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Episodic memory has been studied extensively in the past few decades, but so

far little is understood about how it drives future behavior. Here we propose that

episodic memory can facilitate learning in two fundamentally di�erent modes:

retrieval and replay, which is the reinstatement of hippocampal activity patterns

during later sleep or awake quiescence. We study their properties by comparing

three learning paradigms using computational modeling based on visually-driven

reinforcement learning. Firstly, episodic memories are retrieved to learn from

single experiences (one-shot learning); secondly, episodic memories are replayed

to facilitate learning of statistical regularities (replay learning); and, thirdly, learning

occurs online as experiences arise with no access tomemories of past experiences

(online learning). We found that episodic memory benefits spatial learning in a

broad range of conditions, but the performance di�erence is meaningful only

when the task is su�ciently complex and the number of learning trials is limited.

Furthermore, the twomodes of accessing episodic memory a�ect spatial learning

di�erently. One-shot learning is typically faster than replay learning, but the latter

may reach a better asymptotic performance. In the end, we also investigated

the benefits of sequential replay and found that replaying stochastic sequences

results in faster learning as compared to random replay when the number of

replays is limited. Understanding how episodic memory drives future behavior is

an important step toward elucidating the nature of episodic memory.

KEYWORDS

computational modeling, episodic memory, spatial navigation, reinforcement learning,

memory replay

Introduction

Even though there is widespread consensus that episodic memory (EM) is the memory
of personally experienced episodes (Tulving, 1972), the precise conceptualization of episodic
memory has been difficult to come by. One source of this difficulty might be a dominant
focus on the properties of EM, whereas less is known about how memories are accessed
and used to drive learning and future behavior. It seems intuitive that information of past
experiences is useful somehow, but what exactly is the function of the stored experiences in
making decisions under a certain situation?

Research on humanmemory often study the function of EM from an abstract, conceptual
perspective instead of a mechanistic and computational one. For instance, Klein et al. (2009)
suggested that maintaining a pool of episodic memories enables its owner to reevaluate an
individual’s past behavior in light of new information, thus serving an important role in
social interaction. Mahr and Csibra (2017) analyzed the communicative function of episodic
memory from a philosophical point of view and argued that episodic memory plays a
generative role in the justification of our beliefs about past events. Another influential idea is
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based on the survival processing benefit, which refers to the fact
that subjects can better remember words that refer to objects
that are relevant for survival in the wilderness as compared to
other words (Nairne et al., 2007). The adaptive memory theory
argues that episodic memory has adapted to ensure our survival
in the kind of environments that our stone-age ancestors lived in
(Nairne and Pandeirada, 2016). Suddendorf and Corballis (1997,
2007) suggested more broadly that mentally traveling into the past
is an epiphenomenon of the capacity to mentally travel into the
future. Forecasting the future, they argued, enables us to take the
appropriate actions in the present to ensure a favorable outcome in
the future. While each of the above hypotheses suggests a potential
function of EM, none spells out how the recalled memory drives
upcoming or future behavior.

In computational neuroscience, a specific suggestion is that EM
provides the data to extract regularities from multiple, repeated
experiences (Nadel and Moscovitch, 1998; Cheng, 2017). The
Complementary Learning Systems (CLS) theory makes a related
suggestion and postulates that replay of episodic memory supports
the integration of novel information into an existing network
(McClelland et al., 1995; Kumaran et al., 2016). According to CLS
theory, replay facilitates interleaved training, i.e., the alternating
presentation of novel and old information, to avoid catastrophic
interference (McCloskey and Cohen, 1989). Although hippocampal
replay was hypothesized to play a role in learning more than
three decades ago (Buzsaki, 1989), and CLS theory provides a
specific suggestion for its computational function, it is still lacking
a functional role of EM in driving behavior, which is required for a
measure of performance. Such a link is provided by reinforcement
learning (RL) studies in which agents need to take sequences of
actions in an environment to maximize the expected accumulated
reward. Early work used online learning exclusively, i.e., an
experience drove learning exactly once. Later it was found that
replaying earlier experiences speeds up learning in many RL tasks
(Lin, 1992). Recent advances in utilizing episodic-like memory led
to human-level performance on many (video) games (Mnih et al.,
2015). However, even though replay in these technical applications
improved performance, it has not been studied what this implies
about the functional role of EM in biological settings.

In this paper, we use algorithms developed in the framework
of RL to quantitatively study and compare two different operating
modes in which the mammalian brain could use EM in spatial
learning. We contrast two paradigms which use EM in different
ways, i.e., retrieval and replay, and one paradigm which does
not access EM. We hypothesize that the learning curves of the
three paradigms show characteristic differences. We focus on
spatial learning, because it is strongly linked to the hippocampus
(Broadbent et al., 2004) which is, in turn, closely linked to EM
(Tulving and Markowitsch, 1998). In addition, memory retrieval
entails the direct use of EM and implies one-shot learning, which
has been used as an experimental paradigm to study spatial
navigation (Steele and Morris, 1999; Tse et al., 2007). It has
also been observed that hippocampal replay, a possible neuronal
substrate of memory replay, is related to the performance of the
animals in certain spatial learning tasks (Girardeau et al., 2009;
Ego-Stengel and Wilson, 2010). Finally, rodents with hippocampal
lesions, i.e., animals without episodic-like memory, have been used
to investigate the function of the hippocampus in spatial navigation

(Morris et al., 1982; Foster and Rawlins, 1992). Hence, spatial
learning offers a wide range of experimental results to compare
with.

Our simulations were divided into two parts. First, we
simulated the three learning paradigms separately to test our
hypothesis and analyzed their individual characteristics. The three
learning paradigms solve spatial learning tasks at different speeds,
and the harder the task is, the more profound the difference is. The
agents also show different patterns of behavior and reach different
asymptotic performances at the end of the learning. Second, we
conducted simulations to systematically compare the performance
of sequential replay with that of random replay and determined
the conditions under which sequential replay is most beneficial
to learning. Our results lead to predictions about the nature and
functions of episodic memory in spatial learning.

