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Reinforcement learning (RL) has become a popular paradigm for modeling animal

behavior, analyzing neuronal representations, and studying their emergence

during learning. This development has been fueled by advances in understanding

the role of RL in both the brain and artificial intelligence. However, while

in machine learning a set of tools and standardized benchmarks facilitate

the development of new methods and their comparison to existing ones,

in neuroscience, the software infrastructure is much more fragmented. Even

if sharing theoretical principles, computational studies rarely share software

frameworks, thereby impeding the integration or comparison of di�erent results.

Machine learning tools are also di�cult to port to computational neuroscience

since the experimental requirements are usually not well aligned. To address these

challenges we introduce CoBeL-RL, a closed-loop simulator of complex behavior

and learning based on RL and deep neural networks. It provides a neuroscience-

oriented framework for e�ciently setting up and running simulations. CoBeL-RL

o�ers a set of virtual environments, e.g., T-maze and Morris water maze, which

can be simulated at di�erent levels of abstraction, e.g., a simple gridworld or a 3D

environment with complex visual stimuli, and set up using intuitive GUI tools. A

range of RL algorithms, e.g., Dyna-Q and deep Q-network algorithms, is provided

and can be easily extended. CoBeL-RL provides tools for monitoring and analyzing

behavior and unit activity, and allows for fine-grained control of the simulation

via interfaces to relevant points in its closed-loop. In summary, CoBeL-RL fills an

important gap in the software toolbox of computational neuroscience.

KEYWORDS

spatial navigation, spatial learning, hippocampus, place cells, grid cells, simulation
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1. Introduction

The discovery of place cells in the hippocampus (O’Keefe and Dostrovsky, 1971)

and grid cells in the medial enthorinal cortex (Hafting et al., 2005) have advanced

our knowledge about spatial representations in the brain. These discoveries have also

spurred the development of computational models to complement electrophysiological

and behavioral experiments, and to better understand the learning of such representations
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and how they may drive behavior (Bermudez-Contreras et al.,

2020). However, the computations performed during spatial

navigation have received far less attention. In recent years,

reinforcement learning (RL) (Sutton and Barto, 2018) has been

of increasing interest in computational studies as it allows

for modeling complex behavior in complex environments.

Reinforcement learning describes the closed-loop interaction of

an agent with its environment in order to maximize rewarding

behavior or to minimize repulsive situations. A common way of

solving the RL problem consists of inferring the value function,

a mapping from state-action pairs to expected future reward, and

selecting those actions which yield the highest values. The brain is

thought to support this value-based type of RL (Schultz et al., 1997),

and RL has been used to explain both human (Redish et al., 2007;

Zhang et al., 2018) and animal behavior (Bathellier et al., 2013;

Walther et al., 2021) (see Botvinick et al., 2020 for a recent review).

Concurrent with advances in understanding neural spatial

representations, our theoretical understanding of reinforcement

learning has also improved significantly in recent years. One major

innovation was the combination of RL with deep neural networks

(DNNs) (Mnih et al., 2015). These Deep RL models are now

among the best-performing machine learning techniques, reaching

higher performances than humans on complex tasks like playing

Go (Mnih et al., 2015) or video games (Silver et al., 2016, 2017).

These advances in RL methods offer the opportunity to study

the behavior, learning, and representations that emerge, when

complex neural network models are trained on tasks similar to

those used in biological experiments. The use of virtual reality in

animal experiments (Pinto et al., 2018; Koay et al., 2020; Nieh et al.,

2021) would even allow for the direct comparison of in-vivo and in-

silico behavior. First attempts in this direction have recently shown

that Deep RL models develop spatial representations similar to

those found in enthorinal cortex (Banino et al., 2018; Cueva and

Wei, 2018) and hippocampus (Vijayabaskaran and Cheng, 2022).

In many computational studies, models are custom built

for specific experiments and analyses. While several software

frameworks for simulations have been developed, they are often

specialized for a certain type of task (Eppler et al., 2009; Leibo et al.,

2018). Furthermore, the majority of frameworks are developed

primarily within the context of machine learning and for eventual

practical applications (Beattie et al., 2016; Chevalier-Boisvert

et al., 2018; Liang et al., 2018), which makes their adaptation

for neuroscience a daunting task. The high heterogeneity of

models with respect to their technical design, implementation and

requirements severely complicates their integration. A common RL

framework would provide an opportunity to share and combine

work across different fields and levels of abstraction.

A number of RL simulation frameworks have been introduced

previously that target machine learning or industrial applications.

For example, DeepMind Lab provides a software interface to

a first-person 3D game platform to develop general artificial

intelligence and machine learning systems (Beattie et al., 2016).

RLlib is a Python-based framework that provides a large number

of virtual environments and toolkits for building and performing

RL simulations (Liang et al., 2018). The main targets of

RLib are industrial applications in domains such as robotics,

logistics, finance, etc. One unique advantage of RLlib is that

it offers architectures for large-scale distributed RL simulations

to massively speed up training. The framework also supports

Tensorflow and Pytorch. RLib has been used by industry

leaders, but does not target scientific studies in neuroscience.

The Minimalistic Gridworld Environment (MiniGrid) provides

an efficient gridworld environment setup with a large variety

of different types of gridworlds, targeting machine learning

(Chevalier-Boisvert et al., 2018). MiniGrid differs from our

Gridworld interface in that it provides isometric top view image

observations instead of abstract states. MAgent comprises a library

for the efficient training of multi-agent systems (Zheng et al., 2018;

Terry et al., 2020) and includes implementations of common Deep

RL algorithms like DQN.

On the other hand, there are efforts that are targeted toward

application in neuroscience. For instance, SPORE provides an

interface between the NEST simulator, which is optimized for

spiking neuron models (Eppler et al., 2009), and the GAZEBO1

robotics simulator (Kaiser et al., 2019). SPORE targets robotics

tasks, and the framework is not easy to use for analysis of network

behavior or emerging connectivity in the network. The framework

also cannot be easily combined with deep Q-learning. Psychlab

aims at comparing the behaviors of artificial agents and human

subjects by recreating the experimental setups used commonly

in psychological experiments (Leibo et al., 2018). These setups

include visual search, multiple object tracking, and continuous

recognition. The setups are recreated inside the DeepMind Lab

virtual environment (Beattie et al., 2016). RatLab is a software

framework for studying spatial representations in rats using

simulated agents (Schönfeld and Wiskott, 2013). The place code

model is based on the hierarchical Slow Feature Analysis (SFA)

(Schönfeld and Wiskott, 2015). RatLab supports a number of

different spatial navigation tasks and can be flexibly extended. It

is not well-suited to be integrated with reinforcement learning

methods.

Here, we introduce the “Closed-loop simulator of Complex

Behavior and Learning based on Reinforcement Learning and

deep neural networks,” or CoBeL-RL for short. The framework

is based on the software that had been developed for studying

the role of the hippocampus in spatial learning (Walther et al.,

2021; Vijayabaskaran and Cheng, 2022) and further extends

and unifies its functionality. The CoBeL-RL framework offers a

range of reinforcement learning algorithms, e.g., Q-learning or

deep Q-network, and environments commonly used in behavioral

studies, e.g., T-maze or Morris water maze. In contrast to other

libraries, virtual environments across different levels of abstraction

are supported, e.g., gridworld and 3D simulation of physical

environments. Furthermore, our framework provides tools for the

monitoring and analysis of generated behavioral and neuronal data,

e.g., place cell analysis.

2. Methods

The CoBeL-RL framework provides the tools necessary for

setting up the closed-loop interaction between an agent and an

1 http://gazebosim.org/
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FIGURE 1

The CoBeL-RL framework. Illustration of CoBeL-RL’s modules and their roles. Modules can be grouped into three categories: Modules, which handle

the simulation of the virtual environment and the flow of information (Environment), implement di�erent RL algorithms (Agent), and implement

supporting functionalities (Utility) such as monitoring and data analysis. The interactions between an agent and its environment (Sutton and Barto,

2018) is implemented with the help of the module “OpenAI Interfaces” and provides observation and reward information to the agent, and sends

actions to be executed to the environment.

environment (Sutton and Barto, 2018). CoBeL-RL focuses on

the simulation of trial-based experimental designs, that is, the

learning of a task is structured into separate trials, similar to

behavioral experiments. Single trials are (usually) defined by the

completion of the task or reaching a timeout condition, i.e., time

horizon. Each trial is further differentiated into agent-environment

interactions referred to as steps. Each step yields an experience

tuple (st , at , rt , st+1), which the agent can learn directly from or

store in a memory structure for later learning. st is the agent’s

state at time t, at is the action selected by the agent, rt is the

reward received for selecting action at , and st+1 is the agent’s

new state.

