circles, Fig. 17a,f).

6 Conclusion

This work presents a novel solution to the multisession
SLAM problem for the RatSLAM algorithm. Specifically,
the proposed solution considers the multisession mapping
scenario where the robot is not localized within the previ-
ously generated map, and newly mapped areas have to be
merged with previously mapped ones into a single coherent
map of the environment.

The merging of maps is obtained from complete struc-
tures (LVC, PCN, and EM) acquired and stored in previous
mapping sessions. The proposed approach merges the map
under construction with previously stored maps when both

maps share a template, adjusting all structures spatially and
producing a new partial map. After merging, the mapping
session continues, following the standard algorithm, and can
perform new merging procedures.

Four different environments were explored in this work:
the Virtual Tour experiment, in which a virtual robot per-
formed an ellipse path; the Lab Tour experiment, where a
robotic platform called RoboDeck mapped a research labo-
ratory; the iRat dataset used to validate the openRatSLAM
implementation [21]; and the challenging New College
dataset [41]. The Virtual Tour and Lab Tour experiments
were divided into two mapping sessions, while the New Col-
lege and iRat experiments were separated into three and five
mapping sessions, respectively.

The multisession maps obtained were comparable to
single-mapping maps in several experiments. For all exper-
iments, the final EMs were similar to the EMs of the single
mapping session. On the other hand, path deviation increased
with the number of mapping sessions and in long-term and
large-scale mapping scenarios, as shown by the EMs of iRat
and the New College experiment, respectively. In the former,
the difference between them may be due to the absence of
connection between the nodes of the internal and external
laps. In the latter case, the path deviation occurred after an
inconsistent path correction after the merge point. Regard-
less of path distortions, the final maps of both resemble the
single-session map, which shows a potential application for
the merge approach in more than two sessions.

Furthermore, the experimental results showed: a) path cor-
rections performed in EM; b) no new experiences created in
the Virtual Tour experiment; c) the PCN activity packages of
Virtual Tour in the single mapping session are similar to the
PCN of the multisession; d) EM matching in real-world Lab
Tour, and realistic iRat experiments; e) loop closure correctly
performed when compared to single-session mapping in the
New College dataset. Therefore, the present work shows that
the proposed merge mechanism addresses the multisession
solutions (i) and (ii), and can be used as a solution for the
RatSLAM algorithm.

In future work, a deeper investigation of the results pre-
sented on the New College experiment should be conducted.
With this, improvements in the merge mechanism could be
expected for large-size long-term environments. Moreover,
the overall merge mechanism could be adapted to compare
the current under-construction map with multiple previously
stored maps.
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