Hypotheses

One key to understanding the function of EM is to recognize
that EM can provide information that is useful for learning in at
least two fundamentally different modes. Firstly, the most direct
way of using EM to drive behavior, first proposed by Lengyel
and Dayan (2007) and termed Episodic Control, is to retrieve a
sequence of events that composes the episode and that includes
information about the actions performed, and use that information
directly to learn a sequence of actions. For instance, a rat might go
to one arm of a T-maze because it remembers that it has found a
piece of cheese in that arm once before (Figure 1A). We term this
kind of learning one-shot learning—rather than using the original
term “episodic control,” so that it matches the other two learning
paradigms described below.More precisely, what wemean by “one-
shot learning” is that, first, the agent acquires its initial solution
to the task after only one successful trial and, second, the agent
improves its current solution by experiencing a better one only
once. Note that while a particular experience is used only once to
update the behavior of the agent, the learned path to the goal might
consist of experiences from multiple episodes. Secondly, EM can
be replayed offline repeatedly to drive learning in the neocortex
(Buzsaki, 1989; McClelland et al., 1995; Nadel and Moscovitch,
1998; Cheng, 2017). Replay enables the neocortex to acquire the
information about how to solve a cognitive task from multiple
memory traces of similar experiences. For instance, a rat running in
a T-maze learns that a piece of cheese is always located in the right
arm. We term this kind of learning replay learning. Furthermore,
learning can also occur without employing EM, since the neocortex
can directly extract information from online experiences as they
occur (online learning). Unlike in replay learning, in online learning
experiences are not stored and can be used only once to affect
changes in the neural network that drives behavior.

We hypothesize that the learning speeds of the three learning
paradigms have the following relationship: one-shot learning >

replay learning > online learning. The direct use of episodic
memory does not require multiple updates so it is one-shot
and depends on the hippocampus (Cheng, 2013). In contrast,
it takes time for the neocortex, an extended and distributed
network, to extract general information from memory replay
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FIGURE 1

The three hypothesized learning paradigms and their learning curves. (A) Schematic illustration of the three learning paradigms for the example of a

rat running in a T-maze. (B) The hypothesized learning curves of the three learning paradigms for a spatial learning task.

(Cheng, 2017), so we hypothesize that replay learning is slower
than one-shot learning. However, it is still faster than online
learning, because replaying previous experiences multiple times
increases the number of exposures and the interleaved training
overcomes interference between information extracted from
different experiences (McClelland et al., 1995). The three learning
paradigms coexist in a healthy brain, whereas animals or patients
with hippocampal lesions can rely only on online learning.
Indeed, experimental studies have shown that patients are still able
to acquire new general knowledge, but generally require many
learning trials tomaster it, whereas controls learn the same contents
after a single trial (O’Kane et al., 2004; Rosenbaum et al., 2005).
Similar observations have been made in rodents as well (Wiltgen
et al., 2006; Kosaki et al., 2014). While there is some controversy
whether online learning exists or the learning in these cases is
supported by residual hippocampal function (Maguire et al., 2010),
including online learning in our study provides a lower bound on
learning performance in the complete absence of episodic memory.
That is, if there is residual hippocampal function, performance
would be intermediate. These hypotheses are summarized and
formalized in the learning curves of the three learning paradigms
in Figure 1B.

Materials and methods

Computational modeling framework

All simulations were performed in a virtual-reality modeling
framework (Figure 2) that was developed to study models of
rodent behavior in spatial navigation and extinction learning
(Walther et al., 2021). This framework is named CoBeL-RL
(Closed-loop simulator of Complex Behavior and Learning
based on Reinforcement Learning, https://doi.org/10.5281/zenodo.

5741291). The virtual environments are designed with the unity
game engine (https://unity.com/), while the remaining parts of
the framework are developed using Python 3 (Van Rossum and
Drake, 2009). In the simulations, an artificial agent equipped
with a wide-view camera represents an animal navigating in the
virtual environment. The World Topology module determines
the spatial positions and orientations, which the agent can be
placed in, and the allowed transitions between them. The OpenAI
Gym Interface (https://www.gymlibrary.dev/) module forms the
interface between the virtual environments and the RL agent,
transmitting information and control commands between the two.

Simulated spatial learning tasks

We designed a series of virtual environments for spatial
navigation in the Unity simulator to test our hypotheses
(Figures 3A–D). The agent was always placed in the same starting
location (blue square) and had to find a hidden goal (green disk).
The sensory input to the learning agent consisted of an 84×84 RGB
image (e.g., Figure 3E). The topology graph of each environment
was only used to determine which transitions are valid in the
simulation and were not known to the learning agent. The agent
could face four different directions at each node: north, west,
south, or east; it could take six different actions: go forward, go
backwards, go left, go right, rotate 90◦ clockwise, or rotate 90◦

counterclockwise. The rotations were performed with the agent
in place. The complexity of the spatial navigation tasks increased
systematically from a small maze (Figure 3A) to a large maze
(Figure 3D) having the same structure. Both the total number of
nodes and the minimum number of transitions that the agent needs
to reach the goal through the tunnel increased. Once the agent
reached the goal location, or the trials timed out after 600 time
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FIGURE 2

Schematic of the CoBeL-RL simulation framework. Modules are represented by rounded rectangles, data and commands by regular rectangles. The

information or control flows are depicted by arrows.

FIGURE 3

Overview of the virtual environments with their topology graphs. Nodes in the graph represent allowed positions for the agent and solid lines the

allowed transitions between positions. At each node, the agent can face four directions: north, west, south, and east. The starting position of the

agent (blue square) and the location of the goal (green disk) remain constant during the simulation. Note, the topology graphs are only drawn on this

figure for demonstration purpose, they are not visible to the agent. (A) Tunnel maze v1, (B) tunnel maze v2, (C) tunnel maze v3, (D) tunnel maze v4,

and (E) an example view collected from the agent’s camera. The tunnel mazes were generated parametrically. In each successive version, the tunnel

was elongated in the north-south direction by 1 unit and the parts of the mazes outside the tunnel were enlarged by 1 unit to the east and west, and

2 units to the south side.
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steps, we ended the current trial and returned the agent to the initial
position. At the beginning of the experiment, the agent had no prior
knowledge about the environments and explored them randomly.
To reduce the variance caused by the randomness in the training,
we averaged performance measures over 50 independent runs for
each algorithm-maze combination where the algorithm is either
EC, DQN, or online-DQN, defined below.

Reinforcement learning (RL)

We modeled spatial learning in the framework of RL, where an
agent interacts with an environment and receives sparse rewards.
At each time step t, the agent observes the state of the environment
represented by st ∈ S, where S is the set of all possible states, and, in
response, takes an action at ∈ A(st), where A(st) represents the set
of all possible actions the agent can take in state st . These actions, in
combination with the dynamics of the environment, lead to a new
state in the environment in the next time step st+1, which the agent
also observes. In addition, the agent receives a reward rt+1. These
steps are repeated until a terminal state is reached, which indicates
that episode (or a “trial” in the convention of neuroscience) has
ended. For the spatial navigation tasks (Figure 3), the state was
represented by the RGB image that the agent received from the
camera. The agent received a reward rT = +1.0, if it found the
goal, which ended the episode. T indicates the last time step of the
current episode. No reward was given for any other state (rt = 0
for all t < T).