CoBeL-RL is separated into modules that can be classified

into three categories (Agent, Environment, and Utility), which

provide models of the RL agent, models of the environment,

and utility functionalities, respectively (Figure 1). These three

categories of modules will be explained in detail in the

following sections. The majority of the framework is written

in Python 3 (Rossum, 1995), while a few components are

written in other programming languages as required by the

software to which they interface. Tensorflow 2 (Abadi et al.,

2015) serves as the main library for implementing Deep Neural

Network models, and Keras-RL2 (Tensorflow 2 compatible

version of Keras-RL; Plappert, 2016) as the base for the

framework’s deep Q-network (DQN) agent (Mnih et al., 2015). The

interaction between RL agents and RL environments is facilitated

through Open AI Gym (Brockman et al., 2016). PyQt5 is used

for visualization.

2.1. Agent modules

RL agents are implemented via the Agent modules that

define the behavior including learning, exploration strategies, and

memory (see Figure 1). All RL agents inherit from a common

abstract RL agent class requiring them to implement functions for

training and testing, as well as the computation of predictions for a

given batch of observations. Furthermore, all RL agents implement

callbacks which are executed at the start and end of a trial or

step to allow for fine-grained control during simulations. Trial

information, e.g., number of trial steps, reward, etc., is collected by

RL agents and passed to the callbacks. All callback classes inherit

from a common callback class, and custom callback functions can

be defined by the user and passed as a dictionary to the RL agent.

RL agents in CoBeL-RL can use experience replay (Lin, 1992,

1993; Mnih et al., 2015) as part of the learning algorithm. To do so,

agents are linked with different memory modules used internally

as buffers for experience replay. Experience tuples are stored in the

memory modules providing the possibility of building up a history

of experiences, which are used for training. Agents and memory

modules can be combined freely to study the effects of different

replay models.
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Four agents are currently available and described briefly in the

following.

2.1.1. DQN agents
The framework’s baseline DQN agent encapsulates Keras-RL2’s

DQN implementation. It uses a small fully connected DNN by

default and follows an epsilon-greedy policy. Since the original

implementation is trained for a given number of steps instead of

trials, the aforementioned callbacks are used to allow training for

a given number of trials. This agent’s callback class inherits from

both the Keras callback class as well as the common callback class.

Furthermore, versions of the DQN which implement Prioritized

Experience Replay (Schaul et al., 2016) (PER-DQN) and learn an

environmental model are also available.

2.1.2. Dyna-Q agents
The Dyna-Qmodel (Sutton and Barto, 2018) is implemented as

a static tabular agent, that is, the agent’s Q-function is represented

as an array of size |S|×|A|where |S| is the number of environmental

states and |A| is the number of available actions. Due to its tabular

nature, this agent, and those that derive from it, can only be used

in conjunction with discrete static environments that represent

states as abstract indices, such the gridworld interface. The agent’s

environmental model is encapsulated as a separatememorymodule

and similarly represents the environment in a tabular fashion.

The memory module stores and retrieves experiences. For action

selection either an epsilon-greedy (default) or softmax policy can

be chosen. Furthermore, an optional action mask can be used to

remove actions from the action selection that do not result in a

state change. The agent’s Q-function is updated each step online

and via experience replay (Lin, 1992). Experience replay can be

performed after each step, after each trial, or disabled. In addition,

an implementation of the Prioritized Memory Access (Mattar and

Daw, 2018) model is also provided.

2.1.3. Dyna-DQN and DSR agents
CoBeL-RL further offers hybrid agents which are derived from

the Dyna-Q agent and use a DQN to represent their Q-function

which we refer to as Dyna-DQN. The DQN part of the hybrid

does not rely on Keras-RL2 and can be implemented separately in

Tensorflow 2 or PyTorch (Paszke et al., 2019). An abstract network

class serves as an interface between the agent and the separately

implemented network. A set of observations which correspond

to the different discrete environmental states can be passed to

the agent. If no observations are defined, a one-hot encoding of

the environmental states is generated which serve as observations.

Additionally, a hybrid agent that implements a version of Deep

Successor Reinforcement Learning (DSR) (Kulkarni et al., 2016) is

also provided which we refer to as Dyna-DSR. Similar to the DQN

agents, the Dyna-DSR uses a small DNN by default to represent

the Q-function. However, unlike the DSR, the Dyna-DSR does not

learn a separate feature representation of its observations. Instead,

reward and successor representation models are trained directly

on the observations. We refer to the representation learned by

Dyna-DSR as the deep successor representation (Deep SR).

2.1.4. Model-free episodic control agents
While all three Q-learning-based agents introduced above

update the Q-function incrementally, Model-Free Episodic Control

(MFEC) (Blundell et al., 2016) agents are designed for fast learning

by repeating the best action they have performed in a specific

state in the past. MFEC is therefore well-suited for modeling one-

shot learning (Wiltgen et al., 2006; Kosaki et al., 2014). The Q-

function of MFEC agents is represented by an array of growing

size where a state-action pair and its corresponding Q-value is

inserted if the pair is encountered by the agent for the first time.

The Q-value is updated in a one-shot manner, which simply

keeps the best accumulative reward encountered so far. During

inference, the agent searches the array, finds the most similar state

to the current state and retrieves the Q-values upon which action

selection decisions are made. To further improve computational

efficiency, all unique, high-dimensional states are first projected to

a low dimensional space and then stored by using a KD-tree data

structure (a K-dimensional tree is a binary tree where every node is

a k-dimensional point; Bentley, 1975), so that the search of closest

neighbors to a given state (measured under Euclidean distance)

becomes efficient.

2.2. Environment modules

The implementation of the RL environments is split across

different modules, and the agents interact with them through Open

AI Gym interfaces. Roughly, CoBeL-RL provides two types of

environments: simple environments that are directly implemented

within an interface, e.g., a gridworld, and complex environments

that are rendered by a game engine, such as Unity (Unity

Technologies, 2005), Godot (Linietsky and Manzur, 2007), or

Blender Game Engine (Blender Online Community, 2018). The

latter involves additional modules for interaction with game

engines (3D Simulators), processing of observations (observation

modules) and navigation (spatial representation modules).

2.2.1. Interface module
All interfaces inherit from the Open AI Gym interface

(Brockman et al., 2016) and implement step and reset functions.

CoBeL-RL offers a wide range of different interfaces.

The gridworld interface represents gridworld environments in

a tabular fashion. Environmental transitions are determined via a

state-action-state transition matrix of size |S| × |A| × |S|. |A| = 4

to realize the movements on the grid (up, down, left, right). The

reward function and terminal states are represented as tables of size

|S|, where the reward function is real valued and the terminal states

are binary encoded. The set of possible starting states is represented

as a list of state indices.

A simple 2D environment is implemented by the 2d interface

and allows interaction either by moving in the four cardinal

directions or as a differential wheeled robot (i.e., the agent can

move either of its wheels). In the former case the agent’s state is

represented as 2d coordinates and in the latter case orientation is

also included. The environment itself has no obstacles with the

exception of walls that delineate the area in which the agent can
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navigate. The environment can contain multiple reward locations.

Trials end when the agent reaches a reward, and optionally when it

hits a wall.

The discrete interface implements tabular environments similar

to the gridworld interface but is compatible with more complex

environments. Like the gridworld interface, it requires the

definition of a state-action-state transition matrix, a reward

function, a table containing terminal states, and a list of starting

states. Unlike the gridworld interface, it provides observations,

which can be defined for each state, instead of state indices. If no

observations are defined, a one-hot encoding is generated for each

state.

The baseline interface provides a simple interface

implementation for deep Q-learning agents. The baseline

interface defines the interaction of the baseline DQN agent with

the spatial representation module, the observation module and the

simulated 3D environment. The number of actions available to

the agent is determined by the spatial representation module. The

following sections detail the functionality of spatial representation,

observation, and 3D simulator modules.

2.2.2. Spatial representation module
The spatial representation module allows the agent to navigate on

a simplified spatial representation of the environment, rather than

continuously through space. Currently, this module constructs

a topological graph of the environment, with nodes and edges

defining the connectivity. The topological graph can either be

manually defined by the user when working with Blender by

placing nodes and edges directly in the Blender Game Engine

(Blender Online Community, 2018) (BGE), or can be automatically

constructed using the grid graph module. CoBeL-RL provides

implementations of simple rectangular and hexagonal graphs, and

other graph types, such as a Delaunay triangulation, can be easily

implemented if needed.

The spatial representation module can also be used to directly

define the action space of the agent and specify how the actions are

mapped to transitions on the graph. The default topological graphs

implement twomodes of transitions—without rotation, which only

allows transitions to neighboring nodes, and with rotations, which

allows both translational and rotational movements on the graph.