In RL, the behavior of the agent and learning is driven by the
(discounted) cumulative reward:

Rt =

T
∑

τ=t+1

γ τ−t−1rτ , (1)

where γ (0 ≤ γ ≤ 1) is a discount factor that determines the
relative values of immediate reward vs. those that are more distant
in time. The objective of the agent is to learn a policy π that
maximizes the expected cumulative reward

Gt = Eπ (Rt) . (2)

One method for solving this task is Q learning, a class of RL
algorithms, where the agent learns a state-action value function,
the so-called Q function. The scalar function Q(st , at) measures
how desirable the state-action pair (st , at) is to the agent. If learned
correctly, the larger the value of the Q function, the larger a
cumulative reward the action at in state st will yield on average.
Mathematically, the Q function can be expressed as

Q(st , at) = Eπ (Rt|st , at) (3)

In state st , the agent selects the action at with the highest Q-value.
To balance exploration and exploitation, we used the ǫ-greedy
algorithm: with probability ǫ the agent randomly selects an action
from A regardless of the Q-values, otherwise the agent selects the
action that yields the highest Q-value. Throughout our simulations
we set ǫ = 0.1. The discount factor is set as γ = 0.9 to encourage
the agent to find the shortest path from the initial position to
the goal.

The three learning algorithms

We selected three RL algorithms based on Q learning to
model our hypothesized learning paradigms (Figure 4):Model-Free
Episodic Control [EC; Blundell et al. (2016)] for one-shot learning,
Deep Q Learning with memory replay [DQN; Mnih et al. (2015)]
for replay learning, and online Deep Q Learning (online DQN) for
online learning. Real experiences were modeled as a sequence of
(state, action, next state, and reward) tuples, i.e., (st , at , st+1, rt+1).
Like in EM (Cheng and Werning, 2016), these sequences of events
were stored in memory for one-shot learning in EC and for replay
learning in the DQN algorithm.

Model-Free Episodic Control (EC).We use QEC to refer to the Q
function learned by Model-Free Episodic Control (Blundell et al.,
2016). QEC is represented as a table whose entries are directly
updated at the end of each episode by using the sequence of past
experiences stored in memory with the following equation:

QEC(st , at) =















Rt if (st , at) is visited for

the first time

max{Rt ,QEC(st , at)} otherwise

(4)

where st , at refers to those appearing in the sequence of the current
episode. Note that the sequential ordering of experience tuples is
critical in EC because Rt is calculated for the particular sequence in
the current episode by using Equation 1. When making a decision,
the agent selects the action with the highest QEC value in the
current state.

The max operation in Equation 4 guarantees that the agent
follows the sequence starting from (st , at) that leads to the largest
cumulative reward encountered so far. During the action selection
phase, if the agent is at a state which has never been visited before,
and only in this case, the required QEC value is approximated
by averaging the QEC values of the k-nearest neighbors of the
current state. We used k = 5, so that only states that are quite
similar to the current state are used in this bootstrapping process.
Blundell et al. (2016) utilized two different dimension-reduction
methods to pre-process the raw input in order to decrease
the computational requirements: Variational Autoencoder (VAE,
Kingma and Welling, 2014) and random projection. We chose the
latter in our implementation. Specifically, raw images generated
from Unity of size 84 × 84 × 3 were projected onto a lower-
dimensional space, i.e., φ : x → Mx where M ∈ R

F×D and D is
the dimension of the original inputs. The entries of matrixM were
drawn from a standard Gaussian and according to the (Johnson
and Lindenstrauss, 1984) Lemma, this transformation preserves
relative distances in the original space. In our implementation, the
dimension of the projected space was F = 256. To further speed
up inference and learning, the states stored in memory were used
to construct a KD tree [short for K-dimensional tree, a binary
tree where every node is a k-dimensional point; Bentley (1975)],
so that the search of closest neighbors to a given state (measured
under Euclidean distance) is efficient. Lastly, a maximum of 50, 000
experiences could be stored in memory.

At first glance, EC as we implemented it here does not seem to
be a model for episodic memory retrieval, because the experiences
are only stored temporarily until the end of each episode and
discarded after they were used to update the Q-values. Also, the
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FIGURE 4

A schematic illustration of the three reinforcement learning algorithms used in this study. Each circle with a dot inside represents an experience,

defined as a (state, action, reward, and next state) tuple. Real experiences are collected sequentially and stored in memory. Model free episodic

control (EC) uses this sequential information to systematically extract reward information, which are stored in a table of Q-values. The Deep Q

network (DQN) replays experiences to train a deep neural network, which then represents the Q function. The online DQN does not store

experiences in memory and uses each experience only once to train the deep neural network representing the Q function.

QEC table is not a suitable representation of episodic memories
because it does not contain information about which past actions
were performed, what rewards were obtained and what order
the states were encountered in. Nevertheless, we chose the EC
algorithm for two reasons: Firstly, despite large differences at
the implementational level, EC shares features with EM that are
hypothesized to be key for EM such as learning in one shot
(Öhman et al., 1975; Steele and Morris, 1999; Tse et al., 2007),
depending on past information (Tulving and Markowitsch, 1998),
and sequential organization (Levy, 1996; Cheng, 2013; Bayati
et al., 2018). Secondly, it would be possible to implement EC
differently where instead of incrementally updating the QEC table,
all experiences are stored in memory and an algorithm computes
the discounted cumulative rewards on demand. Specifically, one
could store each (si, ai, si+1, ri+1) tuple together with the terminal
flag for state si sequentially in a large memory buffer. During the
inference, the algorithm would first find all tuples containing the
current state as its “si,” then conduct a forward sweep of thememory
starting from each tuple until encountering a terminal flag. Themax
operator in Equation 4 is then implemented by having the Q-value
for a certain state-action pair to be the highest accumulation reward
among those from all forward sweeps that contain the pair. The
agent would then select the action with the highest Q-value. This
alternative implementation shares similarities with Monto Carlo
control (Sutton and Barto, 2018), which instead computes the Q-
value as the average of the accumulative rewards after the forward
sweeps. Although working more like a memory retrieval model
than the original EC, the alternative implementation described
above is computationally costly and inefficient because the entire
memory buffer needs to be searched and swept through. In the
brain these processes could be carried out in parallel and therefore

implemented more efficiently. At any rate, since the ultimate
outcome would remain the same, we choose to use the original
implementation of EC for simplicity and efficiency.

Deep Q network (DQN). The DQN represents the Q function
as an artificial deep neural network (DNN), which maps a state
si to the Q-values of all the possible actions on this state. During
learning, a mini-batch B of experience tuples are selected from
memory and used to construct a loss function according to

L =
∑

i∈B

(

ri+1 +max
a′

Qw̄(si+1, a
′)− Qw(si, ai)

)2

(5)

where w and w̄ represent the weights of the online and the target
network, respectively. The backpropagation algorithm is used to
compute the gradients of this loss function w.r.t. the weights
w of the DNN, which are updated incrementally by applying
gradient descent:

1w = −η∇wL, (6)

where η represents a learning rate. Mnih et al. (2015) introduced
the target network to stabilize the training; its weights are updated
according to

w̄new = w̄old + α(wnew − w̄old) (7)

where α = 0.01 to ensure that the target network weights change
slowly. We consider the DNN to loosely represent the network
in the neocortex (Kriegeskorte, 2015), and the whole learning
process as replaying past experiences from episodic memory to
the neocortex for extracting information. Regarding the replay
statistics, we first employed what was being used in the original
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implementation of DQN (Mnih et al., 2015), where experiences
are randomly selected from memory. We also used a biologically
plausible model of memory replay, in which replay is sequential
(Diekmann and Cheng, 2022). More details are provided below.

We used aDNNwith the same architecture as that used inMnih
et al. (2015). The input, an 84× 84× 3 RGB image, was first passed
to a convolutional layer consisting of 16 8 × 8 filters with stride
4 and then to a second convolutional layer consisting of 32 4 × 4
filters with stride 2. The last hidden layer consisted of 256 fully
connected units. The output layer had 6 units, each corresponding
to theQ-value of one of the possible actions. Rectifying Linear Unit
(ReLU) was used as activation function in all layers except for the
output layer, where a linear activation function was used. Unless
stated otherwise, in each time step, a mini-batch of 32 samples was
randomly drawn from the memory to update the network using
the Adam optimizer with a learning rate of 0.0001. We used a
smaller initial learning rate for Adam than the default value which
is 0.001 (Kingma and Ba, 2017) so that the learning of the online
DQN can become more stable. However, as will show in the results,
online DQN still learns more unstably compared to its counterpart
with memories.

Online Deep Q network. To model spatial learning without
EM, online learning was used based on the experiences only as
they occur, i.e., each experience tuple was available exactly once
for learning. Specifically, at each time step t, a loss function was
constructed using only the current experience tuple according to
Equation 8. The DNN then minimized this loss function

Lt =

(

rt+1 +max
a′

Qw(st+1, a
′)− Qw̄(st , at)

)2

(8)

incrementally to find the optimal Q function. The hyper-
parameters and update rules for the online DQN agent were
the same as those for the DQN agent except that there was no
experience replay.

A biologically plausible mechanism for
sequential replay

In the original DQN (Mnih et al., 2015), the authors applied
random replay to break the serial correlations in the data and, thus,
stabilize the training of the DNN. This, however, is not biologically
plausible, since replay in the rodent hippocampus is sequential
and exhibits complex statistics (Louie and Wilson, 2001; Gupta
et al., 2010; Buhry et al., 2011; Ólafsdóttir et al., 2015; Stella et al.,
2019; Widloski and Foster, 2022). We previously developed a more
biologically plausible replay mechanism, named Spatial structure

and Frequency-weighted Memory Access (SFMA), that generates
stochastic sequential sequences (Diekmann and Cheng, 2022) and
use it here to study the difference between sequential and random
replay on replay learning and the conditions under which these
differences arise.

This sequential replay algorithm reproduces various replay
statistics observed in the hippocampus, including Brownian-
diffusion-like replay when the rodents are sleeping in the home
cage after a foraging task (Stella et al., 2019), reverse and forward
sequential replay in goal-directed navigation (Diba and Buzsáki,

2007), and replay of shortcuts that the animal has never experienced
(Gupta et al., 2010). Briefly, replay occurs at the end of a learning
trial with the re-activation of multiple experience tuples. The
probability of reactivating an experience e depends on three factors:
(i) a strength factor C(e) that represents how frequently the
tuple was experienced and how much reward was collected; (ii)
a similarity factor D(e|e′) that measures the similarity between e

and the experience tuple e′ that was reactivated last; and iii) an
inhibition factor I(e) that represents whether e has been activated
or not in the current replay. These terms were put together in the
reactivation score for e given e′:

R(e|e′) = C(e)D(e|e′)(1− I(e)). (9)

Finally, the probability of activating e given e′ is determined by the
following equation:

p(e|e′) =
eβR(e|e

′) − 1
∑m

τ=1

[

eβR(eτ |e
′) − 1

] , (10)

where m is the number of stored experience tuples and β the
inverse temperature factor. The −1 terms in both nominator and
denominator ensure that p(e|e′) = 0 for an experience e that has
never been visited (C(e) = 0), and/or has just been reactivated
(1 − I(e) = 0), and/or is too different from the current state
(D(e|e′) ≈ 0). The sequentiality of the replay is mainly determined
by the similarity factor and the inhibition factor, where the former
measures, roughly speaking, how close two states are in state space;
the easier the agent can move from state a to state b, the more
similar a and b are. More details of the sequential replay algorithms
are provided in Diekmann and Cheng (2022).

Results

To test our hypotheses regarding the function of EM in
learning, we applied each of the three RL algorithms (EC, one-shot
learning; DQN, replay learning; online DQN, online learning) to
solve the spatial navigation tasks in the four different environments
(Figure 3). The agents trained using the three algorithms are
referred to as EC agent, DQN agent, and online DQN agent. We
first analyzed the learning curves for every environment and then
focused on the results from the tunnel maze v4, because it is
where the differences between the three agents become the most
pronounced. Finally, we systematically compared sequential and
random replay in the replay learning paradigm to investigate the
consequences of different replay statistics for learning.

Task complexity and trial numbers
determine the dependence on EM

The learning curves for the three agents in the four
environments confirm our hypotheses and reveal interesting details
(Figure 5). Namely, the learning speeds of the three algorithms
have the relationship: EC > DQN > online DQN in all tested
environments. The learning curves match our intuition about the
complexity of the task in the four environments. For instance,
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FIGURE 5

Learning curves for the three learning paradigms in di�erent environments, which are (A) Tunnel maze LV1, (B) Tunnel maze LV2, (C) Tunnel maze

LV3, (D) Tunnel maze LV4. Each panel shows the number of time steps that the agent takes to find the goal in a specific trial. The curves and shaded

areas indicate the mean and the standard deviation, respectively, obtained from 50 independent runs. The learning curves for the first 200 trials out of

500 trials are shown here because both EC and DQN have converged at this point. We also added insets of the learning curves for the first 50 trials to

show details where DQN starts outperforming EC. Although the curves for online-DQN do not fully reach asymptotic performance in panel (D), most

agents still managed to find the solutions at the end of the simulation (500 trials). Model-free Episodic Control (EC) represents one-shot learning,

Deep Q Learning with memory replay (DQN) represents replay learning, and online Deep Q Learning (online DQN) represents online learning.

as the maze becomes larger, all three agents requires a larger
initial number of time steps to complete a trial in the tunnel
maze (Figures 5A–D). Also, the learning curves drop more slowly,
meaning that more learning trials are required to find the shortest
path. These differences in the learning curves are consistent with a
higher task complexity in a larger tunnel maze.