2.2.3. Observation module
The observation module provides functionality for the pre-

processing of observations retrieved by the environment before

they are sent to the RL agent.

The simplest observation module retrieves the agent’s position

in x-y coordinates as well as its current heading direction,

which can be used by the RL agent alongside or instead of

visual observations. The observation module also pre-processes

visual observations by resizing them to a user-defined size and

normalizing the pixel values in the range [0, 1], such that they

can be passed to the agent. Furthermore, observations can be

corrupted with different types of noise, e.g., Gaussian noise, to

better capture the imprecision of biological observations. Two

or more observation modules can also be flexibly combined to

simulate multisensory observations. For multisensory simulations,

the individual observation modules are stored in a dictionary. The

observations are then passed to the RL agent through the interface

module. For deep RL agents, the keys of the dictionary can be used

to indicate the input layer of the neural network to which those

observations should be passed, allowing the use of complex network

structures to process the observations.

2.2.4. 3D simulators
The 3D Simulators module implements the communication

between the CoBeL-RL framework and game engines that are

used for simulation and rendering. The sending of commands and

retrieval of data is handled via web sockets. CoBeL-RL supports

three different game engines for simulation and rendering: Blender

Game Engine (BGE) (Blender Online Community, 2018), Unity

(Unity Technologies, 2005), and Godot (Linietsky and Manzur,

2007).

The baseline BGE Simulator module communicates via three

separate web sockets. The control socket is used to send

commands and retrieve control relevant data, e.g., object identifiers.

Commands are encoded as strings which contain the command

name as well as parameter values in a comma-separated format.

Similarly, retrieved values arrive as strings in a comma-separated

format. Observational data like visual observations and sensory

data are retrieved via the video socket and data socket, respectively.

During module initialization, a new Blender process is launched

and a user-defined Blender scene is opened. Important commands

provided by the module include the changing of an agent’s

position and orientation, as well as the control of light sources.

Observational data is automatically retrieved when the agent is

manipulated, but can also be retrieved manually.

The Unity Simulator module is based on the Unity ML-Agents

Toolkit (Juliani et al., 2020), which provides various interfaces

for the communication between Unity and Python. The toolkit is

mainly divided into two parts, one for the Unity side and another

one for the Python side. The former is written in C#, which

is the programming language for developing Unity games. Data

transmission is handled by web sockets in the Unity ML-Agents

Toolkit. Users do not need to set up the sockets themselves, but

rather use the APIs provided by the Toolkit. Both string and float

variables can be exchanged between the two sides.

The Godot Simulator module is built on the Godot engine and

follows the same communication scheme as the BGE Simulator

module. However, instead of Python, GDScript is used by

Godot. Furthermore, instead of using comma-separated strings

for communication most data is encoded in the JSON format.

The Godot Simulator module supports the same commands and

functionality as the BGE Simulator module and additionally allows

for the switching of environments without the need for restarting

the 3D simulator.

2.3. Utility modules

CoBeL-RL’s utility modules consist of the analysis module and

misc module. Simulation variables, e.g., behavior and learning

progress, can be monitored using the analysis module’s various
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monitor classes. Gridworld tools and an environment editor can

be found in the misc module.

2.3.1. Analysis module
The analysis module contains code for different types of

analysis and monitoring tools.

CoBeL-RL provides monitors which store variables of interest

during the course of training: the number of steps required to

complete a trial (escape latency), the cumulative reward received in

each trial, the responses emitted by the agent on each trial or step,

and the agent’s position at each step (trajectory). Additionally, for

Deep RL agents, the activity of layer units can be tracked with the

response monitor. The different monitors can be added to any RL

agent and are updated with trial information from callback calls.

The analysis tools enable the computation of spatial activation

maps of network units at a desired resolution. The maps can be

generated during the course of training or at the end of training

by artificially moving the agent on a rectangular grid in the

environment and recording the activity of the units of interest at

the grid points. Based on the spatial activation maps, CoBeL-RL

also provides a method to identify units that show special spatial

firing properties, such as place-cell-like units and vector-like units

(Vijayabaskaran and Cheng, 2022).

2.3.2. Misc module
The misc module provides tools that support the setting up of

simulations and environments.

The gridworld tools provide functionality for the creation of

gridworld environments. Gridworlds can be generated by either

manually defining the relevant variables, e.g., size, reward function,

starting states, etc., or by using templates for specific instances

of gridworld environments, e.g., an open field with a single goal

location. The gridworld tools generate the variables required by the

gridworld interface, such as the state-action-state transition matrix,

reward function, etc., and store them in a dictionary. A visual editor

for gridworlds, which builds on the gridworld tools is provided in

the gridworld GUI.

The Unity editor tools allow the user to quickly design the

structure of a discrete, maze-like environment including external

walls, obstacles, an agent and rewards, and import the generated

file to the Unity editor to create a virtual environment. The tools

are written in Java (version 17.0.1) and include a GUI as back-

end functionalities, which generate the .yaml file required by the

Unity editor. The user can choose from a large number of textures,

and has the option of adding and deleting materials.

2.4. Additional details about o	ine
rendering experiment

In Section 3.3, we show two examples of simulations using

the BGE and Unity simulators. For the online/offline rendering

experiment in Section 3.3, we use a T-maze environment with a

Gridworld topology. The scene consisted of 3,061 vertices and 2,482

faces, including a visual representation of the agent that was partly

visible in every frame and a single spherical light source. Maze

walls had image textures and used diffuse (Lambert) and specular

(CookTorr) shading. Backface culling was active for the complete

scene. Simulations were run on a 16 core Intel(R) Xeon(R) W-

1270P CPU with clock speed 3.80 GHz and 32 GB RAM and a

NVIDIA Quadro RTX(R) 5000 GPU. The agent was trained for five

trials on the random pellet chasing task to encourage exploration of

the entire maze, with a maximum trial duration of 400 time steps.

For the offline rendering, observation images were pre-rendered

and stored for all possible agent locations and later retrieved

when needed. Simulation time for pre-rendering and storage was

excluded from the mean frame time analysis.

3. Results

3.1. CoBeL-RL

The CoBeL-RL framework is a highly modular software

platform to conduct spatial navigation and learning experiments

with virtual agents. Figure 2 illustrates one of its realizations to

simulate a T-maze experiment where an agent has to visit the right

arm of the maze to receive a reward. The representation of this

environment was split into two parts: the visual appearance of the

environment and the topology. The former was built using the

Unity simulator, which renders RGB images and sends them to

the observation module. These image observations can be resized,

or normalized to conform to parameter ranges of pixel values and

are then sent to the OpenAI Gym Interface. The topology module

generates a topological graph of the environment automatically and

sends the spatial information of the artificial agent (blue square in

Figure 2) to the Gym interface as well. The reward function was

defined inside the Gym interface to decide what kind of behavior

is reinforced. For example, if the reward (green ball, Figure 2) is

placed in a fixed location in the maze in every trial, then a simple

goal-directed navigation task is simulated.

As part of the Gym Interface, a DQN agent implemented using

Keras/Tensorflow receives the processed image observation, the

instant reward and then takes an action, deciding whether the

artificial agent should move forward, turn left, etc. The DQN agents

can utilize memory replay to speed up learning and to study the

role of short-term memory and episode replay in spatial navigation

tasks (Zeng et al., 2022). It is possible to turn the memory on or

off, limit its size, or change the statistics of how memories are

replayed to model the effect of manipulating episodic memory

(Diekmann and Cheng, 2022). The action signal is further passed

from the Gym interface to the topology graph, where the position

and orientation of the artificial agent is computed and sent to the

Unity simulator to update the virtual environment, which closes the

feedback loop between agent and environment. At the same time,

the performance, i.e., escape latency, cumulative response curve,

etc., of the DQN agent is monitored live and displayed to the user.

3.2. Fast and easy creation of environments

We evaluated CoBeL-RL on a set of environments that model

biological experiments with rodents. CoBeL-RL provides multiple
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FIGURE 2

The CoBeL-RL framework in use. Example of a simulation loop employing a DQN agent in a virtual 3D environment with visual stimuli. Simulation

relevant variables are passed between CoBeL-RL’s modules directly (solid arrows) and via web sockets between CoBeL-RL and the 3D simulator

(dashed arrows). The monitor modules rely on callback to record variables of interest (dashed green arrow).

options to set up a virtual environment. The requirements for the

set-up differ based on the type of virtual environment: Gridworld

environments require the definition of a transition graph, while

3D environments further require the modeling and texturing of

the environment’s geometry. In addition to these fully manual

methods, CoBeL-RL provides simple visual editors for the quick

creation of maze environments at different abstraction levels, i.e.,

2D gridworld environments and 3D environments in the Unity

Game Engine. As an example we demonstrate how both of them

can be used to set up a simple T-maze environment in the

following sections.