Interestingly, the online DQN agent is more sensitive to the
change of the task complexity as compared to the EC and DQN
agents, since its learning curves move up and rightwards more
dramatically. If we limited the number of trials to about 80, then
online DQN would not be able to solve the more complex Tunnel
maze v4, even though it could solve the simpler v1 version, whereas
both the EC and DQN agents could solve both versions. Note that
if we limited the number of allowed trials by ending the experiment
as soon as there is one successful trial, then the only paradigm that
could potentially learn any task is EC (one-shot learning), since the
other two paradigms learn incrementally.

There are three possible factors which make replay learning
comparatively faster than online learning. Firstly, DQN was
trained on samples randomly drawn from the past experiences
while online-DQN was updated with sequential data, which was
more correlated and with which an artificial neural network is
notoriously hard to train. Secondly, the gradient for updating

online DQN was based on one single sample and thus, was much
more noisy compared to DQN with replay. Noisy gradients make
learning particularly unstable and account for the much larger
variance in the performance of the online DQN agent, which is
clearly visible in the learning curves (Supplementary Figure 1). This
is why mini-batch updating is prevalent in the field of machine
learning to reduce the noise in gradient descent (Masters and
Luschi, 2018). Thirdly, data was reusedmore frequently for training
the DQN than for training its online counterpart.

To disentangle these three factors and further understand
why replay learning is faster than online learning, we set up
two variants of experience replay. The first variant was the same
as the default replay learning except that the batch size was
decreased to one (batch size one); in the second variant, the batch
size remained 32 while experiences were only sampled from the
memory every 32 time steps (sparse sampling). Thus, the amount
of training data accessible to the two variants was the same as for
online learning. The two variants differed from online learning
in only one aspect—the first one (sparse sampling) averages the
gradients over a batch of 32, and the second (batch size 1)
removes serial correlations in the input data. We found that only
the original DQN significantly speeds up learning compared to
online learning (Supplementary Figure 2), while the two variants
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FIGURE 6

Sample trajectories in the tunnel maze for three learning algorithms. An arrow is attached to each node that the agent visits in one test trial. The

direction of the arrow indicates the orientation of the agent, not the chosen action; lighter colors represent visits earlier in the trajectory and darker

colors later in the trajectory. The starting and goal node are depicted in blue and green, respectively.

do not—with sparse sampling, the learning speed got improved
only slightly (Supplementary Figure 2, yellow curve); by solely
breaking the serial correlation, learning did not become faster at all
(Supplementary Figure 2, black curve) than that in online learning.
It demonstrates that it is the capability of reusing training data
(32 times more than online learning and the two variants) which
enables the original DQN to learn extremely fast.

Replay learning finds better asymptotic
solutions as compared to one-shot learning

To demonstrate the differences between the solutions found by
the EC and DQN agents, we visualized single example trajectories
that the agents took inside the tunnel maze during the test trial after
500 trials of training. A representative EC agent (Figure 6, green
arrows) took a longer trajectory than a representative DQN agent
(orange arrows).

Overall, 52% (26/50) of the EC agents took the longer trajectory
along the tunnel, whereas only 4% (2/50) of the DQN agents
employed the same sub-optimal strategy to reach the goal, i.e.,
the vast majority of the DQN agents found the shorter orange
trajectory.We explain the difference between the agents behavior as
follows. The green trajectory can be found more easily by random
exploration, because once the agent moves into the tunnel, it is
likely that the agent moves along the tunnel and reaches the goal
since its movement is constrained by the walls. In contrast, the
shorter trajectory is harder to discover since it requires exploration
of the open space at the bottom half of the tunnel maze, which
takes more trials and errors. A DQN is more likely to find the
better solution, because it learns more slowly and, thus, explores
the environment more extensively (more on this below). The EC
agent, in contrast, learns faster, but it is more prone to get stuck in
a sub-optimal solution when there are multiple solutions and the
globally optimal one is more difficult to find.

To compare the asymptotic solutions found by the three
learning algorithms more systematically, we placed the trained
agents on the starting position inside each maze and recorded the
number of time steps they took to find the goal (Figure 7). This
analysis revealed two interesting results. First, there were always

FIGURE 7

The number of time steps that the agent takes to find the goal in test

trials. Bars represent the average number of steps for each

algorithm-maze combination over 50 runs. The size of each black

dot represents the frequency of the value. The vertical line on each

bar represents the standard error of the mean.

a few simulations where the online DQN agent could not find
a solution from the starting node to the goal, indicated by the
data points around 600 time steps (the time-out value). It is these
unsuccessful test trials that contribute to the high average number
of time steps in the solutions found by the online-DQN agent.
Nevertheless, even the online DQN agent discovered trajectories
with lengths similar to those found by the EC and DQN agent, as
indicated by the data points inside the blue bars. This confirms that
the online learning paradigm is an unstable process whose success
depends on the randomness in the training.

Second, in every environment the DQN agent found better
solutions, i.e., shorter average trajectories, than the EC agent did
(Figure 7). This difference is especially pronounced in the most
complex tunnel maze v4, where the number of possible routes
from the start to the goal is the largest (see Figure 3E), because of
how EC and DQN utilize episodic memory. EC directly retrieves a
sequence of past experiences for making decisions, and therefore
follows the first solution it finds, which is discovered through
randomly exploring themaze and, hence, is not necessarily optimal.
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FIGURE 8

Sample coverage and propagation of reward information in the tunnel maze. An arrow (gray/colored) indicates that the agent has visited the node.

The direction of the arrow indicates the orientation of the agent, not the chosen action. A colored (green/orange/blue) arrow indicates that the agent

can navigate to the goal, if placed on that node in that orientation. The starting and goal nodes are depicted in blue and green, respectively. EC,

Model-free Episodic control; DQN, Deep Q network; online-DQN, online deep Q network).

In contrast, DQN constantly extracts the optimal solution based
on all its past experiences, which is a gradual process, enables the
agent to explore the environmentmore extensively, and yieldsmore
diverse experiences compared to EC. Thus, it is more likely for
the DQN agent to extract a near-optimal solution. Of course, it
is possible that the first solution found by the EC agent is near
optimal, but the probability of this incident is small, especially when
the state space is large. This also means that the solutions found by
EC between independent runs can be very different, which explains
the larger variance of time-steps required to reach the goal for the
EC as compared to the DQN agent.