3.2.1. Gridworld editor
The Gridworld editor provides an intuitive graphical interface

for the creation of gridworld environments. After first selecting the

height and width of a new gridworld, the editor presents a grid of

states which can be interacted with using the mouse (Figure 3A).

States can be selected via a mouse left click and their properties

edited, e.g., the reward associated with a state. Transitions can be

edited by double clicking on edges between adjacent states, thereby

toggling the transition probability between the states in both

directions between zero and one. For more fine grained control,

state-action transitions can be manually defined upon selecting the

advanced settings option in the properties of a currently selected

state. Gridworlds created with the editor are stored using Python’s

pickle module and directly used with CoBeL-RL’s gym gridworld

and gym discrete interfaces. The gridworld itself is represented as

a state-action-state transition matrix, reward function, starting set

(i.e., the states at which an agent may start), and terminal set (i.e.,

the states at which a trial terminates). Additionally, metrics like the

number of states, state coordinates, and a list of invalid transitions

are also stored.

3.2.2. Unity editor
The Unity Editor can be used to easily build 3D maze

environments, which can then be employed as the training and

testing environments for the RL agents in CoBeL-RL. An interactive

canvas covered with grids in the GUI (Figure 3B) allows the user

to simply draw the positions and dimensions of the maze walls as

well as the locations of obstacles, an agent and reward(s). The grid

size corresponds to one unit length in Unity and the dimension

of the entire 2D grids are adjustable. Therefore, the user is able

to design mazes of any size and shape. The editor has included a

library of different texture materials. After the structure of the maze

has been defined, the user can choose to either manually select a

material from the library for each object in the maze, or let the

editor randomly assign a texture for that same object. The files for

all materials are placed in a folder, and the user has the option to

add or delete any material from within the GUI. Finally, the Unity

scene files can be directly imported into the Unity Editor and start

communicating with the CobeL-RL framework via the frontend

interface for Unity.

3.3. E�cient distributed simulation using
CoBeL-RL

CoBeL-RL can be used in a closed-loop simulation to simulate

the interaction of the agent and its environment online. Using the

renderer online in a closed-loop setup has the advantage of being
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FIGURE 3

World editors. (A) The gridworld editor (left) can be used to quickly and intuitively create new environments for simulation (right). (B) The editor for

3D Unity environments (left) generates 3D Unity scenes (right).

very flexible and reflecting changes in the environment directly.

However, often the environment tested for simple RL agents only

consists of a small set of possible observations. For instance, in

the Gridworld example in Figure 2, the agent can be located in

one of only 12 different positions. Even if multiple configurations,

like heading direction or different visual cues are allowed for every

location, the total number of possible image observations will still

be small compared to the number of learning iterations. In such

situations, it may be beneficial to resort to an offline rendering

strategy, i.e., to render and store the image observations once at

the beginning of the simulation and then retrieve the observations

from memory instead of rendering them anew in every time step.

Thismode is crucial when simulations are run on a remote compute

cluster that does not have the required software packages installed

to run the renderer locally. CoBeL-RL provides the functionality

to switch between online and offline rendering with little changes

to the simulation code. In this section we provide a comparison

between these two modes in terms of the simulation runtime.

For a numerical comparison, we used a simple T-maze

environment that was rendered using Blender and a foraging task to

encourage exploration using the MFEC agent (Blundell et al., 2016)

(see Section Methods for details). For online rendering, Blender

was queried to retrieve image observations at every simulation time

step. For the offline rendering case, this was only done once for

all possible image observations at the beginning of the simulation.

Images were then stored in the main memory for later retrieval

during the simulation. Frame time was measured by invoking the

system clock at the beginning of every simulation time step. As

expected, average frame times over the entire simulation weremuch

higher for online than for offline rendering (Figure 4).

The speedup gained by offline rendering is likely to depend

on a number of factors, of which we explore the image size,

the number of CPU cores, game engine, and RL algorithm.

First, the simulation time is expected to strongly depend on the

size of the image observations, we tested different sizes between

20x80 and 75x300 pixels and confirmed that the relative overhead

for rendering varied greatly with the image size (Figure 4A).

Specifically, we found that for small input image sizes the overhead

of rendering with Blender was substantial. For instance, for the

smallest tested image sizes of 20 × 80, online rendering frame

time was 16.9ms, more than eleven times the frame time for

offline rendering, which was 1.5ms. For larger input images this

difference was significantly less pronounced, e.g., for the 75 ×

300 pixel images, mean frame time was 34.1 and 24.2ms for

online and offline rendering, respectively, a factor of only ca. 1.4.

Second, somewhat surprisingly increasing the number of CPU
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FIGURE 4

Analysis of simulation speed. (A) Comparison of simulation time of a single step using the online and o	ine rendering method with Blender for

observations of di�erent size. (B) Scaling of run time with number of CPUs. (C, D) As in (A) but for the Unity rendering instead of Blender, using the

MFEC (A) and DQN (B) agent.

cores beyond two did not have a strong impact on the simulation

speed for both online and the offline rendering (Figure 4B). We

hypothesize that this is due to the low level of parallelism that

can be achieved in the small models that we studied here. Third,

scaling of frame time with image size was qualitatively similar

for the Unity renderer (Figures 4C, D). Finally, we compared two

different RL agents, MFEC and DQN, where the latter is more

computationally expensive than the former because of the need

for GPU computing. The relative overhead for rendering increases

for both agents when the image size expands. On the other hand,

although the total frame time for the DQN is larger than that for

MFEC, the relative overhead for rendering is comparable between

the two agents for all image sizes (Figures 4C, D). This result shows

that the contribution of the agent and the renderer to the total

simulation time, are modular and do not much interfere with

one another.

In summary, we find that offline rendering is especially

beneficial if small image observations are used since the overhead

for rendering dominates the simulation in this situation. Frame

time speedups are achieved with offline rendering for all frame

sizes, but this method is only suitable if the total number of possible

image observations is small.

3.4. Analysis of behavior with CoBeL-RL

To analyze the behavior of the simulated agents, relevant

parameters have to be recorded and evaluated. To do so, CoBeL-

RL provides various monitors with which relevant variables can

be recorded, visualized, and evaluated during training (Figure 5).

Monitors are available for tracking trial reward, escape latency, and

cumulative responses. For the last monitor, the specific response
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FIGURE 5

Commonly needed monitors in CoBeL-RL. (A) The reward monitor tracks the cumulative reward collected during each trial. (B) The escape latency

(in number of trial steps) can be tracked with the escape latency monitor. (C) The response monitor can track the cumulative responses emitted by

the agent. Per default responses are coded with one when a reward was collected and zero otherwise. The coding of responses can be customized

by using the simulation loop’s callback functionality.

coding can be defined by the user. The default coding is one

when reward was collected in a trial, and zero if not. These

three behavioral performance monitors are compatible with all

agents. Below we demonstrate the use of CoBeL-RL’s performance

monitors in two example experimental paradigms.

The analysis of responses emitted by an agent is important

to understand the reinforcement of behaviors in classical and

instrumental conditioning. We therefore simulated a simple

extinction learning paradigm: The agent was placed in a T-maze

environment and rewarded for choosing the right arm during the

first 100 trials. Then reward was moved to the left arm for the

remaining 100 trials. Responses are visualized by the cumulative

response curves, where each trial with the choice of the right arm

was encoded as one and the choice of the left (or neither) arm as

zero, for a DQN agent in a complex 3D environment with visual

stimuli (Figure 6A) and for a tabular Dyna-Q agent in a simple

gridworld (Figure 6B).

Another example is latent learning in the Blodgett maze

(Blodgett, 1929), a composition of 6-Unit Alley T-maze

(Figure 7A), which we simulated using the Dyna-DSR agent

in CoBeL-RL (see Section Methods for details). Agents were tested

in two settings: latent learning, in which the environment was

devoid of reward for the first 100 trials (exploration phase; −100

to −1 trials) and reward was introduced for the remaining trials

(Figure 7B, purple line.), and direct learning, in which there was

no exploration phase and reward was present from the first trial in

the maze (Figure 7B, orange line). Latent learning agents learned

to reach the goal state faster than direct learning agents after

the reward was introduced. These results qualitatively reproduce

experimental findings (Blodgett, 1929; Reynolds, 1945; Tolman,

1948).