One-shot learning propagates reward
information more e�ciently than replay
learning does

Next, we examined how extensively the three agents explored
the environments during training and how well the reward
information was propagated from the goal to other states
(Figure 8). In the training phase, we recorded the position
(represented by a node index) and orientation of the agent inside
the mazes at each time step and extracted only the unique
combinations to represent the set of states that the agent visited
during training. Note that each state (location and orientation) is
uniquely associated with an RGB image. After the training was
completed, we placed the agent in every state it had visited during
training and checked whether the agent would navigate to the goal
from that state, or not. If so, we considered the reward to have
propagated to that state and call that state a solution state.

In one representative example in tunnel maze v4 (Figure 8), the
EC agent explored the least, but spread the reward information to

most of the states it had visited. It is also apparent that the agent
always went into the tunnel to reach the goal no matter which state
it starts from, since the reward information is not propagated to
the node below the goal node (marked in green). The presence of
gray arrows indicates that there are states that were visited by the
EC agent, from where it however cannot find the goal. Since EC
propagates the reward information in one shot at the end of each
trial (Equation 4), these states were probably visited in the very early
stage of training when the agent failed to find the goal before the
trial timed out. Finally, due to rapid learning, the behavior of the
EC agent soon becomes highly repetitive after the first solution is
discovered. In contrast, the DQN agent explored the maze more
extensively, and also propagated the reward information to a large
portion of the visited states as well. It is not easy to tell at which
stage of the training the agent visits a gray state since the DQN
propagates the reward signal gradually. Lastly, the online DQN
agent explores the entire maze, but spreads the reward information
to the smallest range out of the three algorithms. This demonstrates
the advantages of memory replay as the DQN agent is able to find
the goal starting from more states while exploring a smaller range
of the environment compared to the online DQN.

Amore systematic analysis (Figure 9) confirms that, on average,
the fractions of visited states in each maze for the three learning
algorithms are inversely related to the learning speed, namely,
online DQN > DQN > EC. That is, the faster the agent learns, the
less it explores the environments. Although the online DQN agent
explored almost 100% of the state space in each maze, it propagated
the reward information the least among the three algorithms.
Furthermore, the fraction of states (relative to the total number of
states) from which the agent could navigate to the goal is larger for
DQN than for EC in simpler mazes (v1 and v2), but the relationship
is reversed in the more complex maze (v4). This means that DQN
is more sensitive to task complexity when it comes to propagating
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FIGURE 9

Agents that learned faster explored less. For each algorithm-maze combination, bars show the fraction of states that were never visited during

training (white fill); from which the agent will navigate to the goal, i.e., solution states (green/orange/blue fill); and were visited at least once during

training, but from which the agent will not reach the goal (gray fill). The visited states were collected from the training over 500 trials and the solution

states from one test trial per state after the training. The results represent an average over 50 runs.

reward information than EC is. Finally, since the EC agent explores
a smaller fraction of the environment, it seems to have propagated
the reward information more efficiently to the states it had visited.
To analyze this advantage of EC, we plotted the ratio of the number
of solution states to the total number of visited states for each
algorithm-maze combination (Figure 10A). Indeed, in every maze,
the EC agent propagated the reward information to a larger fraction
of the explored states than the DQN agent did.

Next, we analyzed whether the DQN and online DQN agents
would propagate the reward information further, if given more
training trials. By comparing the training outcome after 250 trials
(Figure 10A) to that after 500 trials (Figure 10B), we see that the
solution-states-to-visited-states ratio for the EC and DQN agents
have converged, but it is possible that the online DQN agent would
spread the reward information to a larger fraction of states, if it were
given more training.

Sequential replay outperforms random
replay when replays are limited in number

So far, we deployed a simple replay mechanism in the replay
learning paradigm that is not biologically plausible. Experiences
were randomly selected and replayed at each time step. Random
replay is favored in the machine learning community, because
it alleviates the problem of serial correlations and averages the
training over many past behaviors (Lin, 1992; Mnih et al.,
2015). However, (awake) hippocampal replay is mostly sequential
and occurs at the beginning or end of a learning trial. We
therefore investigated if and when sequential replay has benefits for
spatial learning. We particularly focused on the replay of reverse
sequences, which we showed previously to better propagate reward
information in the case of tabular Q learning (Diekmann and
Cheng, 2022). In addition, it has been hypothesized that reverse
hippocampal replay plays a role in learning rewarded spatial path
(Foster and Wilson, 2006; Diba and Buzsáki, 2007). Therefore,
we chose parameter settings for the replay mechanism that would

FIGURE 10

Agents that learned faster propagated reward information more

e�ciently. The ratio between the number of the solution states, i.e.,

states from which the agent will navigate to the goal, and the

number of explored states during training. Each bar represents an

average over 50 simulations. The size of each black dot represents

the frequency of that value. The vertical line on each bar represents

the standard error of the mean. (A) After 250 learning trials. (B) After

500 learning trials. While more learning trials allowed replay (DQN)

and online learning to propagate the reward information to a slightly

larger fraction of visited nodes, the improvement was small.

result in reverse sequences only. For a fair comparison, we also
limited random replay to the end of every learning trial.

Hence, except for the statistics of the experience tuples,
sequential and random replay in our simulation were characterized
by the same parameters. That is a replay event occurred after
the conclusion of a trial and consisted of a variable number of
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FIGURE 11

Sequential replay outperforms random replay when number of replays is limited. Comparison of learning curves for random replay (orange) and

sequential replay (black) in tunnel maze v4. The top, middle, and bottom rows show results for 10, 20, and 50 replays, respectively. Within each row

the same curve for random replay is repeated in every column to facilitated easier comparisons. Each data point was averaged over 50 runs.

replay batches. Each batch contained 32 experience tuples and
led to one update of the network. Based on our results above,
we hypothesized that the number of replay batches in one event
has a strong effect on performance, and much more so than
the batch size. As for the statistics of replay, we hypothesized
that the most important parameter is the inverse temperature
β , which largely controls the probability distribution of the
experience tuples to be replayed (see SectionA biologically plausible

mechanism for sequential replay). The larger the value of β ,
the more deterministic the distribution is, resulting in longer
sequences being replayed more often (Supplementary Figure 3).
With decreasing β , replay becomes more stochastic, leading to
shorter sequences. As β eventually becomes 0, the replay becomes
completely random so that experience tuples are almost entirely
replayed independently from one another, resulting in sequence
lengths of one (Supplementary Figure 3).