3.5. Analysis of neural representations with
CoBeL-RL

An important goal of CoBeL-RL is to allow the analysis

of not only behavioral measures of the reinforcement learning

agents, but also the computations and representations that

emerge in the deep neural network to support behavior. To

this end, CoBeL-RL provides response monitors which can track

network representations of Deep RL agents. In the latent learning

simulations above, we analyzed the learned Deep SR of the

start state to examine what the agent had learned. At the end

of the training phase (Figure 7C, left), the learned SR mainly

represents states close to the start state, simply reflecting the

environment’s topology. In contrast, by the end of the simulation

(Figure 7C, right) the learned SR represents the path to the

goal state.

CoBeL-RL also includes analysis tools to analyze spatial

representations, including the ability to compute spatial activity

maps, classify them, and identify units in the network that have

place fields. To demonstrate this functionality, we built a simple

Blender environment (Figure 8A) and trained the agent to solve

a goal finding task on a hexagonal topology graph (Figure 8B).

In each trial, the agent had to navigate to the unmarked goal

node (indicated in green) from a random starting position. The

agent had 12 available actions—six translations and six rotations.

The translations allowed the agent to move to any of the six

neighboring nodes on the topological graph, and the rotations

turned the agent in place to face a neighboring node. We generated

spatial activity maps by placing the agent in all locations of a

25 × 25 grid that was embedded in the environment, which can

be set flexibly depending on the desired resolution in CoBeL-

RL, and recorded the activation of nodes in the DQN network.

Place field maps of all units preceding the output action selection

layer of the Deep Q-Network were recorded every 800 trials

during the training process. Recordings were obtained for all

six heading direction of the agent and further processed to

identify units that exhibit place-cell-like firing (Figure 8C)—see

Section 2 for a detailed description. As would be expected, if

place-field-like representations supported spatial navigation, the

number of neurons that exhibit place fields increased during

training (Figure 8D). In general, the spatial activation maps can

be constructed either at set points during the training process to

understand how they evolve with learning, as in this example, or

after the training is completed.
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FIGURE 6

Analysis of behavior in an extinction learning paradigm. (A) A DQN agent was trained on a simple extinction paradigm within a complex 3D Unity

environment (left). The agent has six actions at its disposal: movement in either of the four cardinal directions and rotating either left or right by 90◦.

The cumulative response (center) reveals that the agent reliable picks the rewarded right arm for the first 100 trials. After the right arm was no longer

rewarded (trials 101–200), the previously learned behavior initially persists and then gradually extinguishes. The escape latency curves (right) show

that agent quickly learned to reach the right arm. After the reward switched the agent slowly adapted to the new reward location. (B) Same as (A) but

recorded from a Dyna-Q agent (left) in a gridworld environment. Unlike the DQN agent the Dyna-Q agent can only move in the four cardinal

directions. Similar to the DQN agent the Dyna-Q agent reliably picks the rewarded right arm for the first 100 trials. However, due to the Q-function’s

tabular representation the previously learned behavior extinguishes rapidly.

3.6. Modeling of non-spatial tasks with
CoBeL-RL

So far we focused on the modeling of spatial tasks since CoBeL-

RL mainly supports spatial environments. However, non-spatial

tasks, e.g., alternative forced choice tasks (Ratcliff et al., 2003;

Brünken et al., 2004), visual search tasks (Sheliga et al., 1994; Reavis

et al., 2016) and classical conditioning (Ernst et al., 2019; Batsikadze

et al., 2022) are ubiquitous in neuroscience. To demonstrate that

CoBeL-RL can easily be used to accommodate such non-spatial

tasks we model a simple decision task. We first set up a custom

interface for CoBeL-RL which stores a set of stimuli and a set of

choice trials. One-hot vectors serve as stimuli in our simulation.

Each choice trial Ci consists of two stimuli which are contained

within the set of stimuli. One stimulus represents the correct choice

and is rewarded, the other stimulus represents the incorrect choice

and is not rewarded (Figure 9A). During each trial of a training

session the interface picks one of the choice trials at random. Both

stimuli are presented together in a randomized order (Figure 9B).

We train 100 DQN agents for 50 trials each on the task. The reward

attained we record with CoBeL-RL’s reward monitor. By inspecting

the average reward attained on each trial we see that the agents

initially perform at chance level and then quickly learn the task

within a couple of trials (Figure 9C). As this simulation serves only

as a demonstration of CoBeL-RL’s extendability we used very simple

stimuli. However, they can be replaced by complex visual stimuli

and the interface can be extended with more complex task rules.

4. Discussion

In this paper, we introduced CoBeL-RL, a RL framework

oriented toward computational neuroscience, which provides a

large range of environments, established RL models and analysis

tools, and can be used to simulate a variety of behavioral tasks.

Already, a set of computational studies focusing on explaining

animal behavior (Walther et al., 2021; Zeng et al., 2022) as well as

neural activity (Diekmann and Cheng, 2022; Vijayabaskaran and

Cheng, 2022) have employed predecessor versions of CoBeL-RL.

The framework has been expanded and refined since these earlier

studies. Here, we provided additional details about the simulation

framework and how it can be extended and used in future work.

4.1. Flexibility and extensibility

As discussed in Section 2, CoBeL-RL provides multiple RL

agents with the option of integrating additional agents not included

in the default implementation. Since RL in general refers to a class

of learning problems, several learning algorithms and architectures

that solve the problem fall under its umbrella. This naturally

raises the question of which agent is best suited to model a given

task. While there is no straightforward way to tell, the goals of

the computational modeling can help narrow the search for an

appropriate agent. For instance, a deep RL agent such a DQN (and

not a tabular agent) would be appropriate if we wanted to use
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FIGURE 7

Simulation of latent learning using CoBeL-RL. (A) Gridworld of the Blodgett maze. The red and green squares represent the start and goal states,

respectively. Purple arrows indicate transitions that are only allowed in the indicated direction. (B) Escape latency of agents trained in latent learning

(purple) and direct learning (orange) settings. For better comparison, the curve for the direct learning setting was shifted to the point of reward

introduction of the latent learning setting. Curves represent means over 30 simulations per agent. (C) Learned Deep SR of the start state at the end of

the training phase (left) and at the end of the simulation (right). At the end of the training phase, the learned SR mainly represents states close to the

start state. In contrast, by the end of the simulation, the learned SR represents the path to the goal state. The color bar represents the learned

cumulative discounted (state) occupancy.

complex visual stimuli directly as observations, or if generalization

to new situations is particularly important. A deep RL agent is once

again appropriate if we want to study the neural representations in

the agent. On the other hand, a tabular agent might be preferred

if one’s main interest is modeling behavioral statistics due to its

interpretability and decreased computational load.

Other factors may influence the choice of agent. Some models

suggest that model-based RL, in which the agent learns and plans

on a model of the environment, is better suited to modeling

cognitive processes that require some level of abstraction and

planning, whereas model-free RL is better suited to modeling

automatic, behavioral response learning (Chavarriaga et al., 2005;

Khamassi and Humphries, 2012). Within CoBeL-RL, the DQN and

MFEC agents are model-free, while the Dyna-Q, Dyna-DQN, and

DSR agents represent a middle-ground between model-free and

model-based RL. Additionally, many RL algorithms use some form

of memory and experience replay, which might also be of interest

to those looking to model hippocampal replay. The different

replay mechanisms in RL agents, and how they might relate to

replay in the hippocampus are reviewed extensively in Cazé et al.

(2018).

We discuss only a few of the possible factors that influence the

choice of agent here, however, the use of RL to model experiments

in neuroscience and behavioral psychology has been reviewed

in Subramanian et al. (2022). Botvinick et al. (2020) review

Deep RL algorithms and their implications for neuroscience, and

Bermudez-Contreras et al. (2020) focus specifically on RL models

of spatial navigation.

CoBeL-RL can also be easily integrated with other existing RL

simulation frameworks for machine learning. For example many

gridworld environments, such as MiniGrid (Chevalier-Boisvert

et al., 2018), are based on OpenAI Gym and could therefore be

easily integrated with CoBeL-RL.

4.2. Limitations and future developments

CoBeL-RL provides an efficient software framework for simulating

closed-loop trial-based learning, which is well matched for

modeling behavioral experiments. Nevertheless, experiments that

do not have a strict trial-based structure or well-defined time

horizon could be modeled in CoBeL-RL as well by controlling

the training loop via CoBeL-RL’s callback functionality, although

such simulations would be less efficient. In addition, CoBeL-RL’s

monitoring tools would require adaptation to account for the

potentially undefined time horizon and lack of trial structure.

The experimental paradigms discussed here only include one

agent. However, the effect of another agent’s presence on behavior

(Boesch and Tomasello, 1998; Krützen et al., 2005) and neural

activity (Rizzolatti and Craighero, 2004; Mukamel et al., 2010) has

also been of great interest. Currently, CoBeL-RL does not support

simulations that involve multiple agents and at first glance it is not
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FIGURE 8

Analysis of spatial representations using CoBeL-RL. (A) Blender environment used for simulating a navigation task. The agent is marked in blue. (B)

Topology graph on which the agent navigates. The location of the unmarked goal is indicated in green. (C) Example place cells emerging in the

simulation. The large maps show the place field activity averaged over all head directions and the adjacent six smaller maps show the corresponding

activity at each head direction, spaced 60◦ apart. (D) Evolution in number of place fields with learning trials.

FIGURE 9

Modeling of non-spatial tasks using CoBeL-RL. (A) Definition of the possible choice trials. Each choice trial consists of two stimuli: the correct one,

which is rewarded, and the incorrect one, which is not rewarded. (B) Illustration of the decision task. In each trial, a random choice trial is presented

and the positions of the stimuli are randomized. The correct choice for the trial is indicated as left (capital L) or right (capital R). (C) Learning

performance of a DQN agent in the task measured via the average reward received. Performance is at chance level (indicated by the dashed

horizontal gray line) in the beginning but quickly improves within the first couple of trials.

clear how they could fit in the trial-based training loop. However,

such multi-agent simulations could be facilitated by extending

CoBeL-RL with an abstract supervisor agent which can encapsulate

an arbitrary number of agents. The training loop of this abstract

supervisor agent could then control the training of the agents it

supervises. The behavior of the agents could be easily monitored by

creating separate instances of the monitoring classes for each agent.

CoBeL-RL was initially developed to model tasks and address

questions in the field of spatial navigation. Because of this the

environments and interfaces implemented mainly accommodate

spatial navigation tasks. Nonetheless, CoBeL-RL is fairly adaptable

and can be used to model non-spatial tasks as we have

demonstrated in the Results. Furthermore, many of CoBeL-RL’s

monitor classes do not track exclusively spatial variables, i.e.,

reward monitor, response monitor and representation monitor,

and can therefore be applied to non-spatial tasks as well. CoBeL-

RL may also offer a convenient way of implementing non-spatial

tasks that require 3D environments, e.g., visual search tasks, visual

fixation tasks or tasks involving the manipulation of objects.

The supported 3D simulators also allow for the change of an

agent’s orientation, thereby facilitating the implementation of

visual search and fixation tasks. The manipulation of simulation
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objects is implemented to some extent, e.g., change of object

pose and material, and can be further developed to allow for

the manipulation of arbitrary simulation objects. Since CoBeL-RL

implements agent-environment interaction with the wide-spread

gym interface many existing implementations of non-spatial tasks

should be easily integrable.

The analysis of the selectivity of neuronal activity at single

neuron and network levels has contributed greatly to our

understanding of cognitive function and representations learned

by the brain (Watkins and Berkley, 1974; De Baene et al., 2008;

Decramer et al., 2019; Packheiser et al., 2021; Vaccari et al.,

2022). Similarly, understanding the representations learned by

Deep RL agents and how they relate to the current task has

been of great interest early on (Mnih et al., 2015), and they have

proven to be a useful tool in understanding the emergence of

spatial representations, e.g., grid cells (Banino et al., 2018) and

place cells (Vijayabaskaran and Cheng, 2022), and units encoding

for other task-relevant variables (Wang et al., 2018; Cross et al.,

2021), e.g., time cells (Lin and Richards, 2021). We showed how

CoBeL-RL can be used to record and analyze the network activity

of Deep RL agents as they learn a task, and we did so at the

level of both single and multiple units, i.e., analysis of place

cells and the deep successor representation. Additionally, CoBeL-

RL has been used to understand the emergence of other spatial

representations, e.g., head direction modulated cells, and their

dependence on navigational strategy employed (Vijayabaskaran

and Cheng, 2022). The initial version of the framework was used

to analyze representational changes resulting from the learning

of context-specific behavior in an extinction learning paradigm

(Walther et al., 2021). CoBeL-RL currently only provides a small

repertoire for the analysis of network activity with a focus on spatial

representations. Analysis tools could potentially be expanded to

also include unit selectivity analysis. Such analysis would synergize

well with the already existing, and potential future, behavioral

monitors. Another type of analysis which would benefit the

framework is representational similarity analysis (RSA) which

has been a useful tool to compare brain activity with internal

representations of computational models (Kriegeskorte, 2008).

Currently, CoBeL-RL largely relies on the Tensorflow-2-based

implementations of Deep RL agents provided by Keras-RL2.

This strong reliance on Tensorflow 2 could be detrimental to

the appeal and longevity of CoBeL-RL: Multiple programming

libraries for the implementation of DNNs exist (Al-Rfou et al.,

2016; Paszke et al., 2019) and change over time. Agents would

have to be re-implemented for different libraries and updated

whenever a library’s behavior changes. We address these problems

with the use of an abstract network class which serves as

an interface between Deep RL agents and specific network

implementations. Currently, network classes for Tensorflow 2 and

PyTorch are supported.

As a framework, CoBeL-RL is continuously developed

and extended. While current efforts focus on simulations in

virtual environments, CoBeL-RL can be connected to physical

robots like the Khepera-IV (Tharin et al., 2019). Agents can

be trained efficiently in simulation and then take control

of the physical robot. Pretraining an agent in simulations

before letting it control a real robot has been shown to

work in other settings (James and Johns, 2016; Tzeng et al.,

2017).

4.3. Conclusion

In conclusion, CoBeL-RL is an RL framework oriented toward

computational neuroscience that fills a gap in the landscape of

simulation software, which currently focuses mostly on machine

learning, a specific task paradigm, or certain type of model.

Importantly, CoBeL-RL provides a set of tools which simplify

the process of setting up simulations through its environment

editors. This is the case especially in the context of 3D simulations

since otherwise their creation would require the user to acquire

a wide range of additional skills, e.g., 3D modeling, game engine

programming, etc. CoBeL-RL hence greatly reduces the overhead

of setting up closed-loop simulations which are required to

understand the computational issues that animals face in behavioral

tasks and the solutions that they generate.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found at: https://github.com/

sencheng/CoBeL-RL; https://github.com/sencheng/CoBeL-RL-

Paper-Simulations.

Author contributions

ND, SV, and SC contributed to conception and design of the

framework. ND, SV, XZ, DK, and MM performed and analyzed the

simulations and contributed to the code. All authors contributed

to the first draft of the manuscript, edited, and approved the

submitted version.

Funding

This work was supported by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation),

project numbers 419037518 (FOR 2812, P2) and 316803389 (SFB

1280, A14).

Acknowledgments

We thank Dr.-Ing. Thomas Walther for the conceptualization

and development of CoBeL-RL’s initial version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeuroinformatics 14 frontiersin.org

https://doi.org/10.3389/fninf.2023.1134405
https://github.com/sencheng/CoBeL-RL
https://github.com/sencheng/CoBeL-RL
https://github.com/sencheng/CoBeL-RL-Paper-Simulations
https://github.com/sencheng/CoBeL-RL-Paper-Simulations
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Diekmann et al. 10.3389/fninf.2023.1134405

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available online
at: tensorflow.org

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,
et al. (2016). Theano: A Python framework for fast computation of mathematical
expressions. arXiv [Preprint]. arXiv:1605.02688. doi: 10.48550/arXiv.1605.02688

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., et al. (2018).
Vector-based navigation using grid-like representations in artificial agents.Nature 557,
429–433. doi: 10.1038/s41586-018-0102-6

Bathellier, B., Tee, S. P., Hrovat, C., and Rumpel, S. (2013). A multiplicative
reinforcement learning model capturing learning dynamics and interindividual
variability in mice. Proc. Natl. Acad. of Sci. U.S.A. 110, 19950–19955.
doi: 10.1073/pnas.1312125110

Batsikadze, G., Diekmann, N., Ernst, T. M., Klein, M., Maderwald, S.,
Deuschl, C., et al. (2022). The cerebellum contributes to context-effects
during fear extinction learning: a 7T fMRI study. NeuroImage 253:119080.
doi: 10.1016/j.neuroimage.2022.119080

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M.,
Küttler, H., et al. (2016). DeepMind Lab. arXiv [Preprint]. arXiv:1612.03801.
doi: 10.48550/arXiv.1612.03801

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 509–517. doi: 10.1145/361002.361007

Bermudez-Contreras, E., Clark, B. J., and Wilber, A. (2020). The neuroscience
of spatial navigation and the relationship to artificial intelligence. Front. Comput.
Neurosci. 14:63. doi: 10.3389/fncom.2020.00063

Blender Online Community (2018). Blender is the Free andOpen Source 3DCreation
Suite. Amsterdam: Blender Foundation; Blender Institute.