We compared sequential replay agents with five different β ∈

{0, 1, 2, 5, 10} to random replay agents for 10, 20, and 50 replay
batches per replay event. As expected, we found that using a
higher number of replay batches results in faster learning for both
sequential and random replay (Figure 11). More importantly, the
improvement is different for sequential and for random replay
and, in the case of sequential replay also depends on the inverse
temperature. As a result, sequential replay agents outperformed its
random counterpart when the number of replay batches is small
(10, 20) and the β-values are intermediate (1, 2, 5). Note that
sequential replay with β = 0 is not equivalent to random replay
as might have been expected given that β is the inverse measure of
stochasticity. The difference arises because sequential replay with
β = 0 ensures that all state transitions that have been visited are
sampled uniformly, whereas random replay samples experiences

with a probability that is proportional to their frequency of being
visited. As a consequence, the similarity of the replayed batches for
β = 0 is lower than that of the random replay (Figure 12B).

These conditions under which sequential replay is superior
to random replay arise for two reasons. Firstly, the key for the
agent to learn the path from the start to the goal is to sample
enough transitions in the maze that connect the two points, and
reverse sequences are more efficient in doing so than randomly
sampled experiences. That is why sequential replay makes learning
faster than random replay when the number of transitions to
be sampled is limited. However, if a large number of replays is
permitted, randomly selecting visited transitions would eventually
connect the goal and the start as well, resulting in no differences
of the performance of the two types of agents. Secondly, how the
relative benefit of sequential vs. random replay depends on the
inverse temperature β (Figure 12A) can be explained by something
akin to the exploration-exploitation trade-off, but in the replayed
sequences rather than the actual movements of the agent in the
maze.With very large β (≥ 10), generated replay sequences become
longer, which leads to better exploitation, but the sequences are also
more similar to one another (Figure 12B), which hurts exploration
because similar sequences include fewer unique transitions in the
maze and therefore have lower probability to connect the goal and
the start. Therefore, moderate values of β offer an optimal trade-
off by generating shorter but more diverse sequences which cover
enough space in the maze and propagate the reward information
efficiently.

It should be mentioned that due to how the algorithm
works, the stochasticity in sequential replay reaches a certain
threshold when β approaches 0. Only as β = 0, sequential
replay abruptly becomes completely random. We added extra
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FIGURE 12

Sequential replay outperforms random replay when the number of replays is limited and sequences are not deterministic. (A) Relative performance of

sequential replay over random replay (inverse ratio of the average escape latency) for di�erent combinations of inverse temperature β and replay

number. Please note the discontinuity between the data points with β = 0 and those with other β-values. Each data point was averaged over 50 runs.

(B) Average event-level similarity of the replay batches. The similarity index of two replayed batches was the proportion of same experience tuples

that the two batches share. For one replay event, the similarity indices between any two pairs of batches were computed and then averaged,

resulting the event-level similarity. Each data point in the figure was then the average of the event-level similarity over all replay events of the first 200

trials from all the 50 runs.

data points when β = 0.0001, 0.001, 0.01, 0.1 and observed
that the relative performance does not come closer to that with
β = 0, but rather fluctuates around certain values larger than 1
(Supplementary Figure 4). This is why we did not connect the data
points with β = 0 and β = 0.01 in Figure 12A.

In summary, aside from showing that sequential replay can be
superior to random replay in some cases, our results also indicated
under which conditions this is so. Intriguingly, these conditions
map well onto the differences between replay in the brain and in
machine learning. We discuss this issue further in the Discussion.

Discussion

To investigate the functional role of episodic memory (EM)
in spatial learning, we studied three learning paradigms that
differ in how they access information stored in EM: one-shot
learning, replay learning and online learning. To compare the
three paradigms quantitatively, we chose three reinforcement
learning algorithms and applied them to spatial learning tasks in
simulated maze environments. The three agents received no prior
information about the mazes and had to solve the navigation tasks
based on raw sensory inputs by trial and error. We found that
whether an agent is able to learn the task depends on the number of
learning trials and the complexity of the task. One-shot learning
initially solves the task very quickly, but cannot reach the same
asymptotic performance as replay learning, which converges more
slowly but explores the environments more extensively. Online
learning without EM is the most sensitive to changes in task
complexity and is unstable. It therefore leads to large variability
in learning performance. Furthermore, we showed that replaying
reverse sequences can facilitate learning more than random replay
does when the number of replayed experiences are limited, and the

sequences need to be mildly stochastic to cover a sufficient fraction
of the state space and to prevent the network from overfitting.

Finally, we note that the specific implementations of the
three learning paradigms were chosen in this study because they
exemplify different ways of accessing episodic memory to drive
learning. It was important to us that the way in which they access
episodic memory and learn is simple and biologically plausible to
ensure that the brain could in principle use similar computations.
Nevertheless, we do not mean to imply that the brain literally uses
the same implementations as we did here.

Implications for the role of the
hippocampus in learning

Many tasks in animal experiments have been categorized as
being hippocampally dependent, such as spatial navigation (Morris
et al., 1982), contextual fear conditioning (Maren et al., 2013), and
trace conditioning (McEchron et al., 1998), because animals with
hippocampal lesions perform worse in these tasks than controls.
However, the literature suggests that the hippocampus might play
diverse roles in these different tasks. In spatial navigation, the
most widely held view suggests that the hippocampus represents a
cognitive map (Moser et al., 2008), which allows animals to localize
themselves and plan trajectories to a goal location. However, the
same brain region is also thought to be responsible for constructing
a contextual representation in contextual fear conditioning (Maren
et al., 2013), or bridging a temporal gap between the CS and US in
trace conditioning (Bangasser et al., 2006).

Our current modeling results suggest a rather different picture
on the relationship between task and hippocampus. First, it
might not be useful to categorically label a task as hippocampally
dependent, or not, since the dependence is determined by the
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complexity of the task and how extensive the training is. For
instance, a simple spatial navigation task might not depend on
the hippocampus, if a sufficient number of training trials are
given to the animal with hippocampal lesions, which can still
use online learning. Second, a hippocampal lesion might have
more widespread impact on behavior than traditional measures
of success suggest. In our simulations, a hippocampal lesion (the
online learning paradigm) not only significantly decreases the
learning speed, but also leads to a more thorough exploration
of the environment as well as more variability in the learning
process and outcomes due to the high instability of online learning.
Third, the diverse cognitive functions that the hippocampus might
be involved in might be mapped to a single function of the
hippocampus: to serve as a crucial part of the EM system (Cheng,
2013; Cheng andWerning, 2016), so that animals can perform one-
shot learning and replay learning by accessing EM in two different
modes.

Building a cognitivemap of the environment has been proposed
as one of the major functions of the hippocampus. One limitation
of our current study regarding the function of the hippocampus is
that we used one fixed starting and goal location and did not explore
the learning of the structure of the mazes, the statistics of the goal
locations, etc. Both DQN and EC in their current implementation
have difficulties in learning changing goal locations; the former
requires a large amount of interactions to unlearn the association
with the previous goal, and the latter does not forget the old goal
location, because of its greedy updating of Q-values. Although the
learning aspects of the algorithms could be made more powerful
to overcome these limitations, we expect that the function of EM
during learning remains similar.