Blodgett, H. C. (1929). The Effect of the Introduction of Reward Upon the Maze
Performance of Rats. University of California Publications in Psychology, 114–134.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z.,
et al. (2016). Model-free episodic control. arXiv [Preprint]. arXiv:1606.04460.
doi: 10.48550/arXiv.1606.04460

Boesch, C., and Tomasello, M. (1998). Chimpanzee and human cultures. Curr.
Anthropol. 39, 591–614. doi: 10.1086/204785

Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., and Kurth-Nelson, Z.
(2020). Deep reinforcement learning and its neuroscientific implications. Neuron 107,
603–616. doi: 10.1016/j.neuron.2020.06.014

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., et al. (2016). OpenAI Gym. arXiv [Preprint]. arXiv:1606.01540.
doi: 10.48550/arXiv.1606.01540

Brünken, R., Plass, J. L., and Leutner, D. (2004). Assessment of cognitive load in
multimedia learning with dual-task methodology: auditory load and modality effects.
Instruct. Sci. 32, 115–132. doi: 10.1023/B:TRUC.0000021812.96911.c5

Cazé, R., Khamassi, M., Aubin, L., and Girard, B. (2018). Hippocampal replays
under the scrutiny of reinforcement learning models. J. Neurophysiol. 120, 2877–2896.
doi: 10.1152/jn.00145.2018

Chavarriaga, R., Strösslin, T., Sheynikhovich, D., and Gerstner, W. (2005). A
computational model of parallel navigation systems in rodents. Neuroinformatics 3,
223–242. doi: 10.1385/NI:3:3:223

Chevalier-Boisvert, M., Willems, L., and Pal, S. (2018). Minimalistic Gridworld
Environment for Openai Gym. Available online at: https://github.com/maximecb/gym-
minigrid

Cross, L., Cockburn, J., Yue, Y., and O’Doherty, J. P. (2021). Using deep
reinforcement learning to reveal how the brain encodes abstract state-space
representations in high-dimensional environments. Neuron 109, 724–738.e7.
doi: 10.1016/j.neuron.2020.11.021

Cueva, C. J., and Wei, X. -X. (2018). Emergence of grid-like representations by
training recurrent neural networks to perform spatial localization. arXiv [Preprint].
arXiv:1803.07770. doi: 10.48550/arXiv.1803.07770

De Baene, W., Ons, B., Wagemans, J., and Vogels, R. (2008). Effects of category
learning on the stimulus selectivity of macaque inferior temporal neurons. Learn.Mem.
15, 717–727. doi: 10.1101/lm.1040508

Decramer, T., Premereur, E., Uytterhoeven, M., Van Paesschen, W., van Loon, J.,
Janssen, P., et al. (2019). Single-cell selectivity and functional architecture of human
lateral occipital complex. PLoS Biol. 17:e3000280. doi: 10.1371/journal.pbio.3000280

Diekmann, N., and Cheng, S. (2022). A model of hippocampal replay driven by
experience and environmental structure facilitates spatial learning. bioRxiv [Preprint].
doi: 10.1101/2022.07.26.501588

Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform. 2:8.
doi: 10.3389/neuro.11.012.2008

Ernst, T.M., Brol, A. E., Gratz,M., Ritter, C., Bingel, U., Schlamann,M., et al. (2019).
The cerebellum is involved in processing of predictions and prediction errors in a fear
conditioning paradigm. eLife 8:e46831. doi: 10.7554/eLife.46831

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005).
Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806.
doi: 10.1038/nature03721

James, S., and Johns, E. (2016). 3D simulation for robot arm control with deep
Q-learning. arXiv [Preprint]. arXiv:1609.03759. doi: 10.48550/arXiv.1609.03759

Juliani, A., Berges, V.- P., Teng, E., Cohen, A., Harper, J., Elion, C., et al. (2020).
Unity: a general platform for intelligent agents. arXiv [Preprint]. arXiv:1809.02627.
doi: 10.48550/arXiv.1809.02627

Kaiser, J., Hoff, M., Konle, A., Vasquez Tieck, J. C., Kappel, D., Reichard, D., et
al. (2019). Embodied synaptic plasticity with online reinforcement learning. Front.
Neurorobot. 13:81. doi: 10.3389/fnbot.2019.00081

Khamassi, M., and Humphries, M. D. (2012). Integrating cortico-limbic-basal
ganglia architectures for learning model-based and model-free navigation strategies.
Front. Behav. Neurosci. 6:79. doi: 10.3389/fnbeh.2012.00079

Koay, S. A., Thiberge, S., Brody, C. D., and Tank, D. W. (2020). Amplitude
modulations of cortical sensory responses in pulsatile evidence accumulation. eLife
9:e60628. doi: 10.7554/eLife.60628

Kosaki, Y., Lin, T.-C. E., Horne, M. R., Pearce, J. M., and Gilroy, K. E. (2014).
The role of the hippocampus in passive and active spatial learning. Hippocampus 24,
1633–1652. doi: 10.1002/hipo.22343

Kriegeskorte, N. (2008). Representational similarity analysis -
connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4
doi: 10.3389/neuro.06.004.2008

Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., and Sherwin, W.
B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proc. Natl. Acad.
Sci. U.S.A. 102, 8939–8943. doi: 10.1073/pnas.0500232102

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016).
Deep successor reinforcement learning. arXiv [Preprint]. arXiv:1606.02396.
doi: 10.48550/arXiv.1606.02396

Leibo, J. Z., d’Autume, C. de M., Zoran, D., Amos, D., Beattie, C., Anderson, K., et
al. (2018). Psychlab: A psychology laboratory for deep reinforcement learning agents.
arXiv [Preprint]. arXiv:1801.08116. doi: 10.48550/arXiv.1801.08116

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Goldberg, K., et al.
(2018). RLlib: Abstractions for distributed reinforcement learning. arXiv [Preprint].
arXiv:1712.09381. doi: 10.48550/arXiv.1712.09381

Lin, D., and Richards, B. A. (2021). Time cell encoding in deep
reinforcement learning agents depends on mnemonic demands. bioRxiv [Preprint].
doi: 10.1101/2021.07.15.452557

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching.Mach. Learn. 8, 293–321. doi: 10.1007/BF00992699

Lin, L. -J. (1993). Reinforcement learning for robots using neural networks (PhD
Thesis). Carnegie Mellon University, Pittsburgh, PA, United States.

Linietsky, J., and Manzur, A. (2007). Godot Engine. Godot.

Mattar, M. G., and Daw, N. D. (2018). Prioritized memory access
explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617.
doi: 10.1038/s41593-018-0232-z

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2023.1134405
http://tensorflow.org
https://doi.org/10.48550/arXiv.1605.02688
https://doi.org/10.1038/s41586-018-0102-6
https://doi.org/10.1073/pnas.1312125110
https://doi.org/10.1016/j.neuroimage.2022.119080
https://doi.org/10.48550/arXiv.1612.03801
https://doi.org/10.1145/361002.361007
https://doi.org/10.3389/fncom.2020.00063
https://doi.org/10.48550/arXiv.1606.04460
https://doi.org/10.1086/204785
https://doi.org/10.1016/j.neuron.2020.06.014
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1023/B:TRUC.0000021812.96911.c5
https://doi.org/10.1152/jn.00145.2018
https://doi.org/10.1385/NI:3:3:223
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://doi.org/10.1016/j.neuron.2020.11.021
https://doi.org/10.48550/arXiv.1803.07770
https://doi.org/10.1101/lm.1040508
https://doi.org/10.1371/journal.pbio.3000280
https://doi.org/10.1101/2022.07.26.501588
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.7554/eLife.46831
https://doi.org/10.1038/nature03721
https://doi.org/10.48550/arXiv.1609.03759
https://doi.org/10.48550/arXiv.1809.02627
https://doi.org/10.3389/fnbot.2019.00081
https://doi.org/10.3389/fnbeh.2012.00079
https://doi.org/10.7554/eLife.60628
https://doi.org/10.1002/hipo.22343
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1073/pnas.0500232102
https://doi.org/10.48550/arXiv.1606.02396
https://doi.org/10.48550/arXiv.1801.08116
https://doi.org/10.48550/arXiv.1712.09381
https://doi.org/10.1101/2021.07.15.452557
https://doi.org/10.1007/BF00992699
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1038/nature14236
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Diekmann et al. 10.3389/fninf.2023.1134405

Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., and Fried, I. (2010). Single-
neuron responses in humans during execution and observation of actions. Curr. Biol.
20, 750–756. doi: 10.1016/j.cub.2010.02.045

Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J., Lewallen, S., Koay, S. A., et
al. (2021). Geometry of abstract learned knowledge in the hippocampus. Nature 595,
80–84. doi: 10.1038/s41586-021-03652-7

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34,
171–175. doi: 10.1016/0006-8993(71)90358-1

Packheiser, J., Donoso, J. R., Cheng, S., Güntürkün, O., and Pusch,
R. (2021). Trial-by-trial dynamics of reward prediction error-associated
signals during extinction learning and renewal. Prog. Neurobiol. 197:101901.
doi: 10.1016/j.pneurobio.2020.101901

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “PyTorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems (Vancouver, BC), 8024–8035.
doi: 10.48550/arXiv.1912.01703

Pinto, L., Koay, S. A., Engelhard, B., Yoon, A. M., Deverett, B., Thiberge, S. Y., et
al. (2018). An accumulation-of-evidence task using visual pulses for mice navigating in
virtual reality. Front. Behav. Neurosci. 12:36. doi: 10.3389/fnbeh.2018.00036

Plappert, M. (2016). keras-rl. Available online at: https://github.com/keras-rl/keras-
rl

Ratcliff, R., Cherian, A., and Segraves, M. (2003). A comparison of macaque
behavior and superior colliculus neuronal activity to predictions from models
of two-choice decisions. J. Neurophysiol. 90, 1392–1407. doi: 10.1152/jn.01049.
2002

Reavis, E. A., Frank, S. M., Greenlee, M. W., and Tse, P. U. (2016). Neural correlates
of context-dependent feature conjunction learning in visual search tasks: visual feature
conjunction learning. Hum. Brain Mapp. 37, 2319–2330. doi: 10.1002/hbm.23176

Redish, A. D., Jensen, S., Johnson, A., and Kurth-Nelson, Z. (2007). Reconciling
reinforcement learning models with behavioral extinction and renewal: implications
for addiction, relapse, and problem gambling. Psychol. Rev. 114, 784–805.
doi: 10.1037/0033-295X.114.3.784

Reynolds, B. (1945). A repetition of the blodgett experiment on ’latent learning’. J.
Exp. Psychol. 35:504. doi: 10.1037/h0060742

Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Annu. Rev.
Neurosci. 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230

Rossum (1995). Python Reference Manual. Rossum.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience
replay. arXiv [Preprint]. arXiv:1511.05952. doi: 10.48550/arXiv.1511.05952

Schönfeld, F., and Wiskott, L. (2013). RatLab: an easy to use tool for place code
simulations. Front. Comput. Neurosci. 7:104. doi: 10.3389/fncom.2013.00104

Schönfeld, F., andWiskott, L. (2015). Modeling place field activity with hierarchical
slow feature analysis. Front. Comput. Neurosci. 9:51. doi: 10.3389/fncom.2015.00051

Schultz, W., Dayan, P., andMontague, P. R. (1997). A neural substrate of prediction
and reward. Science 275, 1593–1599. doi: 10.1126/science.275.5306.1593

Sheliga, B., Riggio, L., and Rizzolatti, G. (1994). Orienting of attention and eye
movements. Exp. Brain Res. 98, 507–522. doi: 10.1007/BF00233988

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et
al. (2016). Mastering the game of go with deep neural networks and tree search. Nature
529, 484–489. doi: 10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et
al. (2017). Mastering the game of go without human knowledge. Nature 550, 354–359.
doi: 10.1038/nature24270

Subramanian, A., Chitlangia, S., and Baths, V. (2022). Reinforcement learning
and its connections with neuroscience and psychology. Neural Netw. 145, 271–287.
doi: 10.1016/j.neunet.2021.10.003

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning Series, 2nd Edn. Cambridge, MA: The
MIT Press.

Terry, J. K., Black, B., and Jayakumar, M. (2020).Magent. Available online at: https://
github.com/Farama-Foundation/MAgent. GitHub repository.

Tharin, J., Lambercy, F., and Carron, T. (2019). Khepera IV User Manual. K-Team.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55:189.
doi: 10.1037/h0061626

Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S., et al. (2017).
Adapting deep visuomotor representations with weak pairwise constraints. arXiv
[Preprint]. arXiv:1511.07111. doi: 10.48550/arXiv.1511.07111

Unity Technologies (2005). Unity. Unity Technologies.

Vaccari, F. E., Diomedi, S., Filippini, M., Hadjidimitrakis, K., and Fattori, P. (2022).
New insights on single-neuron selectivity in the era of population-level approaches.
Front. Integr. Neurosci. 16:929052. doi: 10.3389/fnint.2022.929052

Vijayabaskaran, S., and Cheng, S. (2022). Navigation task and action space drive the
emergence of egocentric and allocentric spatial representations. PLoS Comput. Biol.
18:e1010320. doi: 10.1371/journal.pcbi.1010320

Walther, T., Diekmann, N., Vijayabaskaran, S., Donoso, J. R., Manahan-Vaughan,
D., Wiskott, L., et al. (2021). Context-dependent extinction learning emerging
from raw sensory inputs: a reinforcement learning approach. Sci. Rep. 11:2713.
doi: 10.1038/s41598-021-81157-z

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z.,
et al. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci.
21, 860–868. doi: 10.1038/s41593-018-0147-8

Watkins, D. W., and Berkley, M. A. (1974). The orientation selectivity of single
neurons in cat striate cortex. Exp. Brain Res. 19, 433–446. doi: 10.1007/BF00234465

Wiltgen, B. J., Sanders, M. J., Anagnostaras, S. G., Sage, J. R., and Fanselow, M.
S. (2006). Context fear learning in the absence of the hippocampus. J. Neurosci. 26,
5484–5491. doi: 10.1523/JNEUROSCI.2685-05.2006

Zeng, X., Wiskott, L., and Cheng, S. (2022). The functional role of episodic memory
in spatial learning. bioRxiv [Preprint]. doi: 10.1101/2021.11.24.469830

Zhang, R., Zhang, S., Tong, M. H., Cui, Y., Rothkopf, C. A., Ballard, D. H., et al.
(2018). Modeling sensory-motor decisions in natural behavior. PLoS Comput. Biol.
14:e1006518. doi: 10.1371/journal.pcbi.1006518

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., et al. (2018). “MAgent:
A many-agent reinforcement learning platform for artificial collective intelligence,” in
Proceedings of the AAAI Conference on Artificial Intelligence (NewOrleans, LA: AAAI).
doi: 10.1609/aaai.v32i1.11371

Frontiers inNeuroinformatics 16 frontiersin.org

https://doi.org/10.3389/fninf.2023.1134405
https://doi.org/10.1016/j.cub.2010.02.045
https://doi.org/10.1038/s41586-021-03652-7
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/j.pneurobio.2020.101901
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.3389/fnbeh.2018.00036
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://doi.org/10.1152/jn.01049.2002
https://doi.org/10.1002/hbm.23176
https://doi.org/10.1037/0033-295X.114.3.784
https://doi.org/10.1037/h0060742
https://doi.org/10.1146/annurev.neuro.27.070203.144230
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.3389/fncom.2013.00104
https://doi.org/10.3389/fncom.2015.00051
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1007/BF00233988
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1016/j.neunet.2021.10.003
https://github.com/Farama-Foundation/MAgent
https://github.com/Farama-Foundation/MAgent
https://doi.org/10.1037/h0061626
https://doi.org/10.48550/arXiv.1511.07111
https://doi.org/10.3389/fnint.2022.929052
https://doi.org/10.1371/journal.pcbi.1010320
https://doi.org/10.1038/s41598-021-81157-z
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1007/BF00234465
https://doi.org/10.1523/JNEUROSCI.2685-05.2006
https://doi.org/10.1101/2021.11.24.469830
https://doi.org/10.1371/journal.pcbi.1006518
https://doi.org/10.1609/aaai.v32i1.11371
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning
	1. Introduction
	2. Methods
	2.1. Agent modules
	2.1.1. DQN agents
	2.1.2. Dyna-Q agents
	2.1.3. Dyna-DQN and DSR agents
	2.1.4. Model-free episodic control agents

	2.2. Environment modules
	2.2.1. Interface module
	2.2.2. Spatial representation module
	2.2.3. Observation module
	2.2.4. 3D simulators

	2.3. Utility modules
	2.3.1. Analysis module
	2.3.2. Misc module

	2.4. Additional details about offline rendering experiment

	3. Results
	3.1. CoBeL-RL
	3.2. Fast and easy creation of environments
	3.2.1. Gridworld editor
	3.2.2. Unity editor

	3.3. Efficient distributed simulation using CoBeL-RL
	3.4. Analysis of behavior with CoBeL-RL
	3.5. Analysis of neural representations with CoBeL-RL
	3.6. Modeling of non-spatial tasks with CoBeL-RL

	4. Discussion
	4.1. Flexibility and extensibility
	4.2. Limitations and future developments
	4.3. Conclusion

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