Two di�erent modes of accessing episodic
memory

To the best of our knowledge, ours is the first study that
modeled and quantitatively compared two different modes of
accessing EM. On the one hand, retrieval entails the direct use
of episodic memory and supports one-shot learning. It has been
observed and discussed in both animal and human experiments
(Öhman et al., 1975; Steele and Morris, 1999; Tse et al., 2007).
Recently, Banino et al. (2020) have shown that retrieving EM with
a recurrent attention mechanism enables transitive inference. On
the other hand, hippocampal replay has been thought to play a role
in memory consolidation for decades (Buzsaki, 1989; McClelland
et al., 1995). It has been demonstrated in computational models
(McClelland et al., 1995; van de Ven et al., 2020) that replay can
prevent catastrophic interference (McCloskey and Cohen, 1989;
Kirkpatrick et al., 2017) in artificial neural networks by enabling
interleaved training, i.e., the alternating presentation of old and new
information. This latter aspect of replay might be more important
than the mere repetition of the experience and explains why
increasing the learning rate in the online learning paradigms does
not improve performance to the level of replay learning. However,
the difference between these two operating modes of EM has not
been studied.

In our simulations, the two modes of accessing EM learn
at different speeds and, as a consequence, lead the agent to
explore the environment to different extents. Particularly, replay
learning enables the agent to find better asymptotic solutions
since the agent explores a larger fraction of the state space.
In contrast, the one-shot learning agent shows highly repetitive
behavioral patterns after finding the solution for the first time.
Therefore, our results suggest that impairing replay, but leaving
EM intact otherwise, will lead to very specific learning deficits
that are different from deficits due to abolishing EM altogether,
i.e., anterograde amnesia. However, it is not easy to observe this
distinction at the behavioral level in animal experiments since
the two modes coexist in a healthy brain and are normally both
impaired by a hippocampal lesion.

We caution however that learning speed and asymptotic
performance alone are not sufficient evidence for a particular
memory access mode driving learning. For instance, fast initial
learning, or even one-shot learning, does not necessarily imply
that the brain uses EM in retrieval mode (as Episodic Control
does). It could also be using EM in replay mode (as DQN
does), if replays are cleverly prioritized or sufficiently many replay
events occur between finding the goal for the first time and
subsequent trials. Similarly, optimal asymptotic performance does
not necessarily mean that the brain access EM in replay mode,
because, first, the asymptotic performance depends strongly on
the exploration strategy, which, in brains could differ from ǫ-
greedy action selection (with ǫ = 0.1), second, the brain may
use a learning method with better asymptotic properties than
Episodic Control, e.g., on-policy first-visit Monte Carlo control
or prioritized sweeping with model reset, which — like Episodic
Control—use each episode only once to update the Q-values.
Finally, if the brain used eligibility traces (Gerstner et al., 2018;
Roelfsema and Holtmaat, 2018) for online learning, it would lead
to significantly faster learning than the online DQN that is used as
a baseline here.

On the importance of studying the learning
dynamics

Our modeling in this study suggests that it is critical to
experimentally measure the learning curves in simple and more
complex tasks in control and animals with hippocampal lesions,
as well as, when hippocampal replay or memory retrieval is
inhibited separately. While in hippocampal research it is fairly
common to report learning curves, they are generally averaged
over animals and/or blocks of learning. However, such averaging
can produce misleading results (Gallistel et al., 2004; Smith et al.,
2004). For instance, Cheng and Sabes (2006, 2007) have shown
that studying the dynamics of learning reveals an enhanced
picture of the process of adaptation, and Donoso et al. (2021)
uncovered a large variability of behavior in extinction learning
and renewal by focusing on individual learning curves. None of
these findings could have been revealed by simply comparing
the differences in performance before and after learning, or
if data was averaged across individuals. Studying individual
learning curves reveals much more about the learning process

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1160648
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zeng et al. 10.3389/fpsyg.2023.1160648

and the role of episodic memory, than comparing pairs of data
points, e.g., comparing the performance of lesioned to control
animals in one task after a fixed number of learning trials.
Hence, our modeling provides another example in which much
more information can be gained from studying the dynamics
of learning.

The sequentiality and generativity of
hippocampal replay

While there are notable exceptions (Levy, 1996; Cheng, 2013;
Bayati et al., 2018), sequentiality has not been widely accepted as
an important feature of EM and many models have represented
EM as static memory patterns (Treves and Rolls, 1992; Hasselmo
et al., 2002; Káli and Dayan, 2004). In our model, the sequentiality
of episodic memory is key in the one-shot learning paradigm.
This is because when there is a temporal distance between the
agent’s actions and their consequences, the sequential order of past
experiences has to bemaintained inmemory to credit the past states
and actions when updating the Q-values. One-shot learning is a
crucial ability for animals to survive since life-threatening events
should not be repeated.

In addition, our simulations also show that replaying
reverse sequences becomes more efficient in propagating reward
information than random replay when only a limited number of
experiences are replayed. This might explain why hippocampal
replay is mostly sequential because the brain has limited
computational resources and is occupied by other mental activities.
In contrast, the number of replayed experiences is not a major
concern in machine learning and overall task performance is
more often the driving factor for applications, thus, it would then
appear as if random replay is always preferable (Lin, 1992). We
believe this to be a major insight of this study. We also found
that the sequences need to be stochastic to a certain degree so
that replayed experiences are more diverse and cover more state
space. That is replay of sequences is more useful than completely
random experiences. However, these sequences should not be
completely deterministic either. We call this property of the replay
mechanism “generative.”

Intuitively, the performance advantage of stochastic sequential
replay in SFMA (Diekmann and Cheng, 2022) over uniform replay
is due to the wastefulness of uniform sampling. However, it is not
clear whether SFMA would also beat prioritized experience replay
(Schaul et al., 2016) since the performance of both algorithms
depend on the choice of their respective hyper-parameters as
well as behavioral and replay statistics. We believe that such a
comparison is out of the scope of our study since our main goal
was to investigate how biologically realistic replay statistics facilitate
spatial learning.

In conclusion, our modeling study made a first attempt at
studying the computational role of EM in spatial learning and
driving future spatial behavior. We quantitatively investigated

two different modes of accessing EM: retrieval and replay. These
investigations have revealed previously unappreciated differences
between the two operating modes of EM and potential explanations
for the sequentiality and generativity of hippocampal replay. Since
the algorithms used in this study can be applied to other learning
situations as well, these findings are likely to generalize to domains
other than spatial navigation.
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